97 research outputs found

    A successful concept for measuring non-planarity of graphs: the crossing number

    Get PDF
    AbstractThis paper surveys how the concept of crossing number, which used to be familiar only to a limited group of specialists, emerges as a significant graph parameter. This paper has dual purposes: first, it reviews foundational, historical, and philosophical issues of crossing numbers, second, it shows a new lower bound for crossing numbers. This new lower bound may be helpful in estimating crossing numbers

    On Graph Crossing Number and Edge Planarization

    Full text link
    Given an n-vertex graph G, a drawing of G in the plane is a mapping of its vertices into points of the plane, and its edges into continuous curves, connecting the images of their endpoints. A crossing in such a drawing is a point where two such curves intersect. In the Minimum Crossing Number problem, the goal is to find a drawing of G with minimum number of crossings. The value of the optimal solution, denoted by OPT, is called the graph's crossing number. This is a very basic problem in topological graph theory, that has received a significant amount of attention, but is still poorly understood algorithmically. The best currently known efficient algorithm produces drawings with O(log2n)(n+OPT)O(\log^2 n)(n + OPT) crossings on bounded-degree graphs, while only a constant factor hardness of approximation is known. A closely related problem is Minimum Edge Planarization, in which the goal is to remove a minimum-cardinality subset of edges from G, such that the remaining graph is planar. Our main technical result establishes the following connection between the two problems: if we are given a solution of cost k to the Minimum Edge Planarization problem on graph G, then we can efficiently find a drawing of G with at most \poly(d)\cdot k\cdot (k+OPT) crossings, where dd is the maximum degree in G. This result implies an O(n\cdot \poly(d)\cdot \log^{3/2}n)-approximation for Minimum Crossing Number, as well as improved algorithms for special cases of the problem, such as, for example, k-apex and bounded-genus graphs

    The Crossing Number of Graphs: Theory and Computation

    Get PDF
    This survey concentrates on selected theoretical and computational aspects of the crossing number of graphs. Starting with its introduction by Turán, we will discuss known results for complete and complete bipartite graphs. Then we will focus on some historical confusion on the crossing number that has been brought up by Pach and Tóth as well as Székely. A connection to computational geometry is made in the section on the geometric version, namely the rectilinear crossing number. We will also mention some applications of the crossing number to geometrical problems. This review ends with recent results on approximation and exact computations

    Inserting Multiple Edges into a Planar Graph

    Get PDF
    Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k

    Drawing graphs for cartographic applications

    Get PDF
    Graph Drawing is a relatively young area that combines elements of graph theory, algorithms, (computational) geometry and (computational) topology. Research in this field concentrates on developing algorithms for drawing graphs while satisfying certain aesthetic criteria. These criteria are often expressed in properties like edge complexity, number of edge crossings, angular resolutions, shapes of faces or graph symmetries and in general aim at creating a drawing of a graph that conveys the information to the reader in the best possible way. Graph drawing has applications in a wide variety of areas which include cartography, VLSI design and information visualization. In this thesis we consider several graph drawing problems. The first problem we address is rectilinear cartogram construction. A cartogram, also known as value-by-area map, is a technique used by cartographers to visualize statistical data over a set of geographical regions like countries, states or counties. The regions of a cartogram are deformed such that the area of a region corresponds to a particular geographic variable. The shapes of the regions depend on the type of cartogram. We consider rectilinear cartograms of constant complexity, that is cartograms where each region is a rectilinear polygon with a constant number of vertices. Whether a cartogram is good is determined by how closely the cartogram resembles the original map and how precisely the area of its regions describe the associated values. The cartographic error is defined for each region as jAc¡Asj=As, where Ac is the area of the region in the cartogram and As is the specified area of that region, given by the geographic variable to be shown. In this thesis we consider the construction of rectilinear cartograms that have correct adjacencies of the regions and zero cartographic error. We show that any plane triangulated graph admits a rectilinear cartogram where every region has at most 40 vertices which can be constructed in O(nlogn) time. We also present experimental results that show that in practice the algorithm works significantly better than suggested by the complexity bounds. In our experiments on real-world data we were always able to construct a cartogram where the average number of vertices per region does not exceed five. Since a rectangle has four vertices, this means that most of the regions of our rectilinear car tograms are in fact rectangles. Moreover, the maximum number vertices of each region in these cartograms never exceeded ten. The second problem we address in this thesis concerns cased drawings of graphs. The vertices of a drawing are commonly marked with a disk, but differentiating between vertices and edge crossings in a dense graph can still be difficult. Edge casing is a wellknown method—used, for example, in electrical drawings, when depicting knots, and, more generally, in information visualization—to alleviate this problem and to improve the readability of a drawing. A cased drawing orders the edges of each crossing and interrupts the lower edge in an appropriate neighborhood of the crossing. One can also envision that every edge is encased in a strip of the background color and that the casing of the upper edge covers the lower edge at the crossing. If there are no application-specific restrictions that dictate the order of the edges at each crossing, then we can in principle choose freely how to arrange them. However, certain orders will lead to a more readable drawing than others. In this thesis we formulate aesthetic criteria for a cased drawing as optimization problems and solve these problems. For most of the problems we present either a polynomial time algorithm or demonstrate that the problem is NP-hard. Finally we consider a combinatorial question in computational topology concerning three types of objects: closed curves in the plane, surfaces immersed in the plane, and surfaces embedded in space. In particular, we study casings of closed curves in the plane to decide whether these curves can be embedded as the boundaries of certain special surfaces. We show that it is NP-complete to determine whether an immersed disk is the projection of a surface embedded in space, or whether a curve is the boundary of an immersed surface in the plane that is not constrained to be a disk. However, when a casing is supplied with a self-intersecting curve, describing which component of the curve lies above and which below at each crossing, we can determine in time linear in the number of crossings whether the cased curve forms the projected boundary of a surface in space. As a related result, we show that an immersed surface with a single boundary curve that crosses itself n times has at most 2n=2 combinatorially distinct spatial embeddings and we discuss the existence of fixed-parameter tractable algorithms for related problems

    Approximating the rectilinear crossing number

    Get PDF
    A straight-line drawing of a graph G is a mapping which assigns to each vertex a point in the plane and to each edge a straight-line segment connecting the corresponding two points. The rectilinear crossing number of a graph G, (cr) over bar (G), is the minimum number of pairs of crossing edges in any straight-line drawing of G. Determining or estimating (cr) over bar (G) appears to be a difficult problem, and deciding if (cr) over bar (G) <= k is known to be NP-hard. In fact, the asymptotic behavior of (cr) over bar (K-n) is still unknown. In this paper, we present a deterministic n(2+o(1))-time algorithm that finds a straight-line drawing of any n-vertex graph G with ((cr) over barG)+ o(n(4)) pairs of crossing edges. Together with the well-known Crossing Lemma due to Ajtai et al. and Leighton, this result implies that for any dense n-vertex graph G, one can efficiently find a straight-line drawing of G with (1 + o(1))(cr) over bar (G) pairs of crossing edges. (C) 2019 Elsevier B.V. All rights reserved
    corecore