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A successful concept for measuring non-planarity
of graphs: the crossing number
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Abstract

This paper surveys how the concept of crossing number, which used to be familiar only to
a limited group of specialists, emerges as a signi/cant graph parameter. This paper has dual
purposes: /rst, it reviews foundational, historical, and philosophical issues of crossing numbers,
second, it shows a new lower bound for crossing numbers. This new lower bound may be helpful
in estimating crossing numbers.
c© 2003 Published by Elsevier B.V.
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1. Foundational issues

Pach and T)oth [48] noted that although researchers seem to agree in what they
understand under the concept of “crossing number”, “drawings” are de/ned in a variety
of ways in the literature, and the possibility is there that some de/nitions might not be
equivalent. Pach and T)oth [48] introduced two new versions of the crossing number
problem, and there is a fourth version, implicitly present in [63]. First, I give a careful
de/nition of three classes of drawings, in which all four kinds of crossing numbers
can be conveniently set.

A drawing D of a /nite graph G on the plane is an injection � from the vertex
set V (G) into the plane, and a mapping of the edge set E(G) into the set of simple
plane curves, i.e. homeomorphic images of the interval [0; 1], such that the curve
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corresponding to the edge e = uv has endpoints �(u) and �(v), and contains no more
points from the image of �.

We also speak about the images of vertices as vertices, and about the curves as
edges. We say that two edges in a drawing cross in a certain point of the plane, or
the point is a crossing point of the two edges, if this point belongs to the interiors of
the curves representing the edges. The number of crossings cr(D) in the drawing D is
the sum of the number of crossing points for all unordered pairs of edges.

A drawing D is normal if it satis/es (i) and (ii):

(i) any two of the curves have /nitely many points in common; and
(ii) no two curves have a point in common in a tangential (touching) way, i.e. we

can de/ne locally the “left side” and the “right side” of the curves at the common
point, both curves are present at both sides of each in every small neighborhood
of that point.

We should have de/ned above intersection points instead of crossing point, but
assumption (ii) allows for speaking about crossing instead of intersection. For normal
drawings we will also assume:

(iii) no point of the plane belongs to the interior of three curves, each representing an
edge of the graph.

Requirement (iii) is convenient, since using it one can simplify the de/nition of
cr(D) to the number of points, where crossing happens in the drawing. Also, some
proof techniques about crossing numbers derive a planar graph with a drawing from a
drawing D by introducing new vertices of degree 4 in the points of crossing, and those
proof techniques require assumption (iii). However, many drawings in applications,
especially straight line drawings, do not satisfy (iii). Notice that if (iii) fails and some
k curves cross each other in an otherwise normal drawing in a single point, then this
situation can easily be transformed locally into a normal drawing where any two of the
k curves cross each other locally once, and the number of crossings in the drawing does
not change. Therefore, we assume (iii) for normal drawings and it will not cause any
problem that some drawings that we use fail (iii). We take a similar approach to (ii),
since some conveniently de/ned drawings—see the last section—will contain tangential
(touching) type of intersections. We take the view that those are easily removable, and
we simply do not count them if they are present.

A drawing D is nice, if it is normal, and in addition satis/es

(iv) no two adjacent edges (i.e. edges sharing an endpoint) cross; and
(v) any two edges cross at most once.

The crossing number CR(G) of the graph G is the minimum of cr(D) over all
drawings of G. We call a drawing D optimal (for CR) if it realizes cr(D)=CR(G). It
is easy to see that an optimal drawing must satisfy (i) and (ii), and a little work shows
that it also must satisfy (iv) and (v). Therefore, we have an equivalent de/nition of
CR(G): the minimum of cr(D) over all normal, nice drawings of G.
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We show (v) /rst. Assume that the curves p and q corresponding to edges uz and xy
cross in points r and t. Call p1; p2; p3 and q1; q2; q3 the pieces of p and q determined
by r and t, with p2 and q2 denoting the rt sections. Rede/ne the curves as

p′ = p1 ∪ q2 ∪ p3 and q′ = q1 ∪ p2 ∪ q3: (1)

Now we can eliminate the tangential intersections of p′ and q′ at r and t. A problem
is that p′ and q′ may not be simple curves (i.e we may have created self-crossings),
but we can shortcut them, and this does not increase the number of crossings in the
drawing. (Although we may have generated new crossing edge pairs, the total number
of crossings decreased, contradicting the optimality of the original drawing. Since this
step may create new crossing edge pairs, one cannot show by using this step that the
crossing number is equal to the pairwise crossing number (see below).) The proof of
(iv) is similar, use the shared endvertex for r, and t for a crossing point. p1 or p3 (q1

or q3) degenerates for a point. Surgery (1) works again.
Pach and T)oth [48] introduced two new variants of the crossing number problem:
the pairwise crossing number CR-PAIR(G) is equal to the minimum number of

unordered pairs of edges that cross each other at least once (i.e. they are counted once
instead of as many times they cross), over all normal drawings of G; and
the odd crossing number CR-ODD(G) is equal to the minimum number of unordered

pairs of edges that cross each other odd times, over all normal drawings of G.
In Tutte’s work [63] another kind of crossing number is implicit:
the independent-odd crossing number CR-IODD(G) is equal to the minimum number

of unordered pairs of non-adjacent edges that cross each other odd times, over all
normal drawings of G.

The following chain of inequalities is obvious from the de/nitions:

CR-IODD(G)6CR-ODD(G)6CR-PAIR(G)6CR(G): (2)

No example of strict inequality is known. Pach [44] considers the problem if all these
numbers are always equal as the most important open problem on crossing numbers.
Mohar [42] independently posed the problem whether

CR-PAIR(G) = CR(G):

The smallest graphs with CR(G)=1 are K5 and K3;3. For these graphs the following
stronger result holds:

Theorem 1.1 (Chojnacki [10]).

CR-IODD(K5) = 1 and CR-IODD(K3;3) = 1:

(For other proofs and generalizations, see [48,63].)
F)ary’s theorem [19] telling that planar graphs can be drawn using straight line seg-

ments for edges and Zarankiewicz’s crossing number conjecture (Section 2.1) may
suggest that optimal drawings can be done using straight line segments for edges. This
is not the case. Guy [25] showed that /rst for K9, and later Bienstock and Dean [6,7]
constructed graphs with crossing number four for any number k, such that drawings
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of those graphs using straight line segments for edges have more crossings than k.
Several authors study CR-LIN(G), which is the minimum number of crossings if all
edges are drawn by straight line segments [12,29,48,57]; since CR(G)6CR-LIN(G),
CR-LIN(G) is the /fth (and largest) item in line (2).

It is clear that if similar crossing number problems are posed for the sphere instead
of the plane, stereographic projection shows that the corresponding planar and spheric
crossing numbers are always equal. Crossing number problems can be posed on ori-
entable and non-orientable surfaces of higher genus, and many of the results discussed
in this paper generalizes for them, see [46,54,55,56].

It is not the purpose of the present paper to give a comprehensive survey of the
literature of crossing numbers. Much of the literature falls into one of two categories:
the /rst investigates exact values of crossing numbers or makes lower bounds on
crossing numbers based on information on the crossing number of a certain small
graph, the second tries to prove bounds based on structural properties of the graph.
We call the /rst the theory of small graphs, the second the theory of large graphs.
During the early history of crossing numbers the theory of small graphs existed only.
For more information on the early history and the theory of small graphs, see [66],
for the modern history and the theory of large graphs, see [56], and for the most
recent results see [44]. A bibliography of papers on crossing numbers by VrNto [65] is
available online.

2. Theory of small graphs

2.1. Tur(an’s brick factory problem

It was Paul Tur)an who introduced the concept of crossing numbers. Tur)an [62] tells
about how he posed the problem, while in a forced labor camp in World War II: “There
were some kilns where the bricks were made and some open storage yards where the
bricks were stored. All the kilns were connected by rail with all storage yards. : : :
the trouble was only at crossings. The trucks generally jumped the rails there, and the
bricks fell out of them; in short this caused a lot of trouble and loss of time : : : the
idea occurred to me that this loss of time could have been minimized if the number
of crossings of the rails had been minimized. But what is the minimum number of
crossings?”

Put in technical terms, Tur)an’s Brick Factory Problem is: what is the crossing num-
ber CR(Kn;m) of the complete bipartite graph Kn;m?

Place �n=2� vertices to negative positions on the x-axis, �n=2� vertices to positive
positions on the x-axis, �m=2� vertices to negative positions on the y-axis, �m=2�
vertices to positive positions on the y-axis, and draw nm edges by straight line segments
to obtain a drawing of Kn;m. It is not hard to check that the following formula gives
the number of crossings in this particular drawing:⌊n

2

⌋⌊
n − 1

2

⌋ ⌊m
2

⌋⌊
m − 1

2

⌋
: (3)
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Zarankiewicz’s crossing number conjecture is that the drawing described above is
optimal.

The conjectured crossing number of the complete graph Kn is
1
4

⌊n
2

⌋⌊
n − 1

2

⌋ ⌊
n − 2

2

⌋ ⌊
n − 3

2

⌋
: (4)

We show a drawing with this number of crossings for even n, the construction is due
to Guy [24] and BlaNzek and Koman [8]: take a soup can, which is homeomorphic to
a sphere, place n=2 vertices equidistantly on the perimeter of the top disk and on the
perimeter of the bottom disk, respectively. Draw a Kn=2 with straight line segments
on the top disk and on the bottom disk, respectively. From one point of the bottom
disk, draw shortest helical curves to all vertices of the top disk. Repeat this for all
n=2 vertices on the bottom disk. Although this is not a straight line drawing of Kn,
interestingly, the curves that we use are “geodetic” on the soup can.

It is usually not hard to come up with drawings of graph whose optimality is in-
tuitively clear. The diQculty lies in proving matching lower bounds for the crossing
numbers.

2.2. Euler’s formula

The simplest lower bound for the crossing number of a simple graph with n¿ 3
vertices and m edges is

m − 3n + 6: (5)

This immediately follows from Euler’s polyhedral formula, and already gives CR(K5)¿
1. A counterpart of this formula for triangle-free graphs CR(G)¿m − 2n + 4, which
proves CR(K3;3)¿ 1. Formula (5) can give interesting lower bounds for small graphs
only, since the magnitude of the crossing number can be as large as m2. It was Pach
and T)oth who observed that (5) sets a lower bound for all four crossing numbers in
(2), and this extends to all lower bounds which solely depend on (5). We present
their argument for the smallest crossing number, CR-IODD(G). If m6 3n − 6, then
there is nothing to prove. If m¿ 3n− 5, then G is non-planar, and hence contains by
Kuratowski’s Theorem a subdivision of a K5 or a K3;3 (in fact both). Hence, in any
normal drawing of G there is a normal subdrawing of a K5 or a K3;3. By Theorem
1.1, there are two vertex disjoint paths of G which cross each other an odd number
of times. Hence, there is an edge e from the /rst path and an edge f from the second
path that cross each other odd times. If formula (5) holds for G − e, then it holds for
G, and the base case for this induction proof is m= 3n− 5. If G has girth g, then the
lower bound (5) can be strengthened to (6):

m − g
g − 2

(n − 2): (6)

2.3. Known crossing numbers

Kleitman showed that (3) holds for m6 6 [30] and also proved that the smallest
counterexample to the Zarankiewicz’s conjecture must occur for odd n and m. Woodall
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[67] used elaborate computer search to show that (3) holds for K7;7 and K7;9. Thus, the
smallest unsettled instances of Zarankiewicz’s conjecture are K7;11 and K9;9. CR(Kn)
is known to be equal to (4) for n6 10 [25].

There are some in/nite families of graphs whose crossing numbers are known. Exoo
et al. [18] started the investigation of the crossing number of generalized Petersen
graphs. A generalized Petersen graph G(n; k) has vertex set {ui; vi: 16 i6 n} and
edge set {uivi; uiui+1; vivi+k : 16 i6 n}, where subscripts are taken modulo n. Exoo
et al. [18] showed that CR(G(n; 2)) = 0, if n= 3 or n is even; CR(G(n; 2)) = 2, when
n=5; and CR(G(n; 2))=3, when n is odd, n¿ 7. Fiorini [20] showed CR(G(9; 2))=2,
CR(G(3h; 3))=h for h¿ 4, CR(G(3h+2; 3))=h+2, CR(G(4h; 4))=2h; and claimed
CR(G(10; 3)) = 4. McQuillan and Richter [41] corrected the last claim by proving
CR(G(10; 3))¿ 4. LovreNciNc SaraNzin [39] showed CR(G(10; 4)) = 4.

Let Cn, Pn, Sn denote the cycle, path, and star with n edges, respectively. The
crossing number of the Cartesian product of any graph G of order 4 with the cycle
Cn, CR(G × Cn), has been determined by Beineke and Ringeisen [5], and by Jendrol’
and NSNcerbov)a [28]; and for any graph G of order 4, CR(G×Pn) and star CR(G× Sn)
has been determined by KleNsNc [31]. Recently, KleNsNc [32] determined CR(G × Pn) for
all graphs of order 5; see those and the known values of CR(G×Cn) and CR(G×Sn)
in a table on p. 358 in [32].

There is a longstanding conjecture of Harary et al. [27], which states that for
n¿m¿ 3, the crossing number of the Cartesian product of two cycles,

CR(Cn × Cm) = n(m − 2): (7)

There is a simple drawing with this number of crossings, the diQculty lies in proving
that n(m − 2) crossings are, in fact, needed. Proving the conjecture for diUerent small
values of n and m took separate, highly technical papers; and the case n=m=8 is still
open [3,4,5,33,50,52]. Richter and Thomassen [50] introduced here the most general
approach so far: consider n red closed curves and m blue closed curves, where each
may cover certain points twice, such that every blue curve intersects every red curve,
and no point of the plane is covered three times. What is then the minimum number
of intersection points of curves? This problem is rather geometric than graph theoretic,
and is a better subject to inductive arguments than the Cartesian product of two cycles.
In a recent breakthrough paper, Glebsky and Salazar [22] proved (7) for every m for
all suQciently large n, but this already belongs to the theory of large graphs.

2.4. The standard counting method

A basic technique to obtain a lower bound for the crossing number of a larger graph
from that of a sample graph is the standard counting method. Take a hypothetical
{normal, nice, optimal} drawing of the large graph, /nd many copies of the sample
graph in it, each exhibiting as many crossings as its crossing number. Add up those
numbers, and divide by the largest multiplicity with which a crossing may have been
counted in diUerent copies of the sample graph. Make this argument more tangible by
the following example: CR-IODD(Kn)¿ (1 + o(1))n4=120. Take a normal drawing of
Kn. Any /ve vertices span a normal subdrawing of a K5, which exhibit at least one
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pair of non-adjacent edges crossing odd times. We /nd at least total of ( n5 ) such edge
pairs, and every such edge pair occurs in exactly in (n − 4) 5-tuples of vertices. The
claim follows.

Applying the standard counting argument for Kn+1 with sample graph Kn, or for
Kn+1; n+1 with sample graph Kn;n, one obtains that

CR(Kn)
24( n4 )

and
CR(Kn;n)

4( n2 )
2 (8)

are non-decreasing and bounded. Therefore, the sequences in (8) have a limit which
provides asymptotic formulae CR(Kn) ∼ c1n4 and CR(Kn;n) ∼ c2n4 [51,66]. However,
the values of c1 and c2 are not known. The drawings shown above imply c16 1

64 and
c26 1

16 , and if the drawings are optimal, equalities hold.
Woodall’s result [67], which showed Zarankiewicz’s conjecture for K7;9, implies

1
21 6 c2 by a standard counting argument. Kleitman’s [30] cited result allows us to use
Kn−6;6 as a sample graph to count crossings in Kn, and one obtains 1

80 6 c1. Applying
the standard counting argument to Kn with sample graph K�n=2�;�n=2� [51] shows that if
c2 = 1

16 then c1 = 1
64 . The converse of this implication is not known.

2.5. Graph minors

The graph minor community also has an interest in crossing numbers. Their usual
approach is characterization in terms of excluded minors. Robertson and Seymour [53]
calls a graph H singly crossing provided H is a minor of a graph that can be drawn
on the sphere with at most one crossing. They show that a graph is singly crossing if
and only if it does not have one of 41 explicitly given graphs as a minor.

3. Theory of large graphs

The modern history started with Leighton’s thesis [36]. Leighton introduced methods
to set lower bounds for crossing numbers which instead of crossing numbers of small
graphs, depended on certain parameters of the large graphs. He introduced three meth-
ods that become classic: lower bounds in terms of number of edges, bisection width,
and graph embedding.

3.1. Number of edges

Ajtai et al. [2] and Leighton [36] independently discovered that for graphs with
m¿ cn edges, the crossing number is at least

CR(G)¿
c − 3
c3

m3

n2 : (9)

The maximum constant factor in (9) is 4
243 , achieved at selecting c = 4:5. It follows

from the argument after (5) that (9) holds for all four crossing numbers in (2). The
original proofs of (9) went by induction, a folklore probabilistic proof can be found
in [56] and also made it to the book [1].
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For c= 4, Pach and T)oth [47] improved 1
64 to 1

33:75 , but this improved lower bound
is not known to extend for all kinds of crossing numbers.

ErdVos and Guy [16] conjectured (9) (although those who proved it were not aware
of it), and even more. If #(n; m) denotes the minimum crossing number of graphs with
n vertices and m edges, they conjectured that lim#(n; m)n2=m3 has a limit if m=n → ∞
and n2=m → ∞. Recently, Pach et al. [46] proved this conjecture, but the value of this
limit is not known.

3.2. Bisection width and graph embedding

For this type of results, see the survey [56].

3.3. Random graphs

Pach and T)oth [49] showed that for the random graph model G(n; p) with m =
p( n2 )¿ 10n,

CR(G(n; p))¿
m2

4000
almost surely. Spencer and T)oth [57] studied this problem for CR-PAIR, and were
able to show that for every $¿ 0 and p = n$−1,

CR-PAIR(G(n; p)) = %(m2):

Using a martingale inequality, Pach and T)oth [49] showed that the following large
deviation inequality holds: for every (m=4)3e−m=46 &6

√
m,

P[|CR(G(n; p)) − E[CR(G(n; p))]|¿ 3&m3=2]¡ 3e−&2=4:

3.4. Computational complexity

Garey and Johnson [21] proved that testing CR(G)6 k is NP-complete, Pach and
T)oth [48] extended this to CR-ODD, and also proved that CR-PAIR is NP-hard. The
reduction uses the NP-completeness of linear arrangement. Testing planarity, and there-
fore testing CR(G)6 k for any /xed k can be done in polynomial time—introduce at
most k new vertices for crossing points in all possible ways and test planarity. Leighton
and Rao [37] designed the /rst provably good approximation algorithm for crossing
numbers. This algorithm approximates n+ CR(G) within a factor of log4 n for degree
bounded graphs (and, therefore, provides little information on small crossing numbers).
A recent paper of Even et al. [17] reduced the factor to log3 n. We know nothing that
would exclude the possibility of approximation within a constant multiplicative factor.

4. Biplanar crossing number

Recall that a graph G is biplanar, if one can write G = G1 ∪ G2, where G1 and G2

are planar graphs (a graph is understood here as a set of edges). Although planarity
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can be tested in polynomial time, testing biplanarity is NP-complete [40]. Owens [43]
introduced the biplanar crossing number of a graph G, that we denote by CR2(G). By
de/nition CR2(G)=minG1∪G2=G{CR(G1)+CR(G2)}, where CR is the planar crossing
number. Biplanar crossing number problems have a Ramsey Xavour, and are even more
diQcult than ordinary crossing number problems. Although (5) and (9) have their
natural analogues for CR2(G), the embedding method or the bisection width method
do not seem to generalize to biplanar crossing numbers. Even worse, as Tutte noted,
the biplanar crossing number is not an invariant for homeomorphic graphs; in fact, the
edges of every graph can be subdivided such that the subdivided graph is biplanar!

Recent work of S)ykora et al. [59,60] focuses on the biplanar crossing number. They
showed that for all graphs G, CR2(G)6 3

8 CR(G). However, one cannot give an upper
bound for CR(G) in terms of CR2(G), since there are graphs G of order n and size m,
with crossing number CR(G)=((m2) (i.e. as large as possible) and biplanar crossing
number CR2(G) = ((m3=n2) (i.e. as small as possible), for any m = m(n), where m=n
exceeds a certain absolute constant.

S)ykora et al. also showed that

CR2(K5; n) =
⌊ n
12

⌋ (
n − 6

⌊ n
12

⌋
− 6

)
(10)

for n¿ 12. (Note that for n6 11, K5; n is biplanar.)
S)ykora et al. [58] refuted in a strong sense Halton’s conjecture, which asserted

(among other things) that any graph of maximum degree 6 is biplanar.

5. Corroborating Lakatos

Zarankiewicz [68] and Urban)Zk [64] independently claimed and published that
CR(Kn;m) was actually equal to (3), their proof was reprinted in a book [9], cited, and
used in follow-up papers. Kainen and Ringel discovered a Xaw in the proof and the
Xaw withstood all attempts for correction. Guy [24] deserves much credit for rectifying
this confused state of art and also for pointing out “much more sweeping assumptions
than the overt hypotheses of the theorem” in some other crossing number papers [26].

Lakatos [35], who applied the Popperian epistemology to mathematics, carried out
his arguments on the paradigmatic example of Euler’s polyhedral formula. Actually,
crossing numbers, closely connected to Euler’s polyhedral formula by (5), could also
have served as his paradigmatic example.

In a recent paper, Pach and T)oth [48] scrutinize the very de/nition of crossing
numbers! They point out that some authors might have thought of CR-PAIR instead
of CR.

How is it possible that decades in research of crossing numbers passed by and
no major confusion resulted from these foundational problems? The answer is the
following: the conjectured optimal drawings are usually normal and nice, and the lower
bounds—as (5) and (9)—usually also apply for all kinds of crossing numbers.
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6. Applications of crossing numbers

Many concepts have been introduced in the literature which measure quantitatively
“how far” a non-planar graph is from being a planar graph: genus, crossing number,
thickness, splitting number, skewness, vertex deletion number, etc. [56,66]. Computing
these quantities (or their slight variations) is known or conjectured to be NP-hard [21],
and apart from this, with the exception of genus and crossing number, there is not
much to tell about them.

So far, only familiarity with the genus was a must for every discrete mathemati-
cian. Now the crossing number aligns with the genus, since it has applications and is
connected to other areas of mathematics.

Ringel discovered that the Tur)an number T (n; 5; 4) sets a lower bound for the cross-
ing number of the complete graph on n vertices. Consider an optimal (normal, nice)
drawing of the complete graph. De/ne a 4-uniform hypergraph on the vertex set of the
complete graph by the quadruplets of vertices of pairs of crossing edges. Since K5 is
non-planar, any /ve-element subset of vertices does contain an edge of the 4-uniform
hypergraph.

Leighton’s interest in crossing numbers was motivated by VLSI, and he used the
crossing number to set lower bound for the VLSI layout area of the graph. In fact, the
relevance of crossing number for engineering was well known already in the pre-VLSI
“transistor age” [9].

Sz)ekely [61] used the cited theorem of Ajtai et al. [2] and Leighton [36] to give a
new proof for the Szemer)edi–Trotter theorem, which tells how many incidences can
be among n points and m straight lines in the plane. The proof consists of comparing
lower bound (9) to an upper bound, coming from a given drawing, for a certain graph.
This crossing number method also yielded simple proofs [61] for the best available
results regarding two classic Erdős problems: Given n points in the plane, how many
unit distances can be among them? Given n points in the plane, what is the least
number of distinct distances among them? Just in a couple of years, the crossing
number method gave a number of other applications to discrete geometry [11,45,47],
etc. Surprisingly, this crossing number method is also cited in number theory, see
[13–15,23,34,38]. Some applications, for example [34], actually need a more general
version of the Szemer)edi–Trotter theorem, for the number of incidences among points
and pseudolines [61], which also follows from the crossing number method.

Pach et al. [46] proved a conjecture of Simonovits, improving the bound of (9). If
G has girth ¿ 2r and m¿ 4n, then

CR(G) = %
(
mr+2

nr+1

)
(11)

and proved an even more general theorem for graphs G satisfying a monotone graph
property. Since m2 ¿CR(G), (11) immediately implies that a graph with girth ¿ 2r
has at most O(n1+(1=r)) edges, which is the best-known result, tight within a constant
multiplicative factor for r=2; 3; 5. This may be thought of as an “arti/cial” application,
since the proof in [46] uses these corollaries from extremal graph theory, but this is a
new genuine connection between crossing numbers and extremal graph theory.
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7. Formulae for CR-IODD

To have a graph parameter that we cannot even asymptotically evaluate for complete
graphs is rather annoying. In addition, knowing the crossing numbers of complete
graphs would immediately imply improved lower bounds on the crossing numbers of
many other graphs, either by the standard counting argument or by graph embedding.

The present section yields formulae for CR-IODD, which are far from obvious how
to evaluate, but give a hope to evaluate CR-IODD for complete graphs.

7.1. Tutte’s theory

Earlier, Tutte [63] introduced an algebraic theory of crossing numbers and proved
Chojnacki’s Theorem 1.1 from this theory. Tutte’s theory is very complicated, since
it tries to follow closely not just crossing numbers but drawings. Tutte studies normal
drawings. Denoting the vertex set by V = {1; 2; : : : ; n}, he de/nes two orientation for
every edge, connecting vertices i and j, ij and ji. The orientation ij de/nes locally
a left side and a right side of the curve, as if we were facing j on the curve. Tutte
denotes by +(ij; kl), for two non-adjacent oriented edges ij and kl, the diUerence of
the following two numbers: number of left-to-right crossings that oriented edge ij does
on kl and the number of right-to-left crossings that oriented edge ij does on kl. He
observes that +(ij; kl) has the same parity as the number of crossings of ij and kl, and
/xing an orientation for every edge, he suggests the lower bound

min
normal drawings

∑
|+(ij; kl)| (12)

(where summation goes for unordered pairs of non-adjacent edges) for the crossing
number, and poses the question if equality holds. It is clear that CR-ODD6 (12)
6CR. There is an enigmatic sentence of Tutte: “We are taking the view that crossings
of adjacent edges are trivial, and easily got rid of.” We interpret this sentence as a
philosophical view and not a mathematical claim.

Pach and T)oth [48] had some formulae, or rather discrete integer programs, for the
value of CR-ODD, which involved pairs of edges. Tutte, and Pach and T)oth described
how their respective formulae transform when an edge is “pulled over” a vertex, a
generic step to move from one drawing to another. I am not aware of any paper which
draws further conclusions on crossings numbers from Tutte’s theory. There seems to
be a trade-oU between getting tangible results and following faithfully the drawing.
Our result, presented next, is a mod 2 version of Tutte’s theory. This requires only
maintaining information on (edge, vertex) type pairs, which simpli/es everything. We
show how these results can be used to prove Chojnacki’s Theorem 1.1.

7.2. The new results

Let us be given an arbitrary cyclic order C= v1; v2; : : : ; vn of the vertices of a simple
graph G. We say that two non-adjacent edges of G, say xy and uz are in acyclic order,
if the cyclic order C restricted to these four vertices is x; u; y; z or x; z; y; u. Otherwise,
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two non-adjacent edges are in cyclic order. These two relations are clearly symmetric.
Under a bipartition of a set we understand its unordered partition into two subsets,
one of which may be empty. We use the notation ‖ for a bipartition, and write u‖v
to express that u and v belong to diUerent classes, and −‖uv to express that u and v
belong to the same class. For every edge xy∈E(G), consider an arbitrary bipartition
‖xy of V (G) \ {x; y}, and let

B= {‖xy: xy∈E(G)} (13)

denote the set of bipartitions.
We de/ne now the relations OC and PB of non-adjacent edges of G as follows:

OC(xy; uz) =

{
1 if xy and uz are in cyclic order;

0 otherwise;
(14)

PB(xy; uz) =

{
1 if u‖xyz;
0 otherwise; i:e: if − ‖xyuz holds:

(15)

Note that OC(xy; uz)=OC(xy; zu)=OC(uz; xy), and PB(xy; uz)=PB(yx; uz)=PB(xy; zu),
but it is possible that PB(xy; uz) �= PB(uz; xy). De/ne

forcedB;C(xy; uz) = [1 − OC(xy; uz)][1 − PB(xy; uz)][1 − PB(uz; xy)]

+ [1 − OC(xy; uz)]PB(xy; uz)PB(uz; xy)

+OC(xy; uz)[1 − PB(xy; uz)]PB(uz; xy)

+OC(xy; uz)PB(xy; uz)][1 − PB(uz; xy)]: (16)

Note that forcedB;C(xy; uz) does not change if we interchange x and y, u and z, or
xy and uz. The concepts C, B, PB, OC, and forcedB;C were introduced in abstract
graphs, not in graph drawing, although their function will be to grasp some properties
of graph drawings.

Theorem 7.1. For every simple graph G and every cyclic order C of V (G), we have

CR-IODD(G) = min
B

1
2

∑
xy∈E(G)

∑
uz∈E(G)

{x;y}∩{u;z}=∅

forcedB;C(xy; uz); (17)

where the minimization goes for all possible sets of bipartitions of form (13).

Since forcedB;C(xy; uz) does not change if we interchange xy and uz, therefore the
objective function of the minimization in (17) can be understood as a summation for
unordered pairs of non-adjacent edges of G, without the factor of 1

2 .
We show an equivalent reformulation of Theorem 7.1. Perhaps this reformulation

can be evaluated analytically for certain classes of graphs, e.g. complete graphs, and
certainly can be evaluated using computer for some particular graphs. This is just a
quartic expression evaluated on ±1 values, which is highly symmetric in the case
of complete graphs. For every ab∈E(G) let Qab :V (G) \ {a; b} → {−1;+1} be an
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arbitrary function, such that Qab = Qba. Observe that every Qab function gives rise
to a bipartition of V (G) \ {a; b} through the full inverse image partition, and every
bipartition of V (G) \ {a; b} can be obtained by exactly two such functions, where one
is the negative of the other. Also note that the value of the product Qab(u)Qab(z) does
not change, if we write −Qab to the place of Qab. De/ne

Q= {Qab : ab∈E(G)}: (18)

Theorem 7.2. For every simple graph G and every cyclic order C of V (G), we have

CR-IODD(G) =
N
2

− max
Q

1
2

∑
xy∈E(G)

∑
uz∈E(G)

{u;z}∩{x;y}=∅

{
OC(xy; uz) − 1

2

}

×Qxy(u)Qxy(z)Quz(x)Quz(y); (19)

where the maximization goes for a set of functions Q as in (18), and N denotes the
number of unordered pairs of non-adjacent edges in G.

Proof. We are going to show that (17) and (19) are equal by algebraic manipulation.
Take a minimizing B in (17). We put the RHS of (17) into the form of (19). Write
Pxy(uz)=1, if u‖xyz, i.e. PB(xy; uz)=1 and Pxy(uz)=−1 otherwise, namely if −‖xyuz,
i.e. PB(xy; uz) = 0. It is easy to see from (16) that

forcedB;C(xy; uz) = [1 − OC(xy; uz)]
1 + Pxy(uz)Puz(xy)

2

+OC(xy; uz)
1 − Pxy(uz)Puz(xy)

2
: (20)

Observe that Pxy, which is de/ned on pairs of vertices, can be written in terms of
Qxy, which is de/ned on vertices, such that Qxy = 1 on one class of the bipartition
‖xy, and Qxy = −1 on the other class, since then Pxy(uz) = Qxy(u)Qxy(z). There is a
bijective correspondence between B’s and equivalence classes of Q’s, where Q ∼ Q′

if and only for all edges ab, Qab = ±Q′
ab. Rewriting (20) in terms of Q, we obtain

(19). Conversely, if Q is given, de/ne Pxy(uz) = Qxy(u)Qxy(z), and PB(xy; uz) = 1 if
Pxy(uz) = 1, otherwise PB(xy; uz) = 0.

7.3. Proof to Chojnacki’s Theorem 1.1

In order to show that Theorem 7.1 is a promising combinatorial approach to cros-
sing numbers, we give an unexpectedly purely combinatorial proof to Chojnacki’s
Theorem 1.1.

Proof. Consider the equivalent of (17), which goes for unordered pairs of non-adjacent
edges (see the remark after Theorem 7.1). Assume that for some graph G, cyclic order
C and set of bipartitions B, the summation is zero. Expand summation (17) which has
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zero value, by substituting four terms into every forcedB;C formula from (16). Since
all terms after the substitution are non-negative, the summation has to be termwise
zero. Split the summation for two parts, where OC(xy; uz) = 0, but the coeQcient
1 − OC(xy; uz) is present; and where OC(xy; uz) = 1 and the coeQcient OC(xy; uz) is
present. Hence, we are left with

0 =
∑

{xy;uz}
OC(xy;uz)=0

([1 − PB(xy; uz)][1 − PB(uz; xy)]

+PB(xy; uz)PB(uz; xy))

+
∑

{xy;uz}
OC(xy;uz)=1

([1 − PB(xy; uz)]PB(uz; xy)

+PB(xy; uz)[1 − PB(uz; xy)]); (21)

where the summations still go for unordered pairs of non-adjacent edges. Expanding the
terms after the summations in (21), we see that the generic term in the /rst summation
is 1 + 2PB(xy; uz)PB(uz; xy) − PB(xy; uz) − PB(uz; xy), and the generic term in the
second summation is −2PB(xy; uz)PB(uz; xy)+PB(xy; uz)+PB(uz; xy). If the number
of unordered, non-adjacent edge pairs in G with OC = 0 is q, then taking (21) mod 2
we obtain:

0 ≡ q +
∑

{xy;uz}
{x;y}∩{u;z}=∅

[PB(xy; uz) + PB(uz; xy)]

≡ q +
∑
xy

∑
uz

{x;y}∩{u;z}=∅

PB(xy; uz) mod 2: (22)

We only need to prove CR-IODD(K5) �= 0, since CR(K5)6 1 is well known. We
do indirect proof. Consider the vertices of K5 in the cyclic order C = 1; 2; 3; 4; 5, and
we have (22) for G = K5 and a B set of bipartitions realizing this zero. There are
15 unordered pairs of non-adjacent edges. Note that 10 of the 15 unordered pairs of
non-adjacent edges {xy; uz} yields OC(xy; uz)=1, and /ve of them yields OC(xy; uz)=
0, i.e. q = 5. We are going to show that the double summation in the right-hand side
of (22) is even which yields a contradiction. Observe that any bipartition ‖xy of three
elements results either in a 3:0 distribution or in a 2:1 distribution; and in both cases
the number of separated unordered pairs of elements, 3 × 0 or 2 × 1, is even. Recall
that PB(xy; uz) = 1 iU ‖xy has u and z in diUerent classes. Therefore, for an arbitrary
xy,

∑
uz PB(xy; uz) = 2kxy; even. From here,∑
xy

∑
uz

{x;y}∩{u;z}=∅

PB(xy; uz) = 2k (23)

yields the needed contradiction by 0 ≡ 5 + 2k mod 2. For the other graph, we only
need to prove CR-IODD(K3;3) �= 0, since CR(K3;3)6 1 is well known. We start with
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a copy of K3;3 in which the colorclasses are {1; 3; 5} (red vertices) and {2; 4; 6} (white
vertices). We use the cyclic order of vertices C=1,2,3,4,5,6. K3;3 has nine edges, and
18 unordered pairs of non-adjacent edges. It is easy to see that three unordered pairs
of non-adjacent edges yields OC = 0 and 15 unordered pairs of non-adjacent edges
yields OC=1, i.e. q=3. We proceed as we did for K5, and repeat a slight variation of
the counting argument above. We face formula (22) again, but keep in mind that the
graph is diUerent, C is diUerent, B is diUerent, and now xy, uz denote non-adjacent
edges of K3;3. We will have a contradiction again by showing that the double sum in
(22) is even. It suQces to show that for an arbitrary xy∈E(K3;3),∑

uz∈E(K3;3)

PB(xy; uz) = 2kxy: (24)

To prove (24), we study how many red–white vertex pairs a bipartition PB can separate.
The possibilities are RR‖WW, RW‖RW, R‖RWW, W‖WRR, −‖RRWW; and in each
case the number of separated red–white vertex pairs is even. We showed (24) and
have the needed contradiction by 0 ≡ 3 + 2k mod 2.

8. Proofs

In the forthcoming arguments, we are concerned with the one-point or Alexandrov
compacti/cation of the plane 1, 1∗ =1∪∞. It is well known that 1∗ is homeomorphic
to a sphere. We say that a closed curve c is simply drawn in 1∗, if c has a /nite
number of self-intersections, no point of 1∗ is covered by c more than twice, and
whenever c has a self-intersection, then at that point we have a crossing, and not a
tangential (touching) situation. Take two points a; b∈ 1∗ \ c. We say that a simple
curve p connecting a and b is regular with respect to c, if p does not passes through
any self-intersection point of c, p and c have /nite intersection, and whenever c has a
point of intersection with p, then at that point we have a crossing, and not a tangential
(touching) situation.

Lemma 8.1. If c is a simply drawn closed curve in 1∗, then for any a; b∈ 1∗ \c, there
exists a simple curve p connecting a and b, which is regular with respect to c.

Lemma 8.2. Let us be given a simply drawn closed curve c in the plane, and a; b∈ 1∗\
c. Assume that two simple curves, l1 and l2 connecting a and b are regular with
respect to c. Then |l1 ∩ c| and |l2 ∩ c| have the same parity.

Proof. We apply induction on the number of self-intersection points of c. If c is a
simple closed curve, i.e. there are no self-intersections, then the conclusion follows
from the Jordan curve theorem. If c has a self-intersection at a point a, then redraw
c to c′ by making change only in a small neighborhood of a, which is disjoint from
l1 and l2, such that we reduce the number of self-intersections of c by 1. We have
|l1 ∩ c′| = |l1 ∩ c| and |l2 ∩ c| = |l2 ∩ c′|. Then use the inductive hypothesis |l1 ∩ c′| ≡
|l2 ∩ c′| mod 2.
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Let us be given a simply drawn closed curve c in 1∗. De/ne two relations on 1∗ \ c
as follows:
a ∼c b, if there is a simple curve connecting points a and b, which is regular with

respect to c, and intersects c even number of times; and
a|cb, if there is a simple curve connecting points a and b, which is regular with

respect to c, and intersects c odd number of times.
Note that Lemma 8.2 implies that these relations are well de/ned.

Lemma 8.3. (i) ∼c is an equivalence relation; and
(ii) ∼c and |c are complementary relations, i.e. for any two points a; b∈ 1∗ \ c,

exactly one of the relations a ∼c b and a|cb holds; and
(iii) ∼c has exactly two classes.

Proof. For (i), only the transitivity of the relation is a problem. Assume that a ∼c b is
shown by p1 and b ∼c d is shown by p2. Then, |p1 ∩ c| + |p2 ∩ c| is even. If p1 ∪p2

is a simple curve, then it is also regular with respect to c, and b ∼c d is shown by
p1 ∪ p2. If p1 ∪ p2 is not a simple curve, let v denote the /rst point of p2 on p1

(following p1 from a to b). v splits both p1 and p2 into two parts, say p1 =ap′
1vp

′′
1 b,

p2 = bp′
2vp

′′
2d. Now ap′

1vp
′′
2d is a simple curve connecting a to d, and it is regular

with respect to c, vp′′
1 bp

′
2v is a closed curve; and these two new curves, ap′

1vp
′′
2d and

vp′′
1 bp

′
2v together, yield p1 ∪ p2. If v �∈ c, then

|p1 ∩ c| + |p2 ∩ c| = |ap′
1vp

′′
2 ∩ c| + |vp′′

1 bp
′
2v ∩ c|: (25)

We know that the LHS of (25) is even, |vp′′
1 bp

′
2v∩c|, which is the /nite intersection of

two closed curves without tangential intersection, is also even, and hence |ap′
1vp

′′
2d∩c|

is even. This is what we had to prove for the transitivity. There is a little more to
do, if v∈ c. Then v is a removable (tangential) intersection point of ap′

1vp
′′
2d and c,

and also a removable (tangential) intersection point of vp′′
1 bp

′
2v and c. Remove both

tangential intersections by local change, creating a new simple curve p3 in place of
ap′

1vp
′′
2d connecting a and d, and a closed curve q in place of vp′′

1 bp
′
2v. Then,

|p1 ∩ c| + |p2 ∩ c| ≡ |p3 ∩ c| + 1 + |q ∩ c| + 1 mod 2 (26)

and |p3 ∩ c| is even again. It is easy to guarantee that p3 is still regular with respect
to c, and now p3 is the evidence for a ∼c d.

For (ii), one just needs that a and b can be connected by a simple curve p, which
is regular with respect to c; this was Lemma 8.1. (iii) follows.

In the future we use the notation −|cuz, if u and z are in the same equivalence class
for c, i.e. u ∼c z; this notation is suggesting that “c is not separating u and z”, while
u|cz is that suggesting that “c is separating u and z”. The notation −|cuz would have
been inconvenient for proving Lemma 8.3.

Construction 8.1. Let us be given four points a; b; c; d in this cyclic order on a circle
S in the plane 1. Call A; B; C; D the four rays, perpendicular to S, which connect the
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points a; b; c; d to ∞ and stay outside the circle. (We follow the convention of using
a lower case letter for a point on the circle, and the same upper case letter for the
ray, which is perpendicular to circle, connecting this point to ∞.) Assume now that
x; y∈ {a; b; c; d}, x �= y are connected by a simple curve q′; and the other two points,
u; z ∈ {a; b; c; d}, u �= z are connected by a simple curve p′. DeBne the closed curves
q = q′ ∪ X ∪ ∞ ∪ Y and p = p′ ∪ U ∪ ∞ ∪ Z .

We are going to apply the relations from Lemma 8.3 to the closed curves p and q.
For this end we have to make a few assumptions:

(i) p and q are simply drawn curves,
(ii) x; y �∈ p and u; z �∈ q,
(iii) ∞ �∈ p′ and ∞ �∈ q′.

Observe that if the cyclic order induced by S on the four points is x; u; y; z or x; z; y; u,
then p and q crosses each other at ∞; and if the induced cyclic order is diUerent, p and
q intersect in a tangential (touching) situation at ∞. If the touching situation occurs, we
could pull p and q slightly apart at ∞ and remove this point of intersection (however,
for notational convenience, we just do not count ∞ among the crossing points, if
touching happens there). We add

(iv) q′ and X ∪ ∞ ∪ Y are regular with respect to p, and
(v) p′ and U ∪ ∞ ∪ Z are regular with respect to q.

The following Lemma is crucial:

Lemma 8.4. Assume conditions (i)–(v) above for Construction 8.1. If the cyclic order
induced by S on the four points is x; u; y; z or x; z; y; u, and either

−|quz and − |pxy or

u|qz and x|py;

then p′ and q′ crosses odd many times; and either

−|quz and x|py or

u|qz and − |pxy;

then p′ and q′ crosses even many times.
If the cyclic order induced by S on the four points is x; y; u; z or x; y; z; u or x; z; u; y

or x; u; z; y, and either

−|quz and x|py or

u|qz and − |pxy;
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then p′ and q′ crosses odd many times; and either

−|quz and − |pxy or

u|qz and x|py;
then p′ and q′ crosses even many times.

Proof. We prove the /rst statement from the list of eight statements. All other proofs
are similar and left to the reader. By de/nition, −|quz means u ∼q z, i.e. |p′ ∩ q| is
even. Using the de/nition of q,

|p′ ∩ q′| + |p′ ∩ Y | + |p′ ∩ X | ≡ 0 mod 2: (27)

Similarly, −|pxy means x ∼p y, i.e. |q′ ∩ p| is even. Using the de/nition of p,

|q′ ∩ p′| + |q′ ∩ U | + |q′ ∩ Z | ≡ 0 mod 2: (28)

Since p and q are closed curves, we have that |p ∩ q| is even. Spelling out all terms
in p ∩ q we obtain

1 + |p′ ∩ q′| + |p′ ∩ Y | + |p′ ∩ X | + |q′ ∩ U | + |q′ ∩ Z | ≡ 0 mod 2; (29)

where the term 1 stands for the crossing at ∞, which is not removable in the case of
cyclic order that we are in. Adding up (27)–(29), we obtain that |p′ ∩ q′| ≡ 1 mod 2,
as required.

Note that the conditions in the two parts of Lemma 8.4 read in terms of Section 7
as if we had xy and uz edges in a graph, and they were in acyclic order and cyclic
order, respectively. We introduce the OS relation—analogously to (14)—for unordered
pairs of unordered pairs of points on S, where all four points are distinct, as fol-
lows: OS(xy; uz) = 0 for the following cyclic orders on S: x; u; y; z or x; z; y; u; and
OS(xy; uz) = 1 for all the other cyclic orders on S. We introduce a relation P∗ by

P∗(xy; uz) =

{
1 if u|qz;
0 otherwise; i:e: if − |quz holds;

(30)

P∗(uz; xy) =

{
1 if x|py;
0 otherwise; i:e: if − |pxy holds:

(31)

Lemma 8.4 immediately implies the next Lemma:

Lemma 8.5. Assume conditions (i)–(v) for Construction 8.1. The value of the
quantity

CR(p′; q′) = [1 − OS(xy; uz)][1 − P∗(xy; uz)][1 − P∗(uz; xy)]

+ [1 − OS(xy; uz)]P∗(xy; uz)P∗(uz; xy)

+OS(xy; uz)[1 − P∗(xy; uz)]P∗(uz; xy)

+OS(xy; uz)P∗(xy; uz)][1 − P∗(uz; xy)] (32)

is 1, if p′ and q′ crosses odd times, and 0 otherwise.
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Proof. Lemma 8.4 tells if |p′ ∩q′| is odd or even in certain cases. The /rst four cases
of Lemma 8.4 are de/ned by OS(xy; uz) = 0, the last four cases of Lemma 8.4 are
de/ned by OS(xy; uz) = 1. By (30) and (31) the conditions in Lemma 8.4 turn into
values of P∗. Checking all eight cases of Lemma 8.4 /nishes the proof.

Proof to Theorem 7.1. Let D denote a CR-IODD-optimal normal drawing of a graph
G in the plane. Transform this drawing, using a homeomorphism of the plane to itself,
into a new drawing, such that the vertices v1; v2; : : : ; vn are in this cyclic order on a
circle S. The transformation does not change which edges cross and how many times.
From the point vi extend a ray Vi, outside the circle, to ∞, such that Vi is perpendicular
to the circle. Using another homeomorphism of the plane to itself, which /xes all the
vertices vi, we can guarantee that carrying out for any two edges of the drawing
Construction 8.1, assumptions (i)–(v) hold. From now on we call this drawing D. We
have CR-IODD(G)= number the of non-adjacent, unordered edge pairs crossing odd
times in D, which is, by Lemma 8.5∑

{p′ ;q′}
CR(p′; q′);

where the summation goes for non-adjacent, unordered edge pairs in D. Observe that
for non-adjacent, unordered edge pairs xy, uz, we have OS(xy; uz) = OC(xy; uz); and
setting for B′ the set of |q bipartitions arising from q′ representations of edges in the
drawing D, we have

CR(p′; q′) = forcedB′ ;C(xy; uz);

where p′ represents the edge xy and q′ represents the edge uz. Therefore,

CR-IODD(G) =
1
2

∑
xy

∑
uz

{x;y}∩{u;z}

forcedB′ ;C(xy; uz)

¿min
B

1
2

∑
xy

∑
uz

{x;y}∩{u;z}

forcedB;C (xy; uz): (33)

On the other hand, equality is easy to achieve in (33): given a minimizing bipartition
B, and a placement of the vertices of G on the circle S, for edge xy draw a simple
curve p′ connecting vertices x and y, which does not intersect the rays X and Y , but
p = p′ ∪ X ∪ ∞ ∪ Y generates exactly the relation ‖xy ∈B through |p′ .
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