8,423 research outputs found

    Approximation algorithms for stochastic and risk-averse optimization

    Full text link
    We present improved approximation algorithms in stochastic optimization. We prove that the multi-stage stochastic versions of covering integer programs (such as set cover and vertex cover) admit essentially the same approximation algorithms as their standard (non-stochastic) counterparts; this improves upon work of Swamy \& Shmoys which shows an approximability that depends multiplicatively on the number of stages. We also present approximation algorithms for facility location and some of its variants in the 22-stage recourse model, improving on previous approximation guarantees. We give a 2.29752.2975-approximation algorithm in the standard polynomial-scenario model and an algorithm with an expected per-scenario 2.49572.4957-approximation guarantee, which is applicable to the more general black-box distribution model.Comment: Extension of a SODA'07 paper. To appear in SIAM J. Discrete Mat

    Approximation Algorithms for Distributionally Robust Stochastic Optimization with Black-Box Distributions

    Full text link
    Two-stage stochastic optimization is a framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we make first-stage decisions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A criticism of this model is that the underlying probability distribution is itself often imprecise! To address this, a versatile approach that has been proposed is the {\em distributionally robust 2-stage model}: given a collection of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in this collection. We provide a framework for designing approximation algorithms in such settings when the collection is a ball around a central distribution and the central distribution is accessed {\em only via a sampling black box}. We first show that one can utilize the {\em sample average approximation} (SAA) method to reduce the problem to the case where the central distribution has {\em polynomial-size} support. We then show how to approximately solve a fractional relaxation of the SAA (i.e., polynomial-scenario central-distribution) problem. By complementing this via LP-rounding algorithms that provide {\em local} (i.e., per-scenario) approximation guarantees, we obtain the {\em first} approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within O(1)O(1)-factors of the guarantees known for the deterministic version of the problem

    Tight Analysis of a Multiple-Swap Heuristic for Budgeted Red-Blue Median

    Get PDF
    Budgeted Red-Blue Median is a generalization of classic kk-Median in that there are two sets of facilities, say R\mathcal{R} and B\mathcal{B}, that can be used to serve clients located in some metric space. The goal is to open krk_r facilities in R\mathcal{R} and kbk_b facilities in B\mathcal{B} for some given bounds kr,kbk_r, k_b and connect each client to their nearest open facility in a way that minimizes the total connection cost. We extend work by Hajiaghayi, Khandekar, and Kortsarz [2012] and show that a multiple-swap local search heuristic can be used to obtain a (5+ϵ)(5+\epsilon)-approximation for Budgeted Red-Blue Median for any constant ϵ>0\epsilon > 0. This is an improvement over their single swap analysis and beats the previous best approximation guarantee of 8 by Swamy [2014]. We also present a matching lower bound showing that for every p≥1p \geq 1, there are instances of Budgeted Red-Blue Median with local optimum solutions for the pp-swap heuristic whose cost is 5+Ω(1p)5 + \Omega\left(\frac{1}{p}\right) times the optimum solution cost. Thus, our analysis is tight up to the lower order terms. In particular, for any ϵ>0\epsilon > 0 we show the single-swap heuristic admits local optima whose cost can be as bad as 7−ϵ7-\epsilon times the optimum solution cost
    • …
    corecore