52,977 research outputs found

    Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions

    Get PDF
    In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback-Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a natural function space setting for the underlying calculus of variations problem. We introduce a computational algorithm which is well-adapted to the required minimization, seeking to find the mean as a function, and parameterizing the covariance in two different ways: through low rank perturbations of the reference covariance; and through Schr\"odinger potential perturbations of the inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic PDEs, and to a conditioned diffusion process. We also show how the Gaussian approximations we obtain may be used to produce improved pCN-MCMC methods which are not only well-adapted to the high-dimensional setting, but also behave well with respect to small observational noise (resp. small temperatures) in the inverse problem (resp. conditioned diffusion).Comment: 28 page

    Distributional Property Testing in a Quantum World

    Get PDF
    A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. We also introduce a novel access model for quantum distributions, enabling the coherent preparation of quantum samples, and propose a general framework that can naturally handle both classical and quantum distributions in a unified manner. Our framework generalizes and improves previous quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon / von Neumann entropy of distributions. For classical distributions our algorithms significantly improve the precision dependence of some earlier results. We also show that in our framework procedures for classical distributions can be directly lifted to the more general case of quantum distributions, and thus obtain the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling

    Far-Field Compression for Fast Kernel Summation Methods in High Dimensions

    Full text link
    We consider fast kernel summations in high dimensions: given a large set of points in dd dimensions (with d3d \gg 3) and a pair-potential function (the {\em kernel} function), we compute a weighted sum of all pairwise kernel interactions for each point in the set. Direct summation is equivalent to a (dense) matrix-vector multiplication and scales quadratically with the number of points. Fast kernel summation algorithms reduce this cost to log-linear or linear complexity. Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by constructing approximate representations of interactions of points that are far from each other. In algebraic terms, these representations correspond to low-rank approximations of blocks of the overall interaction matrix. Existing approaches require an excessive number of kernel evaluations with increasing dd and number of points in the dataset. To address this issue, we use a randomized algebraic approach in which we first sample the rows of a block and then construct its approximate, low-rank interpolative decomposition. We examine the feasibility of this approach theoretically and experimentally. We provide a new theoretical result showing a tighter bound on the reconstruction error from uniformly sampling rows than the existing state-of-the-art. We demonstrate that our sampling approach is competitive with existing (but prohibitively expensive) methods from the literature. We also construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels -- all commonly used in physics and data analysis. We explore the numerical properties of blocks of these matrices, and show that they are amenable to our approach. Depending on the data set, our randomized algorithm can successfully compute low rank approximations in high dimensions. We report results for data sets with ambient dimensions from four to 1,000.Comment: 43 pages, 21 figure

    Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

    Get PDF
    Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function. Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on Rn\mathbb{R}^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp(x0.99)\exp(-|x|^{0.99}). Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O(log(1/δ))O(\log(1/\delta))-wise independence, for a tail probability of δ\delta. We show that their results are tight up to constant factors. These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.Comment: 22 page

    Approximating Probability Densities by Iterated Laplace Approximations

    Full text link
    The Laplace approximation is an old, but frequently used method to approximate integrals for Bayesian calculations. In this paper we develop an extension of the Laplace approximation, by applying it iteratively to the residual, i.e., the difference between the current approximation and the true function. The final approximation is thus a linear combination of multivariate normal densities, where the coefficients are chosen to achieve a good fit to the target distribution. We illustrate on real and artificial examples that the proposed procedure is a computationally efficient alternative to current approaches for approximation of multivariate probability densities. The R-package iterLap implementing the methods described in this article is available from the CRAN servers.Comment: to appear in Journal of Computational and Graphical Statistics, http://pubs.amstat.org/loi/jcg

    Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices

    Full text link
    One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.Comment: 11 pages, 6 figures, accepted for publication in IEEE transactions on information theor

    Approximate Graph Coloring by Semidefinite Programming

    Full text link
    We consider the problem of coloring k-colorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3-colorable graph on nn vertices with min O(Delta^{1/3} log^{1/2} Delta log n), O(n^{1/4} log^{1/2} n) colors where Delta is the maximum degree of any vertex. Besides giving the best known approximation ratio in terms of n, this marks the first non-trivial approximation result as a function of the maximum degree Delta. This result can be generalized to k-colorable graphs to obtain a coloring using min O(Delta^{1-2/k} log^{1/2} Delta log n), O(n^{1-3/(k+1)} log^{1/2} n) colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovasz theta-function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the theta-function
    corecore