1,413 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    ZigBee Healthcare Monitoring System for Ambient Assisted Living Environments

    Get PDF
    Healthcare Monitoring Systems (HMSs) are promising to monitor patients in hospitals and elderly people living in Ambient Assisted Living environments using Wireless Sensor Networks. HMSs assist in monitoring chronic diseases such as Heart Attacks, High Blood Pressure and other cardiovascular diseases. Wearable and implanted devices are types of Body sensors that collect human health related data. Collected data is sent over Personal Area Networks (PANs). However, PANs are facing the challenge of increasing network traffic due to the increased number of IP-enabled devices connected in Healthcare Monitoring Systems to assist patients. ZigBee technology is an IEEE 802.15.4 standard designed to address network traffic issues in PANs. To route traffic, ZigBee network use ZigBee Tree Routing (ZTR) protocol. ZTR however suffers a challenge of network latency caused by end to end delay during packet forwarding. This paper is proposing a New Tree Routing Protocol (NTRP) for Healthcare Monitoring Systems to collect Heart Rate signals. NTRP uses Kruskal’s minimum spanning tree to find shortest routes on a ZigBee network which improves ZTR. Neighbor tables are implemented in NTRP instead of parent–child mechanism implemented in ZTR. To reduce end to end delay, NTRP groups’ nodes into clusters and the cluster heads use neighbor tables to forward heart rate data to the destination node. NS-2 simulation tool is used to evaluate NTRP performance

    Wireless sensor networks with QoS for e-health and e-emergency applications

    Get PDF
    http://www.informatik.uni-trier.de/%7Eley/db/conf/icsoft/ehst2008.htmlMost body sensor networks (BSN) only offer best-effort service delivery, which may compromise the successful operation of emergency healthcare (e-emergency) applications. Due to its real-time nature, e-emergency systems must provide quality of service (QoS) support, in order to provide a pervasive, valuable and fully reliable assistance to patients with risk abnormalities. But what is the real meaning of QoS support within the e-emergency context? What benefits can QoS mechanisms bring to e-emergency systems, and how are they being deployed? In order to answer these questions, this paper firstly discusses the need of QoS in personal wireless healthcare systems, and then presents an overview of such systems with QoS. A case-study requiring QoS support, intended to be deployed in a healthcare unit, is presented, as well as an asynchronous medium access TDMA-based model

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Healthcare Monitoring Systems: A WBAN Approach for Patient Monitoring

    Get PDF
    Healthcare Monitoring System, which is expected to reduce healthcare expenses by enabling the continuous monitoring of patient health remotely during their daily activities in healthcare environment. Healthcare applications based on Wireless Sensor Networks are gaining high popularity in all over the world due to their features like flexibility, mobility and ease of constant monitoring of the patient in both outside and inside the body sensed as more useful. The main focus of such system is remote monitoring of patient, inside and outside the hospital room and in ICU in the sense of implantable feature for analysing the patient data. Recent developments in combining sensors, communication systems, and other fields such as cloud computing and Big Data analysis have provided the perfect tools to develop cutting edge systems for improving energy efficiency and consumption with the datasets. Smart homes, smart sensors, and Internet of Things are just a few examples of these application based technologies that will lead to more sustainable and more resilient energy systems. This research work will focus on the Wireless Sensor Networks in terms of emerging wireless technologies which means supporting infrastructure and technology and challenge design issues and as well as security, mobility and energy consumption
    • 

    corecore