35 research outputs found

    Improper choosability of graphs and maximum average degree

    Get PDF
    Improper choosability of planar graphs has been widely studied. In particular, Skrekovski investigated the smallest integer gkg_k such that every planar graph of girth at least gkg_k is kk-improper 22-choosable. He proved that 6g196\leq g_1\leq 9; 5g275\leq g_2\leq 7; 5g365\leq g_3\leq 6 and k4,gk=5\forall k\geq 4, g_k=5. In this paper, we study the greatest real M(k,l)M(k,l) such that every graph of maximum average degree less than M(k,l)M(k,l) is kk-improper ll-choosable. We prove that for l2l\geq 2 then M(k,l)l+lkl+k M(k,l)\geq l+\frac{lk}{l+k}. As a corollary, we deduce that g18g_1\leq 8 and g26g_2\leq 6. We also provide an upper bound for M(k,l)M(k,l). This implies that for any fixed ll, M(k,l)k2lM(k,l)\xrightarrow[k\rightarrow\infty]{}2l

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is 34m+1\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is 710m+1\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is 23m+1\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Near-colorings: non-colorable graphs and NP-completeness

    Full text link
    A graph G is (d_1,..,d_l)-colorable if the vertex set of G can be partitioned into subsets V_1,..,V_l such that the graph G[V_i] induced by the vertices of V_i has maximum degree at most d_i for all 1 <= i <= l. In this paper, we focus on complexity aspects of such colorings when l=2,3. More precisely, we prove that, for any fixed integers k,j,g with (k,j) distinct form (0,0) and g >= 3, either every planar graph with girth at least g is (k,j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k,j)-colorable. Also, for any fixed integer k, it is NP-complete to determine whether a planar graph that is either (0,0,0)-colorable or non-(k,k,1)-colorable is (0,0,0)-colorable. Additionally, we exhibit non-(3,1)-colorable planar graphs with girth 5 and non-(2,0)-colorable planar graphs with girth 7

    Improper choosability and Property B

    Full text link
    A fundamental connection between list vertex colourings of graphs and Property B (also known as hypergraph 2-colourability) was already known to Erd\H{o}s, Rubin and Taylor. In this article, we draw similar connections for improper list colourings. This extends results of Kostochka, Alon, and Kr\'al' and Sgall for, respectively, multipartite graphs, graphs of large minimum degree, and list assignments with bounded list union.Comment: 12 page

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio
    corecore