6,192 research outputs found

    Parallel Adams methods

    Get PDF
    AbstractIn the literature, various types of parallel methods for integrating nonstiff initial-value problems for first-order ordinary differential equation have been proposed. The greater part of them are based on an implicit multistage method in which the implicit relations are solved by the predictor-corrector (or fixed point iteration) method. In the predictor-corrector approach the computation of the components of the stage vector iterate can be distributed over s processors, where s is the number of implicit stages of the corrector method. However, the fact that after each iteration the processors have to exchange their just computed results is often mentioned as a drawback, because it implies frequent communication between the processors. Particularly on distributed memory computers, such a fine grain parallelism is not attractive.An alternative approach is based on implicit multistage methods which are such that the implicit stages are already parallel, so that they can be solved independently of each other. This means that only after completion of a step, the processors need to exchange their results. The purpose of this paper is the design of a class of parallel methods for solving nonstiff IVPs. We shall construct explicit methods of order k + 1 with k parallel stages where each stage equation is of Adams-Bashforth type and implicit methods of order k + 2 with k parallel stages which are of Adams-Moulton type. The abscissae in both families of methods are proved to be the Lobatto points, so that the Adams-Bashforth type method can be used as a predictor for the Adams-Moulton-type corrector

    A semi-explicit multi-step method for solving incompressible navier-stokes equations

    Get PDF
    The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency.Peer ReviewedPostprint (published version

    Explicit Parallel Two-Step Runge-Kutta-Nyström Methods

    Get PDF
    AbstractThe aim of this paper is to design a class of two-step Runge-Kutta-Nyström methods of arbitrarily high order for the special second-order equation y″(t) = f(y(t)), for use on parallel computers. Starting with an s-stage implicit two-step Runge-Kutta-Nyström method of order p with k = p2 implicit stages, we apply the highly parallel predictor-corrector iteration process in P(EC)mE mode. In this way, we obtain an explicit two-step Runge-Kutta-Nyström method that has order p for all m and that requires k(m + 1) right-hand side evaluations per step of which each k evaluation can be computed in parallel. By a number of numerical experiments, we show the superiority of the parallel predictor-corrector methods proposed in this paper over both sequential and parallel methods available in the literature

    Geometrically derived difference formulae for the numerical integration of trajectory problems

    Get PDF
    The term 'trajectory problem' is taken to include problems that can arise, for instance, in connection with contour plotting, or in the application of continuation methods, or during phase-plane analysis. Geometrical techniques are used to construct difference methods for these problems to produce in turn explicit and implicit circularly exact formulae. Based on these formulae, a predictor-corrector method is derived which, when compared with a closely related standard method, shows improved performance. It is found that this latter method produces spurious limit cycles, and this behavior is partly analyzed. Finally, a simple variable-step algorithm is constructed and tested

    On Some Advantages of the Predictor-Corrector Methods

    Get PDF
    Usually, all numerical methods are divided into two sets known as explicit and implicit methods. Explicit methods (EM) are used to find a solution to a problem directly, without requiring initial preparation. But when using the implicit method (IM), other methods can sometimes be employed. Implicit methods are known to be more accurate than explicit ones. Therefore, the question arises about finding the golden mean. To accomplish this, we utilize certain properties of the predictor and corrector methods. We take into account that in forecasting methods, we use EM. However, I will show here that in some cases, IMs can be used as correction methods. It is clear that the results obtained here are fully consistent with the theoretical ones. To address the aforementioned issues, we employ the initial value problem (IVP) for a first-order ordinary differential equation (ODE). Conventional methods compare various nanomaterials (NMs) using multi-step, extended, and hybrid approaches

    A moving mesh method for one-dimensional hyperbolic conservation laws

    Get PDF
    We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work

    On the Numerical Stability of Simulation Methods for SDES

    Get PDF
    When simulating discrete time approximations of solutions of stochastic differential equations (SDEs), numerical stability is clearly more important than numerical efficiency or some higher order of convergence. Discrete time approximations of solutions of SDEs are widely used in simulations in finance and other areas of application. The stability criterion presented is designed to handle both scenario simulation and Monte Carlo simulation, that is, strong and weak simulation methods. The symmetric predictor-corrector Euler method is shown to have the potential to overcome some of the numerical instabilities that may be experienced when using the explicit Euler method. This is of particular importance in finance, where martingale dynamics arise for solutions of SDEs and diffusion coefficients are often of multiplicative type. Stability regions for a range of schemes are visualized and discussed. For Monte Carlo simulation it turns out that schemes, which have implicitness in both the drift and the diffusion terms, exhibit the largest stability regions. It will be shown that refining the time step size in a Monte Carlo simulation can lead to numerical instabilities.stochastic differential equations; scenario simulation; Monte Carlo simulation; numerical stability; predictor-corrector methods; implicit methods
    • …
    corecore