2,072 research outputs found

    Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling

    Full text link
    Long-term situation prediction plays a crucial role in the development of intelligent vehicles. A major challenge still to overcome is the prediction of complex downtown scenarios with multiple road users, e.g., pedestrians, bikes, and motor vehicles, interacting with each other. This contribution tackles this challenge by combining a Bayesian filtering technique for environment representation, and machine learning as long-term predictor. More specifically, a dynamic occupancy grid map is utilized as input to a deep convolutional neural network. This yields the advantage of using spatially distributed velocity estimates from a single time step for prediction, rather than a raw data sequence, alleviating common problems dealing with input time series of multiple sensors. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. Pixel-wise balancing is applied in the loss function counteracting the extreme imbalance between static and dynamic cells. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data and compared to Monte-Carlo simulation

    People detection in surveillance: Classification and evaluation

    Full text link
    This paper is a postprint of a paper submitted to and accepted for publication in IET Computer Vision and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library and at IEEE Xplore.Nowadays, people detection in video surveillance environments is a task that has been generating great interest. There are many approaches trying to solve the problem either in controlled scenarios or in very specific surveillance applications. The main objective of this study is to give a comprehensive and extensive evaluation of the state of the art of people detection regardless of the final surveillance application. For this reason, first, the different processing tasks involved in the automatic people detection in video sequences have been defined, then a proper classification of the state of the art of people detection has been made according to the two most critical tasks, object detection and person model, that are needed in every detection approach. Finally, experiments have been performed on an extensive dataset with different approaches that completely cover the proposed classification and support the conclusions drawn from the state of the art.This work has been partially supported by the Spanish Government (TEC2011-25995 EventVideo)

    Deep Poselets for Human Detection

    Full text link
    We address the problem of detecting people in natural scenes using a part approach based on poselets. We propose a bootstrapping method that allows us to collect millions of weakly labeled examples for each poselet type. We use these examples to train a Convolutional Neural Net to discriminate different poselet types and separate them from the background class. We then use the trained CNN as a way to represent poselet patches with a Pose Discriminative Feature (PDF) vector -- a compact 256-dimensional feature vector that is effective at discriminating pose from appearance. We train the poselet model on top of PDF features and combine them with object-level CNNs for detection and bounding box prediction. The resulting model leads to state-of-the-art performance for human detection on the PASCAL datasets

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes
    • 

    corecore