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Abstract

A novel method is proposed for robust detection and categtioh of people from a wide-area distance
by appearance and action. We adopt the tensor representaditis able to describe the interactions of mul-
tiple factors inherent to image formation and separategntmde the higher order statistics of each of these
factors. Drawing inspiration by some successful works gisiovariance tensors [27, 28, 25], we propose
two new kind of tensors that we have called EMI (Entropy andWdulinformation) tensor and SST (Self
Similarity Tensor) that outperform the covariance repméstgon on different classification and detection
tasks. Then we present a complete framework for pedestatectiion based on the SST combined with
Hausdorff distance that is able to manage object’'s desmnifif variable lengths. We combine different
object models with tensor representation. For all thoséo#tsic ingredient is the patch which replaces the
concept of part because, in a video surveillance contegyatantees better performances in terms of ro-
bustness. Finally we test the proposed tensor represamgaind the classification and detection approaches
on different object classification (LabelMe [24] and Pas#aIlC 2009 [12]), object recognition (Cifar 10
and Cifar 100 [19]), and pedestrian detection (DaimlerGlany[23] and Caltech Pedestrian [9]) datasets.



Chapter 1

Introduction

A key problem in object recognition is finding a suitable @bjeepresentation. For historical and com-
putational reasons, vector descriptions that encodecphati statistical properties of the data have been
broadly applied. However, employing tensor (matrix) repréation we are able to describe the interactions
of multiple factors inherent to image formation and sepdyaéncode the higher-order statistics of each
of these factors. Successful works that inspire what we airgggo present is the covariance tensor (ma-
trix) [27, 28] that has demonstrated to lead to state-ofati@esults for several classification and detections
tasks. More generally, structure tensors and deforma#iorars are used in image understanding, espe-
cially for segmentation, grouping, motion analysis andusxsegmentation [5], and can also be utilized in
regularization approaches for medical image registrdtioi5].

Mathematically speaking, a covariance tensor corresptmds SPD (Symmetric Positive Definite)
matrix and the value of its determinant is a direct measurthefdispersion of the associated Gaussian
multivariate random variable. Fixing the SPD structurd,dianging the information contained, we want to
figure out if it is possible to build a tensor representatibfe @o outperform the covariance matrix. In this
report we have studied novel kinds of objects’ tensor regmiadion. To be more precise, we propdse
two different kinds of tensor representation for objectsctiption that we have called EMI (Entropy and
Mutual Information) tensor and SST (Self Similarity Terjs&MI tensor is composed mixing entropy and
mutual information and shows its potentiality in genergkeabclassification problems where it outperforms
covariance representation. Differently, SST measuresdliesimilarity of an object composed by parts and
it is suited for the object detection tag®) We propose a framework for the task of the pedestrian detecti
in urban scenarios where pedestrians filmed by surveillaaogeras can be at very low resolution. In a
nutshell, the idea we propose is to replace the definitioneasgn described as a set of fixed parts with a
set of non-fixed patches (different number and positionjciwehare a certain space location in the image.
Patches are then pruned and ardyable patches survive that process. Finally, to decide if an intageains
a person, we learn a binary SVM (Support Vector Machine) faictv the kernel is built combining SST
representation and Hausdorff distance in order to managenaim representation with a variable number of
patches.

This report is organized as follow. Chapter 2 describes tedhd SST. For each of them different sets
of image features object models are utilized. Once the tereppesentation is introduced, we show some
experimental results on state-of-the-art dataset of blsjassification, recognition, and detection. Chapter
3 a complete framework based on covariance and SST and aowartensors for pedestrian detection is
described and some experiments highlighting the robusticethe occlusions of the proposed approach are
reported. Then we test our framework on the [9] Caltech Redeglataset. Finally, in Chapter 4, we draw
our conclusions and we outline the future works.



Chapter 2

Multiple Features Tensor Representation
for Object Description

In this section, we present an experimental study on objezpsesentation using the tensor description in
which multiple features are combined together. In paricuve focus our attention on tt&ym[j (d x

d symmetric positive definite) matrices. Through the covar@&amatrices [27], tensor representation has
become popular, and it is applied on different computerovigiroblems like texture classification, [27],
clinical imaging analysis and smoothing [15], pedestriatedtion [28], visual object tracking [29], head
orientation classification [25], and person re-identifma{3].

Our goal is to understand if it is possible to exploit tﬁgmj matrix representation to build a more
powerful object descriptor, processing features’ infaiora(like color, shape, etc.) to obtain better clas-
sification accuracy results. For this reason we introdueedhtropy-Mutual Information (EMI) tensor in
Sec. 2.1 that shares tI&;mf{ structure, but processes the information combining theemnobust his-
togram representation and the entropy and mutual infoomatieasures. We apply EMI tensor to general
object classification problems, and finer human body paassdications finding that EMI tensor leads to
considerably better performance than the covarianceteseptation.

In Sec. 2.2 we introduce another tensor representationdjgco(i.e. pedestrian) detection that we
called SST (Self-Similarity Tensor). Differently from tiensors mentioned above it is designed to capture
the structural information of an object. SST is built on austiregular grid structure which suits well for the
pedestrian detection task even in very low resolution d@m because the pedestrian’s structure is similar
in all the images. As for EMI tensor, we show that SST outpenfthe covariance matrix representation.
Moreover in the next Chapter we show how to use SST to buildrackenatrix for pedestrian detection
where pedestrians can have a variable representation,yntreg can be described with different number
of parts.

2.1 Entropy-Mutual Information (EMI) Tensor

Similarly to covariance matricegntropy-Mutual Information (EMI) tensor is a dense region descriptor. In
fact, given an imagé of W x H pixels and a set of feature map®(I) of W x H x d pixels:

(I)(I) = [F1W><H(I))7 F2W><H(I)7 cee 7FdW><H(I)]7 (2.1)



Figure 2.1: EMI descriptor. Thé-dimensional feature map sé{/) is constructed from input image

whereFy, ..., Fy are image features as shown in Fig. 2.1. Then, we®(d¢ to build d histograms ofx
bins:
H(®(I)) = [M(F1(I))1xn, M(F2(1))1xns - - - s B(Fa(D))1xn], (2.2)

in which h is the operator used to build a histogram. In order to obtgirobability distribution from each
feature, we normalize each row &f(®(I)) such asy " | h(F;(I)), = 1 andj € {1,...,d}. We call the
normalized versioH (& (1)) asH ($(1)):

H(2(I)) = [h(FL (1) 1xns H(Eo (1)) 13ms - - AFa(T) ) 1]- (2.3)
Using Eq. (2.3), we are ready to define the EMI tensor as falow

E(H(2(I))) -+ MI(Hyy(®(1)))
EMI(I) = : : ; (2.4)
MI(Hag (®(1) -+ E(Hy(®(1)))

where EH;(®(I))) is the entropy operator defined as
Zh )jlog(h(Fy(I));) i €{l,....d}, (2.5)

and MI(H g, (®(1))) is the mutual-information operator

h(F;, Fi(1))u .
M (H h(E,, Fy(I)) log(= ; ije{l,....dy. (2.6
;; )ik g(h(E(I))zh(Fj(I))k) jed }. (2.6

We represent the joint probability in Eq. (2.6) b(sFZ-,Fj(I)). Since EMI matrix belongs to Symmetric
positive-definite matrices (ois’ym:lr matrices) of real numbers, it is called tensor [2]. For dfasgion
purpose, we build a minimal representation EMI. Since it twaly d(d + 1)/2 independent coefficients,
which are the upper triangular or lower triangular part @& thatrix, we decide to consider only the upper

(d+1) : :
2 and the standard machine learning

framework can be used with this representation.

2.1.1 Object Models for Object Classification

We decide to represent an object using different stratdégiesbust object classification. Firstly, we tried to
use a single tensor for the entire object image. That reptasen has its pros and cons: it gives a compact



and global picture of the object, and, since we use a tengoesentation of fixedd x d) dimension, it

is independent to the images size and resolution. Unfailiné cannot manage occlusions, and it loses
object’s details which are useful to discriminate similbjeats of different classes. However, using a single
tensor we can obtain a clear picture of EMI’s tensor potémégardless the object representation. The
results of a comparison between covariance (COV) tensar€ddl tensors are reported in the first part of
Sec. 2.1.2.

In order to improve the classification accuracy a more corplgect’'s representation is adopted. To
build a sufficiently general but discriminative descripige follow the idea proposed in [4] where a pyrami-
dal patch based representation is used. In particular, iezade is divided into a sequence of increasingly
finer spatial grids by repeatedly doubling the number ofsilris in each axis direction. The cell counts at
each level of resolution are the bin counts for the histogrepnesenting that level. We decide to adopt a
3 level pyramid and since EMI is based on multiple features alktloat pyramid Multiple Features spatial
pyramid, which is depicted in Fig 2.2.

Original Level 1

Figure 2.2: Spatial pyramid representation. An image ondfteand grids for leveld to 3.

In order to make a fair comparison we decide to adopt the samneiwe as the one depicted in Fig 2.2
for COV tensors. In that case the histogram representasiaroi built because covariance is computed
directly on the values of the pixels.

2.1.2 A Comparative Experimental Study

In this section a comparative study on different public a@é datasets for the object classification task is
described.

PASCAL VOC 2009. This dataset [12] consists of a fe\Ww895 high resolution images annotated with
bounding boxes for objects of twenty categories (e.g., mas, airplane, ...). The goal of this challenge
is to classify objects in realistic scenes (i.e. not praysagted objects). It is fundamentally a supervised
learning problem where a training set of labeled imagesagiged. We choose that dataset to compare EMI
to COV tensor representation accuracy. Recalling Eq. 2elingtantiate the same feature set for both COV
and EMI:

whereF;(Y) ... F5(Y) is the filter bank consisting of scaled symmetric DOOG (Défece Of Offset
Gaussian) [7], applied only to the luminance channel of #regptually uniform CIELab color spac#’,
Cy, andC, are the three color channels obtained transforming thénali®G B image.G| |(Y') andGo (Y)
are the gradient magnitude and orientation calculated ®i tbhannel map, respectively.

To test the potentiality of the tensor representations, se global representation of the objects us-



ing only onel3 x 13 (d = 13) tensor. After the vectorization (see Sec. 2.1), it produgeompacd6-
dimensional vector representation. Random Forests [11§asl as a supervised learning toolbox. For this
method, which builds an ensemble of tree classifiers, fotarpaters must be definedt) for each node,
the feature to split a node is selected among a random sutméthe d,, features. The number of candidate
feature is fixed to/d,; (2) to guarantee good generalization performances of theifidsisthe number of
samples per leaf is fixed to at least(3) each tree is trained on a randomly drawn bootstrap sub-seofipl
the data, and here it is fixed using approximatelg of the examples(4) the number of trees is fixed to
T = 100 to reduce the amount of memory necessary to instantiateldhsifier, since the implementation
we have adopted [17] is not optimized.

For evaluation purposes we train the system usifgf@ld cross validation procedure. At each itera-
tion, 100 examples per class are used in the training phase and aknhaning examples are utilized for
testing. In Fig. 2.3 we report the best confusion matricefdl and COV. In this experiment EMI clearly

EMI - confusion matrix (avg acc. 48%) COV - confusion matrix (avg acc. 45%)
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Figure 2.3: Confusion Matrices (CMs) for the PASCAL VOC 2(Q09] dataset. On the left the CM given
using the EMI tensor, while on the right the CM associatedhwie COV tensor.

outperforms COV representation with an average accuradgfagainst thet5% provided by the COV
tensor.

We want also to test tensor’s representation in functiorhefitnages’ resolution. Using bilinear re-
sampling function provided by Dollar toolbox [7], we havendsampled all the Pascal’s images. As you
can see in Fig. 2.4, we made two different kinds of downsamgplin the first case we do not preserve the
image’s size, while in the second case we do. This is due téattighat we want to study the behavior of
the tensor in function of both image’s size and resolution.

LabelMe. We used the annotated LabelMe [24] dataset to test theyabflihe tensors representation
to discriminate among more fine categories compared witlpteeious case. LabelMe is a database and
an online annotation tool that allows the sharing of imagesannotations. It is designed for object class’s
recognition and it contains various object classes. Weaekirom this dataset onlydifferent object classes,
all belonging to the same object as you can see in Fig. 2.5clHsees aré human body parts: arm, head,
leg and torso. Images are reflected building a datas&6258 examples. Also in this case, as for Pascal
VOC 2009, a5-fold cross-validation procedure has been used. During #aming phas€000 randomly
selected examples per class populate the training set atfttalemaining are used for testing purposes.
Each example is described with the feature set of Eq. 2.7 agan, one tensor is used to describe an
object’s image. In Fig. 2.5 the CMs of EMI and COV tensors dras. It is clear that EMI outperforms
COV also in this finer classification task. Moreover, sinoe ttasses are highly overlapped we can claim
that EMI manages better the presence of noise in images.idpiebably due to the fact that it uses the
histogram intermediate representation that improves ésergption robustness compared to COV tensors.
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Figure 2.4: Classification performances of EMI and COV tensm PASCAL VOC 2009 in terms of mean
classification accuracy varying objects’ scale and regoiut
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Figure 2.5: Some examples and Confusion Matrices (CMs)herLabelMe [24] dataset. On the left the
CM given using the EMI tensor, while on the right the CM asatad with the COV tensor.

CIFAR10. The CIFAR10 dataset [19] is a hand-labeled subset of a latgerset o80 million tiny
images. These images were downloaded from the Internet and-dampled t32x32 pixels. The CI-
FAR10 subset hak) object categories, namely airplane, car, bird, cat, degy, flog, horse, ship, and truck
(see Fig. 2.6). The training set ha®00 examples per class, the test set h@@0 examples per class. The
low resolution and variability make recognition very diffitand a traditional method based on features
extracted at interest points does not work. We learn RF athéoprevious experiments in order to compare
COV and EMI tensors. Unlike the previous case here the crakidation procedure is not applied since the
training and the testing set are already given. Since thegretion task on this dataset is hard, we decide
to enhance the feature description using the pyramidalriggaic described in Sec. 2.1.1 that adds to the
single (top layer) descriptor utilized befo2esub-layers. For each patch of that pyramidal structure soten
is extracted, vectorized and concatenated. The dimengitredinal object descriptor is clearly larger if
compared to using just one tensor for object descriptiorerd@fore we adopt PCA (Principal Component
Analysis) to automatically reduce the dimensionality af fmal object description. We chose a method
developed by [30] because it automatically establishegtienal feature descriptor dimensionality fixing
to 96% the data’s energy that should be preserved after the limegggbion. That procedure is used both for
EMI and CQOV tensors. In Tab. 2.1 we report a comparison usgiy EMI and COV tensors on CIFAR'’s
images resized at a resolution Bf8 x 128. Different features sets already implemented in the Dsllar
toolbox [7] have been applied. The first filter bank has beegadly presented in Eq. (2.7). It is composed



Figure 2.6: Example of images in the CIFAR10 dataset.

by a set of8 DOOG filters and other Gradient and color features. We cdhedl feature set DOOG in
Tab. 2.1. Replacing the filters’ set with a different filtemkadrom Serge Belongie [22] composed by
filters we build a much more informative filter representatibat we called Belongie in Tab. 2.1. We ob-

Tensor RepresentationFilters’ Set| Avg Accuracy
EMI Belongie 52%
EMI DOOG 49%
cov Belongie 40%
cov DOOG 38%

Table 2.1: Test recognition accuracy on the CIFAR10 datasetuced by different pyramidal tensor repre-
sentation.

serve that using the pyramidal EMI representation combimigtdl Belongie’s filters set we obtain the best
performance outperforming the covariance representati@nconsolidate that result we try to apply the
comparison between EMI and COV on a much more difficult dataste next experiment.

CIFAR100. CIFAR100 dataset [19], as CIFAR10, is a hand-labeled sufiisatlarger dataset d§0
million tiny images. Also in this case images were downla@hfiem internet and down-sampled 38232
pixels. CIFAR100 is made of00 categories of objects. Its training set Ha¥) examples per class and
its testing set hagd00 examples per class. We use the same experimental settingFARTD that we
have described above. In Tab. 2.2 the experimental rese@lteeported. As for CIFAR10 the best average

Tensor RepresentationFilters’ Set| Avg Accuracy
EMI Belongie 26%
EMI DOOG 32%
cov Belongie 19%
cov DOOG 18%

Table 2.2: Test recognition accuracy on the CIFAR100 daa®eluced by different pyramidal tensor rep-
resentation.

accuracy is obtained using pyramidal EMI tensor and Belgadilters set, which confirms the superiority
of EMI on COV tensor representation.



2.2 Self-Similarity Tensor (SST)

We have investigated also a different tensor that we havedc& f-Smilarity Tensor (SST) which can be
used to robustly describe the structure of an object. SSimikas in spirit to structure tensors, which are
powerful tools which can be used in such computer visionstaskedge or corner detection [26] and spatio-
temporal recognition [20]. The main idea that motivatesititieoduction of SST is to build an object rep-
resentation to tackle different problems of interest indtieveillance context where a robust representation
is necessary. We propose to build an object descriptor wiyramidal layout which gives a coarse-to-fine
object representation. Itis probable that the top layehisfriepresentation is more suitable for the detection
task while the layers below for a finer classification or regtgn.

From a mathematical point of view, the intuition is that giveepatch-based representation of an object, it
can be possible to find a compact and useful object desariptipturing the relationships between patches
in a SPD matrix of distances among the patches (or parts)n, T®8T can be vectorized and used as an
object descriptor. More precisely, given an imdgef W x H pixels and a seh(I) of W x H x m pixels
of m image patches described by any kind of feature descriplikemnlOG, CQOV, etc.):

A(I) = [fixn(PL(1)), fixn(Po(D)); -, fisn (P ()], (2.8)

in which f is a function producing an-dimensional vector descriptor atitiextracts a patch from the image
I. Using Eq. (2.8), we define the SST as follows:

d(f(Pu(D), f(P (D) -+ d(f(Pi(TD)), £ (P (1))
SSTI) = : : ; (2.9)
d(f(Pm(D)), f(P1(D))) -+ d(f(Pm(])), f(Pm(I)))

Since the basic ingredient of STT are the covariance mattlta# are proven to give superior perfor-
mance in low resolution images [28], we decide to use diffekinds of metrics to measure the distances
among these matrices. In the simpler case we adopt the Eanlidistance ignoring the geometry of covari-
ance tensors. On the contrary, in the second case we colfsilegeometry using a Riemannian metric. To
be more precise, given a pair of COV tensargndY the following distance is utilized:

BP(X,Y) =< logx(Y),logx (V) >x= trace(log?(X ~1/2y X ~1/2)), (2.10)

wherelog (V) = X~1/2log(X~1/2y X~1/2))X~1/2 is the Riemannian logarithm map ahsf is the
ordinary matrix logarithm (see [25] for further details).

2.2.1 Object Model for Pedestrian Detection

We combine SST with a patch-based structure as describeédn23l, since that structure guarantees
both a high level of robustness and generality to descrifferdit classes of objects. Moreover, focusing
our attention on small pedestrians, it is difficult to autticaly extract a set of meaningful parts because
of the low object resolution. However, a main issue still a@ms how to decide the patch size or rather
the grid layout. Our hypothesis is that a rougher grid layswguitable for a task like object detection in
which the object model must be invariant (or at least lessites) to object details. Adopting a finer one,
we necessarily have to change the task into an object ctadsifi task in which a high level of details
is necessary to discriminate among classes. To this enceingkt experimental section we confirm that
hypothesis on a state-of-the-art pedestrian dataset.



2.2.2 Experiments

We present an experimental study to use that represenfati@mall pedestrian detection task in real sce-
narios. To that end the DaimlerChrysler dataset [23] is ehd®ecause it contains very small pedestrians.
DaimlerChrysler. The DaimlerChrysler dataset [23] contaiti¥)0 pedestrianZ4000 with reflections and

small shifts) and®25000 nonpedestrian images. The dataset was organized intottiaiaiang and two test
sets, each of them havindB00 positive and5000 negative examples. The small size of the pedestrian
windows (18 x 36 pixels), combined with a carefully arranged negative setkes detection on the Daim-
lerChrysler data set extremely challenging. For this ddata® want to compare SST representation against

DaimlerChrysler 2006 - COV Tensor DaimlerChrysler 2006 - SST Tensor
* Nonpedestrians * Nonpedestrians

Figure 2.7: DaimlerChrysler feature space visualizati@anRCA using COV and SST.

COV representation. First of all to make that comparisona@rsas possible, we utilize the same feature
representation for both the tensors. In particular, we gaich image extracting patches using the covari-
ance of gradient-based information for each patch. Therdoformation is not considered since it is not
available for this dataset. More formally, the feature set i

O(1,z,y) = [G‘ (1) Go(I) Dx(I) Dy(I) Dyr(I) Dyy(I)] ) (2.11)

whereG| |(Y') andGo(Y') are the gradient magnitude and orientation, &hdI), Dy (I),... are intensity
derivatives. Then we build a covariance matrix for each ieaa@fch using the feature set above. Covariances
are vectorized and used as feature descriptors. Then SSiilticdmputing the distance between each
pair of descriptors as formalized in Eq. (2.9) wheres the Euclidean distance. On the contrary COV is
built concatenating all the vectorized covariance madtide Fig. 2.7 we use PCA (Principal Component
Analysis) to visualize the distribution of the negative aoditive sets using the two different representations.
We observe that SST offers a more linearly separable feapaee with respect to COV. Hence, we expect
that the detection performances of SST are reasonably lletie COV. Now, we show in Fig. 2.8 another
experiment in order to evaluate the behavior of SST at diffepatches’ resolution. For this figure we build
a pyramidal SST dividing an image into a sequence of inang@sfiner spatial grids by repeatedly doubling
the number of divisions in each axis direction. Hence, wenstie feature space for different layers of the
spatial pyramid. For each level of that pyramid an SST is agegband the feature space associated with
each pyramid layer is visualized. We observe that a roughigrinore suitable for the detection task, while
a finer grid subdivision can be used for a different clasdiboatask in which a high level of details is
necessary (e.g. pose classification). To verify our agsentie compare the performances of the different
pyramid layers for the pedestrian detection task. In Fig(&, we plot the DET (Detection Error Tradeoff)
curve on a log-log scale, whogeaxis corresponds to the miss rate, and thaxis corresponds to false
positives per window (FPPW). We notice that the first (topklas the most indicated for the detection task
due to the fact that its rough image subdivision capturey @ essential information to characterize an
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Figure 2.8: DaimlerChrysler SST’s feature space visuatinavia PCA at different patches’ size.

object avoiding object’s details unnecessary for the dietetask.
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Figure 2.9: DET curve on the DaimlerChrysler dataset udmgSST’s tensor. (a) depicts the detection
performances associated with different levels of the apatyramid. (b) shows how adding the spatial
layout and an appearance prior to the feature descripterddtection performances can be increased. (c)
compares two different metrics that can be used to build 818 S
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Chapter 3

Kernel’s building via SST for Robust
Pedestrian Detection

The capability to detect people in images of crowded scen@amidamental for a large variety of applica-
tions, such as video surveillance or automatic driverstessce systems. If people detection is performed in
a non-problematic scenario such as one where people areclatded, with a limited range of scales and
pose variations there are already a lot of effective franmegvfB, 27, 16, 8, 14] usable to solve this task. On
the other hand, if the scenario is problematic, among thestersis only few are really useful. We highlight
three of them which are able to manage different difficultyfeas which typically are present jointly in
images of crowded scenes. [23] effectively deals with sis@dle pedestrians, [21] manages the presence
of occlusions and [14] covers extreme changes of pose ousiods of pedestrians. Since anyone of the
previous frameworks is able to give a solution to all the jes problems, in this paper we want to propose
a unified framework capable to jointly cope with the mentabmsesues. Therefore, the goal is to detect as
many people as possible even when it is not possible to ineehtiman body layout. A typical example of
the scenario in which we want to work is depicted in Fig. 3.&re it is very difficult to define a part-based
model able to describe each person.

We propose to replace the definition of a person as a set of fixed as a set of non-fixed combination
of human patches which share a defined space location in thgeiminitially, an image is divided into a
set of multi-scale overlapping patches on which a binargtpatassifier is learned in order to highlight the
patches belongings to people. Then we assign the humaregaith is possible, to the different people in
the image.

The ideas below our approach atg:a person is represented as a variable set of patches degemdin
probabilistic evaluation of the patches’ visibility, othar if a human is occluded the patches containing the
occlusion are automatically removed from the mod@glsince the number of patches is variable a classifier
based on a set distance is used to discriminate between hantanonhuman image ROIs (Regions of
Interest).

3.1 The Approach

The proposed approach is a five-phase procéssA set of features is calculated on a set of overlapping
patches for each image. In the training stage, it assumes/aiset of ROl (Region Of Interest) containing
fully-visible people at the same scale. Then the trainirgispopulated by other problematic examples

11



Figure 3.1: An example of video surveillance scenario fromitLIDS dataset.

where occlusions are preseri2) From the training ROIs a set of feature is extracted @)dextracting a
fixed number of patches computed on a regular grid, theioteshesscriptor is computed4) A robust binary
patch classifier is used to detect the foreground (humacheai(5) The survived patches are organized as
sets and using a classifier based on a set distance we fintdigt dlee presence of a human in the original
ROI. The set distance is necessary since the number of taredmpatches is variable. In Fig. 3.2 a the entire
approach pipeline is depicted.

3.1.1 Person Representation

For the pedestrian detection task the most reliable sodradgarmation is related to the image gradient.
As shown in [10], that information is strictly dependent & timage resolution. In particular for low
resolution pedestrians (less thahpixels tall) Haar Wavelet features [23] are a simple andctiffe choice,
while for medium and high resolution pedestrians it is praiée to use directly the gradient information
or its orientation as done by HOG (Histogram of Oriented @Gnatd) [6]. To be able to manage people at
different resolutions, combinations of the previous feaduare used [8]. This combination is typically a
straightforward concatenation among some of the previeatifes. This leads to two problemis: using
different features the normalization is not an easy taskitbecomes more difficult proportionally to the
number of the features involved2) The dimension of the final vector representation can be retye
high leading to the curse of dimensionality problem. A moreper way to combine different features
and automatically solving both the previous problems isigigiovariance tensors as feature descriptors
[27]. Due to the use of integral representation, these geecs are fast to compute, making it suitable for
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Figure 3.2: The proposed approach pipeline.

detection tasks. We have shown that there are others tezm@sentations (see Chap. 2) able to outperform
the covariance, but their calculation time is still to lomg bbject detection purposes.

Regular Grid Human Body Layout. As introduced at the beginning of this Chapter, we belieag it
order to find a good representation for a person in a crowdesatrere small pedestrians are presents, it is
necessary to make a step further to the definition of humap pad widely used for the current pedestrian
detectors [14]. That becaus¢ a configuration of body parts changes in function of the dhjesolution.
Even if multiple models are instantiated (one for each digjeesolution), their management could be tricky
and computationally expensive) Defining a part automatically involve the part alignmentipeon. Since
the part configuration can vary slightly with highly nonidgbject (as a human) or in case of occlusion, the
research of the correct position and scale could lead to peoy results.3) Parts are extremely unusable
descriptors in crowded situations where it is hard to cdlyexssign parts to different overlapped human
bodies.

We propose to divide an imagdein overlapping patches on a regular grid. Each patch is destby
a COV tensor. More formally, a set of patchgB;};—; . n of 4 x 4 pixels is sampled frond as shown
in Fig. 3.2. We want to stress that differently from many sssful people detector [28, 8], here the patch
dimensionp is not optimized in order to obtain the best performance oarecbmark dataset. This should
be led to a more general detector in which the concept of fixeaam parts is replaced by one that describe
it as variable human patches.

3.1.2 Combinations of Features

Original Image Haar Wavelets Filters Application

I =11
ol

o oy YRR

Figure 3.3: Haar wavelet bank for small pedestrians detectSome of those wavelets are applied using
kernel of different size

Each patchP; is represented by a covariance matrixiafage features

O =[H, Hy...Hy G O], (3.1)
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whered is equal tol2. Hq, ..., Hig represent the results of the application of a set of Haar \&ts/depicted

in Fig. 3.3.G andO which are the gradient module and gradient orientation angpeited the first two Haar
Wavelets (see Fig. 3.3). The descriptor encodes informaifcthe variances of the defined features and
their correlations with each other, which are useful to debeth high and low resolution people. In order
to build quickly a set of covariance matrices, given a seeatdre®, in [27] is proposed a good solution
based on the integral representation which is adoptedsmptiper.

Given a set ofl x d covariance descriptof”; };—1,.. n WhereC; € Symj (the group of the symmetric
positive definite matrices), they are one-to-one with theiative patched”, ..., Py. A very important
preprocessing operation is the normalization of theserigdsrs to enhance the robustness to also include
illumination variations in/. Unlike the local normalization proposed in [28], we propds use a global
normalization which is much more robust in presence of @chs and noise. The normalized version of
a covariance matrix’; is denoted a§’; and is computed by dividing the columns and rowspfwith the
square root of the maximum variance of the image feat@résqg. (3.1)):

~

C; = diag(V) "2 C; diag(V) "2, (3.2)

wherediag(V') is a diagonal matrix in which at the diagonal entries theeetlae maximum variance of the
image features. This is equivalent to first globally norziatj the feature vectors to have zero mean and
unit standard deviation and then computing the covariaesergptor.

Covariance matrices are an interesting way to combinernmdtion not only for the previous motivation,
in fact their particular geometry provides an implicit frework to represent multi-modal distributions. So,
if we are particularly interested in focusing our attent@na sub-set of covariances (i.e. people patches),
exploiting their geometry a set of tools is naturally preddo find an highly discriminative Euclidean space
to analyze them as described in the next section.

Covariance Tensors.Since covariance matrices do not live on a Vector Space eytdhn live on a
Riemannian Manifold [2] it is necessary to map them on a paldr tangent space of this Manifold where
the covariances can be treated as vectors. More formaligngi normalized covariance matrik it can be
projected applying the following equation which represdht logarithmic mapping

ci = M2 log, (M ™26, M™2) M3, (3.3)

where M € Sym:lr is the Karcher mean point computed considering only the riamivees belonging to
people image examples and it is computed [18]. Tolag,(A) map is equal td/ log(D)UT, whereU DUT

is the eigenvalue decomposition 4f Please note thabg;, andlog are different operators. The first one is
a standard operator of the Riemannian geometry and thedecanis the usual logarithm of a scalar value
(for further details see [25]).

Sincec; € Symy, it contains onlyl(d+1)/2 independent coefficients which can be the upper triangular
part of the matrix. As in [28], an orthonormal coordinateteys for the tangent space is defined as follows:

vec(c;) = [X1 X2 ... Xq(dt1)/2)s (3.4)
wherex = M*%ciM*%.
Havingd = 12, a tangent vector is @ dimensional. Since not all the features are informativesdr

PCA (Principal Component Analysis) is applied. According[30] we preserve th66% of the energy
selecting the principal components, which number is autimally selected. We denote with the principal
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components vector after the projection
¢i=Tc;, Te€ RUd+1)/2xdy (3.5)

whereT is leaned during the training phase af)dis automatically selected. As done above for the patch
dimension, also here our goal is not to find the best featuredg® obtain the best performance on a
benchmark dataset. We have collected a reasonable featutieats can be used to describe pedestrian at
different scales and we have decided to use PCA [30] to salgomatically the most informative subset of
the original covariance€’;.

We add tog; a further dimension containing a rough spatial informafosition in order to avoid patch
configuration clearly infeasible. Dividing the ROI &hequal horizontal layers we assigrto thetop body
part,0 to themiddle and—1 to thebottom.

3.1.3 Patch Classification

We collect a large number of human and nonhuman patches atehwea binary classifier using RF. We
definePr(c;) that represents the probability of a patch to belong to a murfihat probability is computed
as

S I
Pr(&) = == > 6@, (3.6)
™ ot=1

whereT,, is the cardinality of a set of decision trees apdc;) is a decision function given by theth

tree. HencePr(¢;) is computed as the mean of the decision responses comingaltdahe decision trees.
Finally, if Pr(¢;) > .5 we decide thag; is associated with a human patch. Clearly, we do not expatthfs
classifier is accurate, since extracting small patches uiheah and nonhuman classes has a large overlap.
This is actually the reason why we have chosen RF as classififact it is able to manage very noisy data.
However, we want to find a rough subdivision that removeshgat¢hat certainly do not belong to a human.

3.1.4 Object Detection based on Hausdorff distance

After the previous pruning phase we await to have a reliabl®@fpatches for each example in the training
set. Then, we build another classifier able to manage a Vaniapresentation of the same object to label
a ROI as a pedestrian. First of all we decide to treat the featascriptors of the survived patches inde-
pendently, so we do not concatenate the descriptors in ai@wigctor because removing some patches we
lose the order among the patches. Moreover, standard nealg@ming techniques cannot manage repre-
sentation of different dimensionality. A popular distamreong two sets of points that work regardless the
number of descriptors in each set is the Hausdorff distaltdes been already used for object recognition
in quite recent works [11, 13], but in these case object dasan were image coordinates. Since we work
in R™ (n = d(d + 1)/2) , we generalize the usual Hausdorff distance using theidaa norm ofR".
Therefore to compute the Hausdorff distance of a pair ofrijfstses’ setsC’, C we do as follow:

d11(Cr, G) = max{maux ( min (I, &11)), max (min (15, &1))] &8 €B™  (3.7)
c;cC1 ¢;eCs c;eCy ¢;eC

We choose the Euclidean norm for computational convenjelmgeany norm ofR™ can be used to into
Eq. (3.7). Than we embedy into an SST (see Sec. 2.2) computed on the training set thatalwe.

After that we build a kernel matrix exploitingg. Since D cannot satisfy the Mercer inequality itself to
build a valid kernel that can be used in a SVM (Support VectacMne) we apply the following non-linear
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transformation taD: )
Dt = exp(—ﬁD), (3.8)

wherey is the mean value ab. Applying that transformation we satisfy the Mercer indgyahence the
D is avalid kernel. In Fig. 3.4 an example of the kernel mategdx oniy is shown.

Human Instances Kernel Matrix Nonhuman Instances

]

Figure 3.4: An example of Kernel matrix based on the propdsmasdorff distance.

Once the kernel is built a binary SVM is learned for the finadgxrian detection task.

3.2 Experiments

In the first experiment we want to show the probabilistic atigf the patch classifier described in Sec. 3.1.3
in presence of different types of synthetic occlusions. gb& of this experiment is to try to find a reliable
set of patches that can be used to describe a human. In Figie3show the result of the application of
different kinds of occlusions. We notice that, despite thd gf image patches is quite rough, the patches
classifier provides useful information on which is the attlgect's ROI for each occluded image. Ones
can except that the segmentation should be finer, but focti@iepurposes we have to minimize the com-
putational burden, therefore a rough image segmentatienaagh for this first pruning phase. In the next
experiment, regarding again the output of the patch clasgiec. 3.1.3), we show the probabilistic map
produced the patch classifier in function of the image raswlu It is interesting to observe that the final
probabilistic map is still reliable even when the originakcluded image is heavily downsampled. That
means two thingsl) the patch classifier can provide reliable information atspriesence of heavy noise
and low resolution image8, the feature set we have built (see Eq. (3.1)) is effectivét, captures discrim-
inating information in very low resolution images. We tralire proposed framework in the INRIA data
set [6]. It containsl 774 pedestrian example848 with reflections) and 671 nonpedestrian images. The
pedestrian annotations were scaled into a fixed sifd of 128 ROI, which includes a margin df6 pixels
around the pedestrians in the training images. The data getriitioned into two, wher2416 pedestrian
annotations and218 nonpedestrian images, from which we extrHti000 nonpedestrian ROIs 6 x 128
pixels, are selected as the training set. The remainingesagmpose the testing set. Since that dataset does
not include low resolution pedestrians, we decide to testramework on the images of the Caltech data set
[10] which contains several images with very low resolutp@destrians in crowded scenarios. In Fig. 3.7
some qualitative results are depicted. The proposed metbloigves good performance in the pedestrian
detection where the pedestrians are small. The numbersaf &&rm is low, but many pedestrians are lost.

DiscussionThere are two main issues that must be tackled in order toowepthe performance of the
proposed detection approach. The first issue regards tkeeepty: in fact, the usage of kernel methods in
detection problems is very limited due to its computatidmalden. Since the patch detector permits to a
considerable number of false positives to reach the keasedbclassifier, it is difficult to build a light kernel
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Figure 3.5: Patch classification in presence of differepetgf synthetic occlusions. For each picture we
show on the left the occluded image and on the right the imatghps classification that produces a proba-
bilistic map. We randomly use different levels of occlusifnom soft 5% of the image size) to haré(%

of the image size). We also try various kinds of noise: futtlasion and salt& pepper noise.

that permits a fast detection. Thus, it is necessary to imgptioe performance of the patch classifier using
contextual an spatial information during the pruning phase

Another issue concerns the Hausdorff distance. That distassumes that the information contained
into the descriptor vectors is geometrical, namely vecstimuld contain coordinates ofla2,..., N di-
mensional space. In our case the descriptors containefifféind of information. That leads to an unclear
meaning of that distance from the geometrical point of vielewever, we have shown that the proposed
distance is effective of the pedestrian detection taskF&ee3.4).
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Figure 3.6: Patch classification at different image regmutOn the right we show the full resolution image
that is downsampled one time to obtain the central image wodimes for the left image. Each image
present two maps: on the left the occluded image and on tihe thig image patches classification that

produce a probabilistic map.

detection

Figure 3.7: Detection examples. The classifier is trainedhenINRIA data set [6]. Red boxes all the
detection results without filtering or maximum suppressibnthe first two rows there are good detection
examples considering medium and low resolution pedestriarthe last row we show problematic detection

images.
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Chapter 4

Conclusion and Future Works

We have presented a study of how to represent objects usisgriefor classification and detection purposes.
We have decided to use tensor representation because ofttessful performances achieved using covari-
ance tensors to represent objects. Thus, we have propoeddifterent tensor representations that we have
called EMI and SST that lead to better performances compar&DV tensors. EMI tensor is composed
mixing entropy and mutual information and shows its pogityi in general object classification problems
where it outperforms COV representation. SST measuregthsimilarity of an object composed by parts;
it uses that structural information to discriminate an objén the low resolution pedestrian detection task
where pedestrian shape is almost the same, it outperfoerS@Y tensor on the DaimlerChrysler dataset.

We have proposed different object models that can be as$sdoigith tensor representation. In the
straightforward case, a single tensor to represent antosjedilized. Then we have adopted a pyramidal
structure in which each layer contains a regular grid of leygring patches decried by tensors. In the
latter case we have kept the regular grid structure, whiobffesctive in surveillance scenarios, but we
organize the patches in a set, therefore we overcome thasigct have a fixed structure to describe an
object improving the ability of managing occlusions or matar object poses. Combining the SST and
the Hausdorff distance we have built a kernel for an SVM fodgstrian classification, able to manage
a variable object representation. Since kernel methodsargputationally expensive, we will look for a
lighter version of the proposed Hausdorff distance thatgrarantee a good level of performances in terms
of detection computational time. Furthermore, we invegéca possible distance more suitable to compare
feature descriptors in the same spirit as the Hausdorfhtst. We will extend the experimentation on EMI
and SST in order to find the most discriminative represesati object detection and classification. There
are also two other aspects of tensor representation thatrausvestigated: first, a tensor normalization for
SST and EMI tensor to achieve better classification and tieteperformances. Second, as for covariance
tensor, can be interesting to figure out if it is possible toigdhe proposed tensors with a metric different
from the Euclidean that can simplify the learning phase.

Finally, another aspect that we will investigate is the coration of the tensors’ representation. To be
more precise, we want to see if combining tensors can leadttertrlassification performances.
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