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Abstract

A novel method is proposed for robust detection and categorization of people from a wide-area distance
by appearance and action. We adopt the tensor representation that is able to describe the interactions of mul-
tiple factors inherent to image formation and separately toencode the higher order statistics of each of these
factors. Drawing inspiration by some successful works using covariance tensors [27, 28, 25], we propose
two new kind of tensors that we have called EMI (Entropy and Mutual Information) tensor and SST (Self
Similarity Tensor) that outperform the covariance representation on different classification and detection
tasks. Then we present a complete framework for pedestrian detection based on the SST combined with
Hausdorff distance that is able to manage object’s description of variable lengths. We combine different
object models with tensor representation. For all those thebasic ingredient is the patch which replaces the
concept of part because, in a video surveillance context, itguarantees better performances in terms of ro-
bustness. Finally we test the proposed tensor representations and the classification and detection approaches
on different object classification (LabelMe [24] and PascalVOC 2009 [12]), object recognition (Cifar 10
and Cifar 100 [19]), and pedestrian detection (DaimlerChrysler [23] and Caltech Pedestrian [9]) datasets.



Chapter 1

Introduction

A key problem in object recognition is finding a suitable object representation. For historical and com-
putational reasons, vector descriptions that encode particular statistical properties of the data have been
broadly applied. However, employing tensor (matrix) representation we are able to describe the interactions
of multiple factors inherent to image formation and separately encode the higher-order statistics of each
of these factors. Successful works that inspire what we are going to present is the covariance tensor (ma-
trix) [27, 28] that has demonstrated to lead to state-of-the-art results for several classification and detections
tasks. More generally, structure tensors and deformation tensors are used in image understanding, espe-
cially for segmentation, grouping, motion analysis and texture segmentation [5], and can also be utilized in
regularization approaches for medical image registration[1, 15].

Mathematically speaking, a covariance tensor correspondsto an SPD (Symmetric Positive Definite)
matrix and the value of its determinant is a direct measure ofthe dispersion of the associated Gaussian
multivariate random variable. Fixing the SPD structure, but changing the information contained, we want to
figure out if it is possible to build a tensor representation able to outperform the covariance matrix. In this
report we have studied novel kinds of objects’ tensor representation. To be more precise, we propose(1)
two different kinds of tensor representation for objects’ description that we have called EMI (Entropy and
Mutual Information) tensor and SST (Self Similarity Tensor). EMI tensor is composed mixing entropy and
mutual information and shows its potentiality in general object classification problems where it outperforms
covariance representation. Differently, SST measures theself-similarity of an object composed by parts and
it is suited for the object detection task.(2) We propose a framework for the task of the pedestrian detection
in urban scenarios where pedestrians filmed by surveillancecameras can be at very low resolution. In a
nutshell, the idea we propose is to replace the definition of person described as a set of fixed parts with a
set of non-fixed patches (different number and position), which share a certain space location in the image.
Patches are then pruned and onlyreliable patches survive that process. Finally, to decide if an imagecontains
a person, we learn a binary SVM (Support Vector Machine) for which the kernel is built combining SST
representation and Hausdorff distance in order to manage a human representation with a variable number of
patches.

This report is organized as follow. Chapter 2 describes the EMI and SST. For each of them different sets
of image features object models are utilized. Once the tensor representation is introduced, we show some
experimental results on state-of-the-art dataset of object classification, recognition, and detection. Chapter
3 a complete framework based on covariance and SST and covariance tensors for pedestrian detection is
described and some experiments highlighting the robustness to the occlusions of the proposed approach are
reported. Then we test our framework on the [9] Caltech Pedestrian dataset. Finally, in Chapter 4, we draw
our conclusions and we outline the future works.
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Chapter 2

Multiple Features Tensor Representation
for Object Description

In this section, we present an experimental study on objects’ representation using the tensor description in
which multiple features are combined together. In particular, we focus our attention on theSym+

d (d ×
d symmetric positive definite) matrices. Through the covariance matrices [27], tensor representation has
become popular, and it is applied on different computer vision problems like texture classification, [27],
clinical imaging analysis and smoothing [15], pedestrian detection [28], visual object tracking [29], head
orientation classification [25], and person re-identification [3].

Our goal is to understand if it is possible to exploit theSym+
d matrix representation to build a more

powerful object descriptor, processing features’ information (like color, shape, etc.) to obtain better clas-
sification accuracy results. For this reason we introduce the Entropy-Mutual Information (EMI) tensor in
Sec. 2.1 that shares theSym+

d structure, but processes the information combining the more robust his-
togram representation and the entropy and mutual information measures. We apply EMI tensor to general
object classification problems, and finer human body parts classifications finding that EMI tensor leads to
considerably better performance than the covariance’s representation.

In Sec. 2.2 we introduce another tensor representation for object (i.e. pedestrian) detection that we
called SST (Self-Similarity Tensor). Differently from thetensors mentioned above it is designed to capture
the structural information of an object. SST is built on a robust regular grid structure which suits well for the
pedestrian detection task even in very low resolution conditions because the pedestrian’s structure is similar
in all the images. As for EMI tensor, we show that SST outperforms the covariance matrix representation.
Moreover in the next Chapter we show how to use SST to build a kernel matrix for pedestrian detection
where pedestrians can have a variable representation, namely they can be described with different number
of parts.

2.1 Entropy-Mutual Information (EMI) Tensor

Similarly to covariance matrices,Entropy-Mutual Information (EMI) tensor is a dense region descriptor. In
fact, given an imageI of W ×H pixels and a set ofd feature mapsΦ(I) of W ×H × d pixels:

Φ(I) = [F1W×H
(I)), F2W×H

(I), . . . , FdW×H
(I)], (2.1)
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Figure 2.1: EMI descriptor. Thed-dimensional feature map setΦ(I) is constructed from input imageI.

whereF1, . . . , Fd are image features as shown in Fig. 2.1. Then, we useΦ(I) to build d histograms ofn
bins:

H(Φ(I)) = [h(F1(I))1×n, h(F2(I))1×n, . . . , h(Fd(I))1×n], (2.2)

in whichh is the operator used to build a histogram. In order to obtain aprobability distribution from each
feature, we normalize each row ofH(Φ(I)) such as

∑n
i=1 h(Fj(I))n = 1 andj ∈ {1, . . . , d}. We call the

normalized versionH(Φ(I)) asĤ(Φ(I)):

Ĥ(Φ(I)) = [ĥ(F1(I))1×n, ĥ(F2(I))1×n, . . . , ĥ(Fd(I))1×n]. (2.3)

Using Eq. (2.3), we are ready to define the EMI tensor as follows:

EMI(I) =







E(Ĥ1(Φ(I))) · · · MI(Ĥ1d(Φ(I)))
...

. . .
...

MI(Ĥd1(Φ(I))) · · · E(Ĥd(Φ(I)))






, (2.4)

where E(Ĥi(Φ(I))) is the entropy operator defined as

E(Ĥi(Φ(I))) =

n
∑

j=1

ĥ(Fi(I))j log(ĥ(Fi(I))j) i ∈ {1, . . . , d}, (2.5)

and MI(Ĥd1(Φ(I))) is the mutual-information operator

MI(Ĥij(Φ(I))) =
n
∑

l=1

n
∑

k=1

ĥ(Fi, Fj(I))lk log(
ĥ(Fi, Fj(I))lk

ĥ(Fi(I))lĥ(Fj(I))k
) i, j ∈ {1, . . . , d}. (2.6)

We represent the joint probability in Eq. (2.6) asĥ(Fi, Fj(I)). Since EMI matrix belongs to Symmetric
positive-definite matrices (orSym+

d matrices) of real numbers, it is called tensor [2]. For classification
purpose, we build a minimal representation EMI. Since it hasonly d(d + 1)/2 independent coefficients,
which are the upper triangular or lower triangular part of the matrix, we decide to consider only the upper

triangular part vectorizing it. The resulting vector belongs toR
d(d+1)

2 and the standard machine learning
framework can be used with this representation.

2.1.1 Object Models for Object Classification

We decide to represent an object using different strategiesfor robust object classification. Firstly, we tried to
use a single tensor for the entire object image. That representation has its pros and cons: it gives a compact
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and global picture of the object, and, since we use a tensor representation of fixed (d × d) dimension, it
is independent to the images size and resolution. Unfortunately it cannot manage occlusions, and it loses
object’s details which are useful to discriminate similar objects of different classes. However, using a single
tensor we can obtain a clear picture of EMI’s tensor potential regardless the object representation. The
results of a comparison between covariance (COV) tensors and EMI tensors are reported in the first part of
Sec. 2.1.2.

In order to improve the classification accuracy a more complex object’s representation is adopted. To
build a sufficiently general but discriminative descriptorwe follow the idea proposed in [4] where a pyrami-
dal patch based representation is used. In particular, eachimage is divided into a sequence of increasingly
finer spatial grids by repeatedly doubling the number of divisions in each axis direction. The cell counts at
each level of resolution are the bin counts for the histogramrepresenting that level. We decide to adopt a
3 level pyramid and since EMI is based on multiple features we call that pyramid Multiple Features spatial
pyramid, which is depicted in Fig 2.2.

Original Level 1 Level 2 Level 3 

Figure 2.2: Spatial pyramid representation. An image on theleft and grids for levels1 to 3.

In order to make a fair comparison we decide to adopt the same structure as the one depicted in Fig 2.2
for COV tensors. In that case the histogram representation is not built because covariance is computed
directly on the values of the pixels.

2.1.2 A Comparative Experimental Study

In this section a comparative study on different public available datasets for the object classification task is
described.

PASCAL VOC 2009. This dataset [12] consists of a few17895 high resolution images annotated with
bounding boxes for objects of twenty categories (e.g., car,bus, airplane, . . . ). The goal of this challenge
is to classify objects in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised
learning problem where a training set of labeled images is provided. We choose that dataset to compare EMI
to COV tensor representation accuracy. Recalling Eq. 2.1, we instantiate the same feature set for both COV
and EMI:

Φ(I, x, y) =
[

F1(Y ) . . . F8(Y ) Y Cb Cr G| |(Y ) GO(Y )
]

, (2.7)

whereF1(Y ) . . . F8(Y ) is the filter bank consisting of scaled symmetric DOOG (Difference Of Offset
Gaussian) [7], applied only to the luminance channel of the perceptually uniform CIELab color space.Y ,
Cb, andCr are the three color channels obtained transforming the originalRGB image.G| |(Y ) andGO(Y )
are the gradient magnitude and orientation calculated on theY channel map, respectively.

To test the potentiality of the tensor representations, we use global representation of the objects us-
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ing only one13 × 13 (d = 13) tensor. After the vectorization (see Sec. 2.1), it produces a compact96-
dimensional vector representation. Random Forests [17] isused as a supervised learning toolbox. For this
method, which builds an ensemble of tree classifiers, four parameters must be defined:(1) for each node,
the feature to split a node is selected among a random subset of all thedv features. The number of candidate
feature is fixed to

√
dv ; (2) to guarantee good generalization performances of the classifier the number of

samples per leaf is fixed to at leastτ ; (3) each tree is trained on a randomly drawn bootstrap sub-sample of
the data, and here it is fixed using approximately2/3 of the examples.(4) the number of trees is fixed to
T = 100 to reduce the amount of memory necessary to instantiate the classifier, since the implementation
we have adopted [17] is not optimized.

For evaluation purposes we train the system using a5-fold cross validation procedure. At each itera-
tion, 100 examples per class are used in the training phase and all the remaining examples are utilized for
testing. In Fig. 2.3 we report the best confusion matrices for EMI and COV. In this experiment EMI clearly
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Figure 2.3: Confusion Matrices (CMs) for the PASCAL VOC 2009[12] dataset. On the left the CM given
using the EMI tensor, while on the right the CM associated with the COV tensor.

outperforms COV representation with an average accuracy of48% against the45% provided by the COV
tensor.

We want also to test tensor’s representation in function of the images’ resolution. Using bilinear re-
sampling function provided by Dollar toolbox [7], we have downsampled all the Pascal’s images. As you
can see in Fig. 2.4, we made two different kinds of downsampling: in the first case we do not preserve the
image’s size, while in the second case we do. This is due to thefact that we want to study the behavior of
the tensor in function of both image’s size and resolution.

LabelMe. We used the annotated LabelMe [24] dataset to test the ability of the tensors representation
to discriminate among more fine categories compared with theprevious case. LabelMe is a database and
an online annotation tool that allows the sharing of images and annotations. It is designed for object class’s
recognition and it contains various object classes. We extract from this dataset only4 different object classes,
all belonging to the same object as you can see in Fig. 2.5. Theclasses are4 human body parts: arm, head,
leg and torso. Images are reflected building a dataset of16288 examples. Also in this case, as for Pascal
VOC 2009, a5-fold cross-validation procedure has been used. During each training phase2000 randomly
selected examples per class populate the training set and all the remaining are used for testing purposes.
Each example is described with the feature set of Eq. 2.7 and,again, one tensor is used to describe an
object’s image. In Fig. 2.5 the CMs of EMI and COV tensors are shown. It is clear that EMI outperforms
COV also in this finer classification task. Moreover, since the classes are highly overlapped we can claim
that EMI manages better the presence of noise in images. Thisis probably due to the fact that it uses the
histogram intermediate representation that improves the description robustness compared to COV tensors.
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Figure 2.4: Classification performances of EMI and COV tensors on PASCAL VOC 2009 in terms of mean
classification accuracy varying objects’ scale and resolution.

LabelMe Dataset Samples 
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Torso

COV − confusion matrix (avg acc. 83%)

Figure 2.5: Some examples and Confusion Matrices (CMs) for the LabelMe [24] dataset. On the left the
CM given using the EMI tensor, while on the right the CM associated with the COV tensor.

CIFAR10. The CIFAR10 dataset [19] is a hand-labeled subset of a largerdataset of80 million tiny
images. These images were downloaded from the Internet and down-sampled to32x32 pixels. The CI-
FAR10 subset has10 object categories, namely airplane, car, bird, cat, deer, dog, frog, horse, ship, and truck
(see Fig. 2.6). The training set has5000 examples per class, the test set has1000 examples per class. The
low resolution and variability make recognition very difficult and a traditional method based on features
extracted at interest points does not work. We learn RF as forthe previous experiments in order to compare
COV and EMI tensors. Unlike the previous case here the cross-validation procedure is not applied since the
training and the testing set are already given. Since the recognition task on this dataset is hard, we decide
to enhance the feature description using the pyramidal descriptor described in Sec. 2.1.1 that adds to the
single (top layer) descriptor utilized before2 sub-layers. For each patch of that pyramidal structure a tensor
is extracted, vectorized and concatenated. The dimension of the final object descriptor is clearly larger if
compared to using just one tensor for object description. Therefore we adopt PCA (Principal Component
Analysis) to automatically reduce the dimensionality of the final object description. We chose a method
developed by [30] because it automatically establishes theoptimal feature descriptor dimensionality fixing
to 96% the data’s energy that should be preserved after the linear projection. That procedure is used both for
EMI and COV tensors. In Tab. 2.1 we report a comparison using both EMI and COV tensors on CIFAR’s
images resized at a resolution of128 × 128. Different features sets already implemented in the Dollar’s
toolbox [7] have been applied. The first filter bank has been already presented in Eq. (2.7). It is composed
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Figure 2.6: Example of images in the CIFAR10 dataset.

by a set of8 DOOG filters and other Gradient and color features. We calledthat feature set DOOG in
Tab. 2.1. Replacing the filters’ set with a different filter bank from Serge Belongie [22] composed by40
filters we build a much more informative filter representation that we called Belongie in Tab. 2.1. We ob-

Tensor RepresentationFilters’ Set Avg Accuracy
EMI Belongie 52%
EMI DOOG 49%
COV Belongie 40%
COV DOOG 38%

Table 2.1: Test recognition accuracy on the CIFAR10 datasetproduced by different pyramidal tensor repre-
sentation.

serve that using the pyramidal EMI representation combinedwith Belongie’s filters set we obtain the best
performance outperforming the covariance representation. To consolidate that result we try to apply the
comparison between EMI and COV on a much more difficult dataset in the next experiment.

CIFAR100. CIFAR100 dataset [19], as CIFAR10, is a hand-labeled subsetof a larger dataset of80
million tiny images. Also in this case images were downloaded from internet and down-sampled to32x32
pixels. CIFAR100 is made of100 categories of objects. Its training set has100 examples per class and
its testing set has100 examples per class. We use the same experimental setting as CIFAR10 that we
have described above. In Tab. 2.2 the experimental results are reported. As for CIFAR10 the best average

Tensor RepresentationFilters’ Set Avg Accuracy
EMI Belongie 26%
EMI DOOG 32%
COV Belongie 19%
COV DOOG 18%

Table 2.2: Test recognition accuracy on the CIFAR100 dataset produced by different pyramidal tensor rep-
resentation.

accuracy is obtained using pyramidal EMI tensor and Belongie’s filters set, which confirms the superiority
of EMI on COV tensor representation.
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2.2 Self-Similarity Tensor (SST)

We have investigated also a different tensor that we have called Self-Similarity Tensor (SST) which can be
used to robustly describe the structure of an object. SST is similar in spirit to structure tensors, which are
powerful tools which can be used in such computer vision tasks as edge or corner detection [26] and spatio-
temporal recognition [20]. The main idea that motivates theintroduction of SST is to build an object rep-
resentation to tackle different problems of interest in thesurveillance context where a robust representation
is necessary. We propose to build an object descriptor with apyramidal layout which gives a coarse-to-fine
object representation. It is probable that the top layer of this representation is more suitable for the detection
task while the layers below for a finer classification or recognition.

From a mathematical point of view, the intuition is that given a patch-based representation of an object, it
can be possible to find a compact and useful object description capturing the relationships between patches
in a SPD matrix of distances among the patches (or parts). Then, SST can be vectorized and used as an
object descriptor. More precisely, given an imageI of W ×H pixels and a setΛ(I) of W ×H ×m pixels
of m image patches described by any kind of feature description (like HOG, COV, etc.):

Λ(I) = [f1×n(P1(I)), f1×n(P2(I)), . . . , f1×n(Pm(I))], (2.8)

in whichf is a function producing ann-dimensional vector descriptor andP extracts a patch from the image
I. Using Eq. (2.8), we define the SST as follows:

SST(I) =







d(f(P1(I)), f(P1(I))) · · · d(f(P1(I)), f(Pm(I)))
...

. . .
...

d(f(Pm(I)), f(P1(I))) · · · d(f(Pm(I)), f(Pm(I)))






, (2.9)

Since the basic ingredient of STT are the covariance matrices that are proven to give superior perfor-
mance in low resolution images [28], we decide to use different kinds of metrics to measure the distances
among these matrices. In the simpler case we adopt the Euclidean distance ignoring the geometry of covari-
ance tensors. On the contrary, in the second case we considertheir geometry using a Riemannian metric. To
be more precise, given a pair of COV tensorsXandY the following distance is utilized:

d2(X,Y ) =< logX(Y ), logX(Y ) >X= trace(log2(X−1/2Y X−1/2)), (2.10)

where logX(Y ) = X−1/2 log(X−1/2Y X−1/2))X−1/2 is the Riemannian logarithm map andlog is the
ordinary matrix logarithm (see [25] for further details).

2.2.1 Object Model for Pedestrian Detection

We combine SST with a patch-based structure as described in Sec. 2.1, since that structure guarantees
both a high level of robustness and generality to describe different classes of objects. Moreover, focusing
our attention on small pedestrians, it is difficult to automatically extract a set of meaningful parts because
of the low object resolution. However, a main issue still remains how to decide the patch size or rather
the grid layout. Our hypothesis is that a rougher grid layoutis suitable for a task like object detection in
which the object model must be invariant (or at least less sensitive) to object details. Adopting a finer one,
we necessarily have to change the task into an object classification task in which a high level of details
is necessary to discriminate among classes. To this end in the next experimental section we confirm that
hypothesis on a state-of-the-art pedestrian dataset.
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2.2.2 Experiments

We present an experimental study to use that representationfor small pedestrian detection task in real sce-
narios. To that end the DaimlerChrysler dataset [23] is chosen because it contains very small pedestrians.
DaimlerChrysler. The DaimlerChrysler dataset [23] contains4000 pedestrian (24000 with reflections and

small shifts) and25000 nonpedestrian images. The dataset was organized into threetraining and two test
sets, each of them having4800 positive and5000 negative examples. The small size of the pedestrian
windows (18 × 36 pixels), combined with a carefully arranged negative set, makes detection on the Daim-
lerChrysler data set extremely challenging. For this dataset we want to compare SST representation against

Figure 2.7: DaimlerChrysler feature space visualization via PCA using COV and SST.

COV representation. First of all to make that comparison as fair as possible, we utilize the same feature
representation for both the tensors. In particular, we grideach image extracting8 patches using the covari-
ance of gradient-based information for each patch. The color information is not considered since it is not
available for this dataset. More formally, the feature set is:

Φ(I, x, y) =
[

G| |(I) GO(I) Dx(I) Dy(I) Dxx(I) Dyy(I)
]

, (2.11)

whereG| |(Y ) andGO(Y ) are the gradient magnitude and orientation, andDx(I), Dy(I), . . . are intensity
derivatives. Then we build a covariance matrix for each image patch using the feature set above. Covariances
are vectorized and used as feature descriptors. Then SST is built computing the distance between each
pair of descriptors as formalized in Eq. (2.9) whered is the Euclidean distance. On the contrary COV is
built concatenating all the vectorized covariance matrices. In Fig. 2.7 we use PCA (Principal Component
Analysis) to visualize the distribution of the negative andpositive sets using the two different representations.
We observe that SST offers a more linearly separable featurespace with respect to COV. Hence, we expect
that the detection performances of SST are reasonably better than COV. Now, we show in Fig. 2.8 another
experiment in order to evaluate the behavior of SST at different patches’ resolution. For this figure we build
a pyramidal SST dividing an image into a sequence of increasingly finer spatial grids by repeatedly doubling
the number of divisions in each axis direction. Hence, we show the feature space for different layers of the
spatial pyramid. For each level of that pyramid an SST is computed and the feature space associated with
each pyramid layer is visualized. We observe that a rough grid is more suitable for the detection task, while
a finer grid subdivision can be used for a different classification task in which a high level of details is
necessary (e.g. pose classification). To verify our assertion we compare the performances of the different
pyramid layers for the pedestrian detection task. In Fig. 2.9(a), we plot the DET (Detection Error Tradeoff)
curve on a log-log scale, whosey-axis corresponds to the miss rate, and thex-axis corresponds to false
positives per window (FPPW). We notice that the first (top) layer is the most indicated for the detection task
due to the fact that its rough image subdivision captures only the essential information to characterize an
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Figure 2.8: DaimlerChrysler SST’s feature space visualization via PCA at different patches’ size.

object avoiding object’s details unnecessary for the detection task.

(a) (b) 
(c) 

Figure 2.9: DET curve on the DaimlerChrysler dataset using the SST’s tensor. (a) depicts the detection
performances associated with different levels of the spatial pyramid. (b) shows how adding the spatial
layout and an appearance prior to the feature descriptors the detection performances can be increased. (c)
compares two different metrics that can be used to build the SST.
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Chapter 3

Kernel’s building via SST for Robust
Pedestrian Detection

The capability to detect people in images of crowded scenes is fundamental for a large variety of applica-
tions, such as video surveillance or automatic driver-assistance systems. If people detection is performed in
a non-problematic scenario such as one where people are not occluded, with a limited range of scales and
pose variations there are already a lot of effective frameworks [6, 27, 16, 8, 14] usable to solve this task. On
the other hand, if the scenario is problematic, among these systems only few are really useful. We highlight
three of them which are able to manage different difficult problems which typically are present jointly in
images of crowded scenes. [23] effectively deals with smallscale pedestrians, [21] manages the presence
of occlusions and [14] covers extreme changes of pose or occlusions of pedestrians. Since anyone of the
previous frameworks is able to give a solution to all the previous problems, in this paper we want to propose
a unified framework capable to jointly cope with the mentioned issues. Therefore, the goal is to detect as
many people as possible even when it is not possible to infer the human body layout. A typical example of
the scenario in which we want to work is depicted in Fig. 3.1. Here, it is very difficult to define a part-based
model able to describe each person.

We propose to replace the definition of a person as a set of fixedparts as a set of non-fixed combination
of human patches which share a defined space location in the image. Initially, an image is divided into a
set of multi-scale overlapping patches on which a binary patch classifier is learned in order to highlight the
patches belongings to people. Then we assign the human patches, if it is possible, to the different people in
the image.

The ideas below our approach are:1) a person is represented as a variable set of patches depending on a
probabilistic evaluation of the patches’ visibility, or rather if a human is occluded the patches containing the
occlusion are automatically removed from the model.2) since the number of patches is variable a classifier
based on a set distance is used to discriminate between humanand nonhuman image ROIs (Regions of
Interest).

3.1 The Approach

The proposed approach is a five-phase process.(1) A set of features is calculated on a set of overlapping
patches for each image. In the training stage, it assumes to have a set of ROI (Region Of Interest) containing
fully-visible people at the same scale. Then the training set is populated by other problematic examples
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Figure 3.1: An example of video surveillance scenario from the i-LIDS dataset.

where occlusions are present.(2) From the training ROIs a set of feature is extracted and(3) extracting a
fixed number of patches computed on a regular grid, their tensor descriptor is computed.(4) A robust binary
patch classifier is used to detect the foreground (human) patches.(5) The survived patches are organized as
sets and using a classifier based on a set distance we finally detect the presence of a human in the original
ROI. The set distance is necessary since the number of foreground patches is variable. In Fig. 3.2 a the entire
approach pipeline is depicted.

3.1.1 Person Representation

For the pedestrian detection task the most reliable source of information is related to the image gradient.
As shown in [10], that information is strictly dependent on the image resolution. In particular for low
resolution pedestrians (less than30 pixels tall) Haar Wavelet features [23] are a simple and effective choice,
while for medium and high resolution pedestrians it is preferable to use directly the gradient information
or its orientation as done by HOG (Histogram of Oriented Gradients) [6]. To be able to manage people at
different resolutions, combinations of the previous features are used [8]. This combination is typically a
straightforward concatenation among some of the previous features. This leads to two problems:1) using
different features the normalization is not an easy task andit becomes more difficult proportionally to the
number of the features involved.2) The dimension of the final vector representation can be extremely
high leading to the curse of dimensionality problem. A more proper way to combine different features
and automatically solving both the previous problems is using covariance tensors as feature descriptors
[27]. Due to the use of integral representation, these descriptors are fast to compute, making it suitable for
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Patched Input Image Feature 

Extraction 

Tensor Computation FG Patches Selection Human Detection 

Figure 3.2: The proposed approach pipeline.

detection tasks. We have shown that there are others tensor representations (see Chap. 2) able to outperform
the covariance, but their calculation time is still to long for object detection purposes.

Regular Grid Human Body Layout. As introduced at the beginning of this Chapter, we believe that in
order to find a good representation for a person in a crowd scene where small pedestrians are presents, it is
necessary to make a step further to the definition of human body part widely used for the current pedestrian
detectors [14]. That because1) a configuration of body parts changes in function of the object resolution.
Even if multiple models are instantiated (one for each object’s resolution), their management could be tricky
and computationally expensive.2) Defining a part automatically involve the part alignment problem. Since
the part configuration can vary slightly with highly non-rigid object (as a human) or in case of occlusion, the
research of the correct position and scale could lead to verypoor results.3) Parts are extremely unusable
descriptors in crowded situations where it is hard to correctly assign parts to different overlapped human
bodies.

We propose to divide an imageI in overlapping patches on a regular grid. Each patch is described by
a COV tensor. More formally, a set of patches{Pi}i=1,...,N of 4 × 4 pixels is sampled fromI as shown
in Fig. 3.2. We want to stress that differently from many successful people detector [28, 8], here the patch
dimensionp is not optimized in order to obtain the best performance on a benchmark dataset. This should
be led to a more general detector in which the concept of fixed human parts is replaced by one that describe
it as variable human patches.

3.1.2 Combinations of Features

Original Image Haar Wavelets Filters Application

Figure 3.3: Haar wavelet bank for small pedestrians detection. Some of those wavelets are applied using
kernel of different size

Each patchPi is represented by a covariance matrix ofd image features

Φ = [H1 H2 . . . H10 G O] , (3.1)
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whered is equal to12. H1, . . . ,H10 represent the results of the application of a set of Haar Wavelets depicted
in Fig. 3.3.G andO which are the gradient module and gradient orientation are computed the first two Haar
Wavelets (see Fig. 3.3). The descriptor encodes information of the variances of the defined features and
their correlations with each other, which are useful to detect both high and low resolution people. In order
to build quickly a set of covariance matrices, given a set of featureΦ, in [27] is proposed a good solution
based on the integral representation which is adopted in this paper.

Given a set ofd×d covariance descriptors{Ci}i=1,...,N whereCi ∈ Sym+
d (the group of the symmetric

positive definite matrices), they are one-to-one with theirrelative patchesP1, . . . , PN . A very important
preprocessing operation is the normalization of these descriptors to enhance the robustness to also include
illumination variations inI. Unlike the local normalization proposed in [28], we propose to use a global
normalization which is much more robust in presence of occlusions and noise. The normalized version of
a covariance matrixCi is denoted aŝCi and is computed by dividing the columns and rows ofCi with the
square root of the maximum variance of the image featuresΦ (Eq. (3.1)):

Ĉi = diag(V )−
1
2Ci diag(V )−

1
2 , (3.2)

wherediag(V ) is a diagonal matrix in which at the diagonal entries there are the maximum variance of the
image features. This is equivalent to first globally normalizing the feature vectors to have zero mean and
unit standard deviation and then computing the covariance descriptor.

Covariance matrices are an interesting way to combine information not only for the previous motivation,
in fact their particular geometry provides an implicit framework to represent multi-modal distributions. So,
if we are particularly interested in focusing our attentionon a sub-set of covariances (i.e. people patches),
exploiting their geometry a set of tools is naturally provided to find an highly discriminative Euclidean space
to analyze them as described in the next section.

Covariance Tensors.Since covariance matrices do not live on a Vector Space but they can live on a
Riemannian Manifold [2] it is necessary to map them on a particular tangent space of this Manifold where
the covariances can be treated as vectors. More formally, given a normalized covariance matrix̂Ci it can be
projected applying the following equation which represents the logarithmic mapping

ci = M
1
2 logId(M

− 1
2 ĈiM

− 1
2 )M

1
2 , (3.3)

whereM ∈ Sym+
d is the Karcher mean point computed considering only the covariances belonging to

people image examples and it is computed [18]. ThelogId(A) map is equal toU log(D)UT , whereUDUT

is the eigenvalue decomposition ofA. Please note thatlogId andlog are different operators. The first one is
a standard operator of the Riemannian geometry and the second one is the usual logarithm of a scalar value
(for further details see [25]).

Sinceci ∈ Symd, it contains onlyd(d+1)/2 independent coefficients which can be the upper triangular
part of the matrix. As in [28], an orthonormal coordinate system for the tangent space is defined as follows:

vec(ci) = [x1 x2 . . .xd(d+1)/2], (3.4)

wherex = M− 1
2 ciM

− 1
2 .

Havingd = 12, a tangent vector is a78 dimensional. Since not all the features are informative, linear
PCA (Principal Component Analysis) is applied. According to [30] we preserve the96% of the energy
selecting the principal components, which number is automatically selected. We denote with̃ci the principal
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components vector after the projection

c̃i = Tci, T ∈ R
d(d+1)/2×dp (3.5)

whereT is leaned during the training phase anddp is automatically selected. As done above for the patch
dimension, also here our goal is not to find the best feature set Φ to obtain the best performance on a
benchmark dataset. We have collected a reasonable feature set that can be used to describe pedestrian at
different scales and we have decided to use PCA [30] to selectautomatically the most informative subset of
the original covarianceCi.

We add tõci a further dimension containing a rough spatial informationposition in order to avoid patch
configuration clearly infeasible. Dividing the ROI in3 equal horizontal layers we assign1 to thetop body
part,0 to themiddle and−1 to thebottom.

3.1.3 Patch Classification

We collect a large number of human and nonhuman patches and welearn a binary classifier using RF. We
definePr(c̃i) that represents the probability of a patch to belong to a human. That probability is computed
as

Pr(c̃i) =
1

Tn

Tn
∑

t=1

gt(c̃i), (3.6)

whereTn is the cardinality of a set of decision trees andgt(c̃i) is a decision function given by thet-th
tree. Hence,Pr(c̃i) is computed as the mean of the decision responses coming fromall the decision trees.
Finally, if Pr(c̃i) > .5 we decide that̃ci is associated with a human patch. Clearly, we do not expect that this
classifier is accurate, since extracting small patches the human and nonhuman classes has a large overlap.
This is actually the reason why we have chosen RF as classifier, in fact it is able to manage very noisy data.
However, we want to find a rough subdivision that removes patches that certainly do not belong to a human.

3.1.4 Object Detection based on Hausdorff distance

After the previous pruning phase we await to have a reliable set of patches for each example in the training
set. Then, we build another classifier able to manage a variable representation of the same object to label
a ROI as a pedestrian. First of all we decide to treat the feature descriptors of the survived patches inde-
pendently, so we do not concatenate the descriptors in a unique vector because removing some patches we
lose the order among the patches. Moreover, standard machine learning techniques cannot manage repre-
sentation of different dimensionality. A popular distanceamong two sets of points that work regardless the
number of descriptors in each set is the Hausdorff distance.It has been already used for object recognition
in quite recent works [11, 13], but in these case object description were image coordinates. Since we work
in R

n (n = d(d + 1)/2) , we generalize the usual Hausdorff distance using the Euclidean norm ofRn.
Therefore to compute the Hausdorff distance of a pair of descriptors’ setsC̃1, C̃2 we do as follow:

dH(C̃1, C̃2) = max[max
c̃i∈C̃1

( min
c̃j∈C̃2

(||c̃i, c̃j ||)), max
c̃j∈C̃2

( min
c̃i∈C̃1

(||c̃j , c̃i||))] c̃i, c̃j ∈ R
n. (3.7)

We choose the Euclidean norm for computational convenience, but any norm ofRn can be used to into
Eq. (3.7). Than we embeddH into an SST (see Sec. 2.2) computed on the training set that wecall D.
After that we build a kernel matrix exploitingD. SinceD cannot satisfy the Mercer inequality itself to
build a valid kernel that can be used in a SVM (Support Vector Machine) we apply the following non-linear
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transformation toD:

D+ = exp(− 1

µ
D), (3.8)

whereµ is the mean value ofD. Applying that transformation we satisfy the Mercer inequality, hence the
D+ is a valid kernel. In Fig. 3.4 an example of the kernel matrix based ondH is shown.

Human Instances Nonhuman Instances Kernel Matrix 

Figure 3.4: An example of Kernel matrix based on the proposedHausdorff distance.

Once the kernel is built a binary SVM is learned for the final pedestrian detection task.

3.2 Experiments

In the first experiment we want to show the probabilistic output of the patch classifier described in Sec. 3.1.3
in presence of different types of synthetic occlusions. Thegoal of this experiment is to try to find a reliable
set of patches that can be used to describe a human. In Fig. 3.5we show the result of the application of
different kinds of occlusions. We notice that, despite the grid of image patches is quite rough, the patches
classifier provides useful information on which is the actual object’s ROI for each occluded image. Ones
can except that the segmentation should be finer, but for detection purposes we have to minimize the com-
putational burden, therefore a rough image segmentation isenough for this first pruning phase. In the next
experiment, regarding again the output of the patch classifier (Sec. 3.1.3), we show the probabilistic map
produced the patch classifier in function of the image resolution. It is interesting to observe that the final
probabilistic map is still reliable even when the original occluded image is heavily downsampled. That
means two things:1) the patch classifier can provide reliable information also in presence of heavy noise
and low resolution images,2) the feature set we have built (see Eq. (3.1)) is effective, soit captures discrim-
inating information in very low resolution images. We trainthe proposed framework in the INRIA data
set [6]. It contains1774 pedestrian examples (3548 with reflections) and1671 nonpedestrian images. The
pedestrian annotations were scaled into a fixed size of64 × 128 ROI, which includes a margin of16 pixels
around the pedestrians in the training images. The data set is partitioned into two, where2416 pedestrian
annotations and1218 nonpedestrian images, from which we extract100000 nonpedestrian ROIs of64×128
pixels, are selected as the training set. The remaining images compose the testing set. Since that dataset does
not include low resolution pedestrians, we decide to test our framework on the images of the Caltech data set
[10] which contains several images with very low resolutionpedestrians in crowded scenarios. In Fig. 3.7
some qualitative results are depicted. The proposed methodachieves good performance in the pedestrian
detection where the pedestrians are small. The number of false alarm is low, but many pedestrians are lost.

DiscussionThere are two main issues that must be tackled in order to improve the performance of the
proposed detection approach. The first issue regards the efficiency: in fact, the usage of kernel methods in
detection problems is very limited due to its computationalburden. Since the patch detector permits to a
considerable number of false positives to reach the kernel based classifier, it is difficult to build a light kernel
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Figure 3.5: Patch classification in presence of different type of synthetic occlusions. For each picture we
show on the left the occluded image and on the right the image patches classification that produces a proba-
bilistic map. We randomly use different levels of occlusion: from soft (25% of the image size) to hard (50%
of the image size). We also try various kinds of noise: full occlusion and salt& pepper noise.

that permits a fast detection. Thus, it is necessary to improve the performance of the patch classifier using
contextual an spatial information during the pruning phase.

Another issue concerns the Hausdorff distance. That distance assumes that the information contained
into the descriptor vectors is geometrical, namely vectorsshould contain coordinates of a1, 2, . . . , N di-
mensional space. In our case the descriptors contain different kind of information. That leads to an unclear
meaning of that distance from the geometrical point of view.However, we have shown that the proposed
distance is effective of the pedestrian detection task (seeFig. 3.4).
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Figure 3.6: Patch classification at different image resolution. On the right we show the full resolution image
that is downsampled one time to obtain the central image and two times for the left image. Each image
present two maps: on the left the occluded image and on the right the image patches classification that
produce a probabilistic map.

Figure 3.7: Detection examples. The classifier is trained onthe INRIA data set [6]. Red boxes all the
detection results without filtering or maximum suppression. In the first two rows there are good detection
examples considering medium and low resolution pedestrians. In the last row we show problematic detection
images.
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Chapter 4

Conclusion and Future Works

We have presented a study of how to represent objects using tensors for classification and detection purposes.
We have decided to use tensor representation because of the successful performances achieved using covari-
ance tensors to represent objects. Thus, we have proposed two different tensor representations that we have
called EMI and SST that lead to better performances comparedto COV tensors. EMI tensor is composed
mixing entropy and mutual information and shows its potentiality in general object classification problems
where it outperforms COV representation. SST measures the self-similarity of an object composed by parts;
it uses that structural information to discriminate an object. In the low resolution pedestrian detection task
where pedestrian shape is almost the same, it outperforms the COV tensor on the DaimlerChrysler dataset.

We have proposed different object models that can be associated with tensor representation. In the
straightforward case, a single tensor to represent an object is utilized. Then we have adopted a pyramidal
structure in which each layer contains a regular grid of overlapping patches decried by tensors. In the
latter case we have kept the regular grid structure, which iseffective in surveillance scenarios, but we
organize the patches in a set, therefore we overcome the necessity to have a fixed structure to describe an
object improving the ability of managing occlusions or particular object poses. Combining the SST and
the Hausdorff distance we have built a kernel for an SVM for pedestrian classification, able to manage
a variable object representation. Since kernel methods arecomputationally expensive, we will look for a
lighter version of the proposed Hausdorff distance that canguarantee a good level of performances in terms
of detection computational time. Furthermore, we investigate a possible distance more suitable to compare
feature descriptors in the same spirit as the Hausdorff distance. We will extend the experimentation on EMI
and SST in order to find the most discriminative representation of object detection and classification. There
are also two other aspects of tensor representation that must be investigated: first, a tensor normalization for
SST and EMI tensor to achieve better classification and detection performances. Second, as for covariance
tensor, can be interesting to figure out if it is possible to equip the proposed tensors with a metric different
from the Euclidean that can simplify the learning phase.

Finally, another aspect that we will investigate is the combination of the tensors’ representation. To be
more precise, we want to see if combining tensors can lead to better classification performances.

Acknowledgements

This research was partially funded by the EU FP7 project SAMURAI with grant no. 217899.

19



Bibliography

[1] N. Archip, O. Clatz, S. Whalen, D. Kacher, A. Fedorov, A. Kot, N. Chrisochoides, F. Jolesz, A. Golby,
P.M. Black, et al. Non-rigid alignment of pre-operative mri, fmri, and dt-mri with intra-operative mri
for enhanced visualization and navigation in image-guidedneurosurgery.Neuroimage, 35(2):609–624,
2007.

[2] V. Arsigny. Processing Data in Lie Groups: An Algebraic Approach. Application to NonLinear Regis-
tration and Diffusion Tensor MRI. PhD thesis, Ecole polytechnique, 2006.

[3] S. Bak, E. Corvee, F. Bremond, and M. Thonnat. Person re-identification using spatial covariance
regions of human body parts. InProc. AVSS, 2010.

[4] A. Bosch, A. Zisserman, and X. Munoz. Representing shapewith a spatial pyramid kernel. InProc.
ACM Multimedia, pages 401–408. ACM, 2007.

[5] T. Brox, J. Weickert, B. Burgeth, and P. Mrázek. Nonlinear structure tensors.Image and Vision
Computing, 24(1):41–55, 2006.

[6] N. Dalal and B. Triggs. Histograms of oriented gradientsfor human detection. InProc. CVPR,
volume 1, page 886, 2005.

[7] P. Dollar. Piotr dollar toolbox howpublished = ”http://vision.ucsd.edu/ pdol-
lar/toolbox/doc/index.html”, 2010.

[8] P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral channel features. InProc. BMVC, 2009.

[9] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A benchmark. InProc. CVPR,
pages 304–311. IEEE, 2009.

[10] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the
art. IEEE Trans. PAMI, 99(PrePrints):PrePrints, 2011.

[11] M.P. Dubuisson and A.K. Jain. A modified hausdorff distance for object matching. InProc. ICPR,
volume 1, pages 566–568. IEEE, 1994.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge 2009 (voc2009) howpublished = ”http://www.pascal-
network.org/challenges/voc/voc2009/workshop/index.html”.

[13] P.F. Felzenszwalb. Learning models for object recognition. In Proc. CVPR, volume 1, pages I–1056.
IEEE, 2001.

[14] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object detection with discrimina-
tively trained part based models.IEEE Trans. PAMI, 32(9):1627–1645, 2010.

20



[15] P. Fillard, X. Pennec, V. Arsigny, and N. Ayache. Clinical dt-mri estimation, smoothing, and fiber
tracking with log-euclidean metrics.IEEE Trans. MI, 26:1472–1482, 2007.

[16] J. Gall and V. Lempitsky. Class-specific hough forests for object detection. InProc. CVPR. IEEE,
2009.

[17] A. Jaiantilal.http://code.google.com/p/randomforest-matlab/, 2009.

[18] H. Karcher. Riemannian Center of Mass and Mollifier Smoothing. Comm. Pure and Applied Math.,
30:509–541, 1997.

[19] A. Krizhevsky and GE Hinton.Learning multiple layers of features from tiny images. PhD thesis,
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[20] I. Laptev, B. Caputo, C. Schuldt, and T. Lindeberg. Local velocity-adapted motion events for spatio-
temporal recognition.CMUI, 108(3):207–229, 2007.

[21] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. InProc. CVPR, pages
878–885, 2005.

[22] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmentation.
IJCV, 43(1):7–27, 2001.

[23] S. Munder and D.M. Gavrila. An experimental study on pedestrian classification.IEEE Trans. PAMI,
28:1863–1868, 2006.

[24] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme: a database and web-based tool
for image annotation.IJCV, 77(1):157–173, 2008.

[25] D. Tosato, M. Farenzena, M. Cristani, M. Spera, and V. Murino. Multiclass classification on rieman-
nian manifolds for video surveillance. InProc. ECCV, pages 378–391. Springer, 2010.

[26] B. Triggs. Detecting keypoints with stable position, orientation, and scale under illumination changes.
Proc. ECCV, I:100–113, 2004.

[27] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification.
In Proc. ECCV, 2006.

[28] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detectionvia classification on riemannian manifolds.IEE
Trans. PAMI, 30:1713–1727, 2008.

[29] J. Yao and J.M. Odobez. Fast human detection from videosusing covariance features. InProc. IWVS,
2008.

[30] W.S. Zheng, J.H. Lai, and P.C. Yuen. Penalized preimagelearning in kernel principal component
analysis.IEEE Trans. NN, 21(4):551–570, 2010.

21


