1,062 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Partition clustering for GIS map data protection

    Get PDF

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    Authentication with Distortion Criteria

    Full text link
    In a variety of applications, there is a need to authenticate content that has experienced legitimate editing in addition to potential tampering attacks. We develop one formulation of this problem based on a strict notion of security, and characterize and interpret the associated information-theoretic performance limits. The results can be viewed as a natural generalization of classical approaches to traditional authentication. Additional insights into the structure of such systems and their behavior are obtained by further specializing the results to Bernoulli and Gaussian cases. The associated systems are shown to be substantially better in terms of performance and/or security than commonly advocated approaches based on data hiding and digital watermarking. Finally, the formulation is extended to obtain efficient layered authentication system constructions.Comment: 22 pages, 10 figure

    Models and Algorithms for Graph Watermarking

    Full text link
    We introduce models and algorithmic foundations for graph watermarking. Our frameworks include security definitions and proofs, as well as characterizations when graph watermarking is algorithmically feasible, in spite of the fact that the general problem is NP-complete by simple reductions from the subgraph isomorphism or graph edit distance problems. In the digital watermarking of many types of files, an implicit step in the recovery of a watermark is the mapping of individual pieces of data, such as image pixels or movie frames, from one object to another. In graphs, this step corresponds to approximately matching vertices of one graph to another based on graph invariants such as vertex degree. Our approach is based on characterizing the feasibility of graph watermarking in terms of keygen, marking, and identification functions defined over graph families with known distributions. We demonstrate the strength of this approach with exemplary watermarking schemes for two random graph models, the classic Erd\H{o}s-R\'{e}nyi model and a random power-law graph model, both of which are used to model real-world networks

    HDR Image Watermarking

    Get PDF
    In this Chapter we survey available solutions for HDR image watermarking. First, we briefly discuss watermarking in general terms, with particular emphasis on its requirements that primarily include security, robustness, imperceptibility, capacity and the availability of the original image during recovery. However, with respect to traditional image watermarking, HDR images possess a unique set of features such as an extended range of luminance values to work with and tone-mapping operators against whom it is essential to be robust. These clearly affect the HDR watermarking algorithms proposed in the literature, which we extensively review next, including a thorough analysis of the reported experimental results. As a working example, we also describe the HDR watermarking system that we recently proposed and that focuses on combining imperceptibility, security and robustness to TM operators at the expense of capacity. We conclude the chapter with a critical analysis of the current state and future directions of the watermarking applications in the HDR domain

    Security issues on digital watermarking algorithms

    Get PDF
    This paper gives a general introduction to the digital watermarking procedures and their security aspects. The first issue is to clarify unifying and differentiating properties of steganography and watermarking. Then the most important aspects of digital watermarking are reviewed by studying application, requirement and design problems. We put emphasis on the importance of digital watermark as an effective technology to protect intellectual property rights and legitimate use of digital images. In the paper we provide an overview of the most popular digital watermarking methods for still images available today. The watermarking algorithms are divided into two major categories of spatial and transform domains. Because of outstanding robustness and imperceptibility the transform domain algorithms are the mainstream of research. Popular transforms of images include the DFT (Discrete Fourier Transform) ([1, 2, 3, 4, 5]), DCT (Discrete Cosine Transform) ([1, 3, 6, 5]) and DWT (Discrete Wavelet Transform) ([1, 3, 4, 7, 6, 5]). In the paper we emphasize the advantageous features of DWT such as local time-frequency and multi-scale analysis, preserving the quality of host image and ensuring high robustness of watermark. Finally, we present three algorithms which are based on the combination of DWT and some other transformations like DFT ([4]), DCT ([6]) and the Arnold transform ([7, 6]). Finally, we discuss security requirements and possible attacks on the watermarking systems
    • 

    corecore