35 research outputs found

    An Investigation into Perceived Productivity and Its Influence on the Relationship Between Organizational Climate and Affective Commitment

    Get PDF
    The purpose of this research is to investigate the influence of individually perceived productivity on the relationship between individually assessed organizational climate and affective commitment, from heterogeneous survey participant data. A theoretical framework is adopted to explain how organizational climate shapes employee perception and how this relationship is moderated by a perceived productivity. This is a relatively unexplored concept in the defined context and has been developed by the researcher. Perceived productivity was measured using an instrument developed in this research to gauge respondents’ perception of their productivity. The instrument, named the General Measure of Perceived Productivity (GMPP), was developed in a mixed-methods approach that employed both qualitative and quantitative tools. Exploratory factor analysis (EFA) of the instrument was performed to establish validity and reliability, using pilot survey data. The main study applied the GMPP along with other research variable instruments to measure organizational climate and affective commitment, also at the individual unit of analysis. Moderated multiple regression analysis was used in the proposed model, in which perceived productivity moderates the relationship between organizational climate (the independent variable) and affective commitment (the dependent variable). The results demonstrate that the relationship between organizational climate and affective commitment depends on the level of perceived productivity, and is strengthened in the presence of higher perceived productivity. This research supports the existing body of literature relating to organizational behavior while developing a theory on a new concept, perceived productivity

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    Journées Francophones des Langages Applicatifs 2018

    Get PDF
    National audienceLes 29èmes journées francophones des langages applicatifs (JFLA) se déroulent en 2018 à l'observatoire océanographique de Banyuls-sur-Mer. Les JFLA réunissent chaque année, dans un cadre convivial, concepteurs, développeurs et utilisateurs des langages fonctionnels, des assistants de preuve et des outils de vérification de programmes en présentant des travaux variés, allant des aspects les plus théoriques aux applications industrielles.Cette année, nous avons sélectionné 9 articles de recherche et 8 articles courts. Les thématiques sont variées : preuve formelle, vérification de programmes, modèle mémoire, langages de programmation, mais aussi théorie de l'homotopieet blockchain

    Foundations of General Relativity

    Get PDF
    This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory
    corecore