1,686 research outputs found

    Implementing opportunistic spectrum access in LTE-Advanced

    Get PDF
    Long term evolution advanced (LTE-A) has emerged as a promising mobile broadband access technology aiming to cope with the increasing traffic demand in wireless networks. However, the enhanced spectral efficiency offered by LTE-A may become futile without a better management of scarce and overcrowded electromagnetic spectrum. In this sense, cognitive radio (CR) has been proposed as a potential solution to the problem of spectrum scarcity. Among all the mechanisms provided by CR, opportunistic spectrum access (OSA) aims at a dynamic and seamless use of certain licensed bands provided the licensee is not harmfully affected. This operation requires spectral awareness in order to avoid interferences with licensed systems. In spite of implementing some spectrum sensing mechanisms, LTE-A technology lacks other tools that are needed in order to improve the knowledge of the radio environment. This work studies the adoption of a Geo-located data base (Geo-DB) that cooperatively retrieves and maintains information regarding the location of unutilized portions of spectrum potentially available for OSA. Moreover, the potential benefit of this LTE-compliant OSA solution is evaluated using a calibrated simulation tool, by which numerical results allow us to optimally configure the system and show that the proposed opportunistic system is able to significantly improve its performance.The authors would like to thank the funding received from the Ministerio de Ciencia e Innovacion within the Project number TEC2011-27723-C02-02 and from the Ministerio de Industria, Turismo y Comercio TSI-020100-2011-266 funds. This article had been written in the framework of the CELTIC project CP08-001 COMMUNE. Study by X. Gelabert is funded by the BP-DGR 2010 scholarship (ref. 00192). The authors would like to acknowledge the contributions of their colleagues.Osa Ginés, V.; Herranz Claveras, C.; Monserrat Del Río, JF.; Gelabert, X. (2012). Implementing opportunistic spectrum access in LTE-Advanced. EURASIP Journal on Wireless Communications and Networking. 2012(99):1-17. https://doi.org/10.1186/1687-1499-2012-99S117201299Martín-Sacristán D, Monserrat JF, Cabrejas-Peñuelas J, Calabuig D, Garrigas S, Cardona N: On the way towards fourth-generation mobile: 3GPP LTE and LTE-Advanced. EURASIP J Wirel Commun Netw 2009, 2009: 1-10.Ratasuk R, Tolli D, Ghosh A: Carrier aggregation in LTE-Advanced. In IEEE 71st Vehicular Technology Conference (VTC 2010-Spring). Taipei; 2010:1-5.Wang H, Rosa C, Pedersen K: Performance of uplink carrier aggregation in LTE-advanced systems. In IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall). Ottawa; 2010:1-5.Tandra R, Sahai A, Mishra S: What is a spectrum hole and what does it take to recognize one? Proc IEEE 2009, 97(5):824-848.Mitola IJ, Maguire JGQ: Cognitive radio: making software radios more personal. IEEE Personal Commun 1999, 6(4):13-18. 10.1109/98.788210Haykin S: Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 2005, 23(2):201-220.IEEE 802.22 Working Group on Wireless Regional Area Networks. [ http://www.ieee802.org/22/ ]ITU-R BT1368: Planning criteria for digital terrestrial television services in the VHF/UHF bands.ITU-R BT1786: Criterion to assess the impact of interference to the terrestrial broadcasting service (BS).Kawade S, Nekovee M: Cognitive radio-based urban wireless broadband in unused TV bands. In 20th International Radioelektronika Conference. Brno; 2010:1-4.Modlic B, Sisul G, Cvitkovic M: Digital dividend--Opportunities for new mobile services. In International Symposium ELMAR 2009 (ELMAR'09). Zadar; 2009:1-8.Zhao X, Guo Z, Guo Q: A cognitive based spectrum sharing scheme for LTE advanced systems. In International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). Moscow; 2010:965-969.Hussain S, Fernando X: Spectrum sensing in cognitive radio networks: Up-to-date techniques and future challenges. In IEEE Toronto International Conference on Science and Technology for Humanity (TIC-STH). Toronto; 2009:736-741.Xu Y, Sun Y, Li Y, Zhao Y, Zou H: Joint sensing period and transmission time optimization for energy-constrained cognitive radios. EURASIP J Wirel Commun Netw 2010, 2010: 1-16.Yucek T, Arslan H: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 2009, 11: 116-130.Cabric D, Mishra S, Brodersen R: Implementation issues in spectrum sensing for cognitive radios. In Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. Volume 1. Pacific Grove; 2004:772-776.Zeng Y, Liang YC, Hoang A, Peh E: Reliability of spectrum sensing under noise and interference uncertainty. In IEEE International Conference on Communications Workshops, 2009. ICC Workshops. Dresden; 2009:1-5.Bixio L, Ottonello M, Raffetto M, Regazzoni CS: Comparison among cognitive radio architectures for spectrum sensing. EURASIP J Wirel Commun Netw 2011, 2011: 1-18.Mustonen M, Matinmikko M, Mammela A: Cooperative spectrum sensing using quantized soft decision combining. In 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2009 (CROWNCOM'09). Hannover; 2009:1-5.Xiao L, Liu K, Ma L: A weighted cooperative spectrum sensing in cognitive radio networks. In International Conference on Information Networking and Automation (ICINA). Volume 2. Kunming; 2010:45-48.Pan Q, Chang Y, Zheng R, Zhang X, Wang Y, Yang D: Solution of information exchange for cooperative sensing in cognitive radios. In IEEE Wireless Communications and Networking Conference, 2009 (WCNC'2009). Budapest; 2009:1-4.Masri A, Chiasserini CF, Perotti A: Control information exchange through UWB in cognitive radio networks. In 5th IEEE International Symposium on Wireless Pervasive Computing (ISWPC). Modena; 2010:110-115.Celebi H, Arslan H: Utilization of location information in cognitive wireless networks. IEEE Wirel Commun 2007, 14(4):6-13.FCC: Notice of Proposed Rulemaking, in the Matter of Unlicensed Operation in the TV Broadcast Bands (ET Docket no. 04-186) and Additional Spectrum for Unlicensed.Marcus MJ, Kolodzy P, Lippman A: Reclaiming the vast wasteland: why unlicensed use of the white space in the TV bands will not cause interference to DTV viewers. New America Foundation: wireless future program, tech rep 2005.Nam H, Ghorbel M, Alouini M: Proc. of the Fifth International Conference on Cognitive Radio Oriented. In Proc of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks Communications (CROWNCOM). Cannes; 2010:1-5.IEEE Std 80221-2008: IEEE Standard for Local and Metropolitan Area Networks-Part 21: Media Independent Handover. 2009.3GPP TS 36133: Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management.Sesia S, Baker M, Toufik I: LTE, the UMTS long term evolution: from theory to practice. Wiley, New Haven; 2009.Digham FF, Alouini MS, Simon MK: On the energy detection of unknown signals over fading channels. In IEEE International Conference on Communications, 2003 (ICC'03). Volume 5. Anchorage; 2003:3575-3579.Ghasemi A, Sousa ES: Collaborative spectrum sensing for opportunistic access in fading environments. In First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). Baltimore; 2005:131-136.Gelabert X, Akyildiz IF, Sallent O, Agustí R: Operating point selection for primary and secondary users in cognitive radio networks. Comput Netw 2009, 53(8):1158-1170. 10.1016/j.comnet.2009.02.009Taniuchi K, Ohba Y, Fajardo V, Das S, Tauil M, Cheng YH, Dutta A, Baker D, Yajnik M, Famolari D: IEEE 802.21: media independent handover: features, applicability, and realization. IEEE Commun Mag 2009, 47: 112-120.3GPP TS 36305: Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Stage 2 functional specification of User Equipment (UE) positioning in E-UTRAN.3GPP TS 36355: Evolved Universal Terrestrial Radio Access; LTE Positioning Protocol (LPP).3GPP TS 36455: Evolved Universal Terrestrial Radio Access; LTE Positioning Protocol A (LPPa).Ren W, Zhao Q, Swami A: Power control in cognitive radio networks: how to cross a multi-lane highway. IEEE J Sel Areas Commun 2008, 27(7):1283-1296.3GPP R1-084424: Control Channel Design Issues for Carrier Aggregation in LTE-A.Dajie J, Haiming W, Malkamaki E, Tuomaala E: Principle and performance of semi-persistent scheduling for VoIP in LTE system. In International Conference on Wireless Communications, Networking and Mobile Computing, 2007 (WiCom 2007). Shanghai; 2007:2861-2864.Rajbanshi R, Wyglinski AM, Minden GJ: An efficient implementation of NC-OFDM transceivers for cognitive radios. In Proc of 1st Conf on Cognitive Radio Oriented Wireless Networks and Commun. Mykonos; 2006:1-5.Wellens M, Riihijarvi J, Mahonen P: Modeling primary system activity in dynamic spectrum access networks by aggregated ON/OFF-processes. In 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops'09. Rome; 2009:1-6.3GPP TS 36214: Physical layer; Measurements.Ofuji Y, Morimoto A, Abeta S, Sawahashi M: Comparison of packet scheduling algorithms focusing on user throughput in high speed downlink packet access. In 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Volume 3. Lis-boa; 2002:1462-1466.ITU-R ITU M2135: Guidelines for evaluation of radio interface technologies for IMT-Advanced 2008

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Modeling Multi-mode D2D Communications in LTE

    Full text link
    In this work we propose a roadmap towards the analytical understanding of Device-to-Device (D2D) communications in LTE-A networks. Various D2D solutions have been proposed, which include inband and outband D2D transmission modes, each of which exhibits different pros and cons in terms of complexity, interference, and spectral efficiency achieved. We go beyond traditional mode optimization and mode-selection schemes. Specifically, we formulate a general problem for the joint per-user mode selection, connection activation and resource scheduling of connections.Comment: A shorter version of this manuscript is accepted for publication in MAMA workshop collocated with Sigmetrics'1
    • …
    corecore