142 research outputs found

    Routing and Mobility on IPv6 over LoWPAN

    Get PDF
    The IoT means a world-wide network of interconnected objects based on standard communication protocols. An object in this context is a quotidian physical device augmented with sensing/actuating, processing, storing and communication capabilities. These objects must be able to interact with the surrounding environment where they are placed and to cooperate with neighbouring objects in order to accomplish a common objective. The IoT objects have also the capabilities of converting the sensed data into automated instructions and communicating them to other objects through the communication networks, avoiding the human intervention in several tasks. Most of IoT deployments are based on small devices with restricted computational resources and energy constraints. For this reason, initially the scientific community did not consider the use of IP protocol suite in this scenarios because there was the perception that it was too heavy to the available resources on such devices. Meanwhile, the scientific community and the industry started to rethink about the use of IP protocol suite in all IoT devices and now it is considered as the solution to provide connectivity between the IoT devices, independently of the Layer 2 protocol in use, and to connect them to the Internet. Despite the use of IP suite protocol in all devices and the amount of solutions proposed, many open issues remain unsolved in order to reach a seamless integration between the IoT and the Internet and to provide the conditions to IoT service widespread. This thesis addressed the challenges associated with the interconnectivity between the Internet and the IoT devices and with the security aspects of the IoT. In the interconnectivity between the IoT devices and the Internet the problem is how to provide valuable information to the Internet connected devices, independently of the supported IP protocol version, without being necessary accessed directly to the IoT nodes. In order to solve this problem, solutions based on Representational state transfer (REST) web services and IPv4 to IPv6 dual stack transition mechanism were proposed and evaluated. The REST web service and the transition mechanism runs only at the border router without penalizing the IoT constrained devices. The mitigation of the effects of internal and external security attacks minimizing the overhead imposed on the IoT devices is the security challenge addressed in this thesis. Three different solutions were proposed. The first is a mechanism to prevent remotely initiated transport level Denial of Service attacks that avoids the use of inefficient and hard to manage traditional firewalls. It is based on filtering at the border router the traffic received from the Internet and destined to the IoT network according to the conditions announced by each IoT device. The second is a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. The third is a network admission control framework that prevents IoT unauthorized nodes to communicate with IoT authorized nodes or with the Internet, which drastically reduces the number of possible security attacks. The network admission control was also exploited as a management mechanism as it can be used to manage the network size in terms of number of nodes, making the network more manageable, increasing its reliability and extending its lifetime.A IoT (Internet of Things) tem suscitado o interesse tanto da comunidade académica como da indústria, uma vez que os campos de aplicação são inúmeros assim como os potenciais ganhos que podem ser obtidos através do uso deste tipo de tecnologia. A IoT significa uma rede global de objetos ligados entre si através de uma rede de comunicações baseada em protocolos standard. Neste contexto, um objeto é um objeto físico do dia a dia ao qual foi adicionada a capacidade de medir e de atuar sobre variáveis físicas, de processar e armazenar dados e de comunicar. Estes objetos têm a capacidade de interagir com o meio ambiente envolvente e de cooperar com outros objetos vizinhos de forma a atingirem um objetivo comum. Estes objetos também têm a capacidade de converter os dados lidos em instruções e de as comunicar a outros objetos através da rede de comunicações, evitando desta forma a intervenção humana em diversas tarefas. A maior parte das concretizações de sistemas IoT são baseados em pequenos dispositivos autónomos com restrições ao nível dos recursos computacionais e de retenção de energia. Por esta razão, inicialmente a comunidade científica não considerou adequado o uso da pilha protocolar IP neste tipo de dispositivos, uma vez que havia a perceção de que era muito pesada para os recursos computacionais disponíveis. Entretanto, a comunidade científica e a indústria retomaram a discussão acerca dos benefícios do uso da pilha protocolar em todos os dispositivos da IoT e atualmente é considerada a solução para estabelecer a conetividade entre os dispositivos IoT independentemente do protocolo da camada dois em uso e para os ligar à Internet. Apesar do uso da pilha protocolar IP em todos os dispositivos e da quantidade de soluções propostas, são vários os problemas por resolver no que concerne à integração contínua e sem interrupções da IoT na Internet e de criar as condições para a adoção generalizada deste tipo de tecnologias. Esta tese versa sobre os desafios associados à integração da IoT na Internet e dos aspetos de segurança da IoT. Relativamente à integração da IoT na Internet o problema é como fornecer informação válida aos dispositivos ligados à Internet, independentemente da versão do protocolo IP em uso, evitando o acesso direto aos dispositivos IoT. Para a resolução deste problema foram propostas e avaliadas soluções baseadas em web services REST e em mecanismos de transição IPv4 para IPv6 do tipo pilha dupla (dual stack). O web service e o mecanismo de transição são suportados apenas no router de fronteira, sem penalizar os dispositivos IoT. No que concerne à segurança, o problema é mitigar os efeitos dos ataques de segurança internos e externos iniciados local e remotamente. Foram propostas três soluções diferentes, a primeira é um mecanismo que minimiza os efeitos dos ataques de negação de serviço com origem na Internet e que evita o uso de mecanismos de firewalls ineficientes e de gestão complexa. Este mecanismo filtra no router de fronteira o tráfego com origem na Internet é destinado à IoT de acordo com as condições anunciadas por cada um dos dispositivos IoT da rede. A segunda solução, é uma framework de network admission control que controla quais os dispositivos que podem aceder à rede com base na autorização administrativa e que aplica políticas de conformidade relativas à segurança aos dispositivos autorizados. A terceira é um mecanismo de network admission control para redes 6LoWPAN que evita que dispositivos não autorizados comuniquem com outros dispositivos legítimos e com a Internet o que reduz drasticamente o número de ataques à segurança. Este mecanismo também foi explorado como um mecanismo de gestão uma vez que pode ser utilizado a dimensão da rede quanto ao número de dispositivos, tornando-a mais fácil de gerir e aumentando a sua fiabilidade e o seu tempo de vida

    A Critical Review of Practices and Challenges in Intrusion Detection Systems for IoT: Towards Universal and Resilient Systems

    Get PDF
    The Internet-of-Things (IoT) is rapidly becoming ubiquitous. However the heterogeneous nature of devices and protocols in use, the sensitivity of the data contained within, as well as the legal and privacy issues, make security for the IoT a growing research priority and industry concern. With many security practices being unsuitable due to their resource intensive nature, it is deemed important to include second line defences into IoT networks. These systems will also need to be assessed for their efficacy in a variety of different network types and protocols. To shed light on these issues, this paper is concerned with advancements in intrusion detection practices in IoT. It provides a comprehensive review of current Intrusion Detection Systems (IDS) for IoT technologies, focusing on architecture types. A proposal for future directions in IoT based IDS are then presented and evaluated. We show how traditional practices are unsuitable due to their inherent features providing poor coverage of the IoT domain. In order to develop a secure, robust and optimised solution for these networks, the current research for intrusion detection in IoT will need to move in a different direction. An example of which is proposed in order to illustrate how malicious nodes might be passively detected

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Survey on RPL enhancements: a focus on topology, security and mobility

    Get PDF
    International audienceA few years ago, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) was proposed by IETF as the routing standard designed for classes of networks in which both nodes and their interconnects are constrained. Since then, great attention has been paid by the scientific and industrial communities for the protocol evaluation and improvement. Indeed, depending on applications scenarios, constraints related to the target environments or other requirements, many adaptations and improvements can be made. So, since the initial release of the standard, several implementations were proposed, some targeting specific optimization goals whereas others would optimize several criteria while building the routing topology. They include, but are not limited to, extending the network lifetime, maximizing throughput at the sink node, avoiding the less secured nodes, considering nodes or sink mobility. Sometimes, to consider the Quality of Service (QoS), it is necessary to consider several of those criteria at the same time. This paper reviews recent works on RPL and highlights major contributions to its improvement, especially those related to topology optimization, security and mobility. We aim to provide an insight into relevant efforts around the protocol, draw some lessons and give useful guidelines for future developments

    Securing Our Future Homes: Smart Home Security Issues and Solutions

    Get PDF
    The Internet of Things, commonly known as IoT, is a new technology transforming businesses, individuals’ daily lives and the operation of entire countries. With more and more devices becoming equipped with IoT technology, smart homes are becoming increasingly popular. The components that make up a smart home are at risk for different types of attacks; therefore, security engineers are developing solutions to current problems and are predicting future types of attacks. This paper will analyze IoT smart home components, explain current security risks, and suggest possible solutions. According to “What is a Smart Home” (n.d.), a smart home is a home that always operates in consideration of security, energy, efficiency and convenience, whether anyone is home or not

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    Intrusion Detection System for detecting internal threats in 6LoWPAN

    Get PDF
    6LoWPAN (IPv6 over Low-power Wireless Personal Area Network) is a standard developed by the Internet Engineering Task Force group to enable the Wireless Sensor Networks to connect to the IPv6 Internet. This standard is rapidly gaining popularity for its applicability, ranging extensively from health care to environmental monitoring. Security is one of the most crucial issues that need to be considered properly in 6LoWPAN. Common 6LoWPAN security threats can come from external or internal attackers. Cryptographic techniques are helpful in protecting the external attackers from illegally joining the network. However, because the network devices are commonly not tampered-proof, the attackers can break the cryptography codes of such devices and use them to operate like an internal source. These malicious sources can create internal attacks, which may downgrade significantly network performance. Protecting the network from these internal threats has therefore become one of the centre security problems on 6LoWPAN. This thesis investigates the security issues created by the internal threats in 6LoWPAN and proposes the use of Intrusion Detection System (IDS) to deal with such threats. Our main works are to categorise the 6LoWPAN threats into two major types, and to develop two different IDSs to detect each of this type effectively. The major contributions of this thesis are summarised as below. First, we categorise the 6LoWPAN internal threats into two main types, one that focuses on compromising directly the network performance (performance-type) and the other is to manipulate the optimal topology (topology-type), to later downgrade the network service quality indirectly. In each type, we select some typical threats to implement, and assess their particular impacts on network performance as well as identify performance metrics that are sensitive in the attacked situations, in order to form the basis detection knowledge. In addition, on studying the topology-type, we propose several novel attacks towards the Routing Protocol for Low Power and Lossy network (RPL - the underlying routing protocol in 6LoWPAN), including the Rank attack, Local Repair attack and DIS attack. Second, we develop a Bayesian-based IDS to detect the performance-type internal threats by monitoring typical attacking targets such as traffic, channel or neighbour nodes. Unlike other statistical approaches, which have a limited view by just using a single metric to monitor a specific attack, our Bayesian-based IDS can judge an abnormal behaviour with a wiser view by considering of different metrics using the insightful understanding of their relations. Such wiser view helps to increase the IDS’s accuracy significantly. Third, we develop a Specification-based IDS module to detect the topology-type internal threats based on profiling the RPL operation. In detail, we generalise the observed states and transitions of RPL control messages to construct a high-level abstract of node operations through analysing the trace files of the simulations. Our profiling technique can form all of the protocol’s legal states and transitions automatically with corresponding statistic data, which is faster and easier to verify compare with other manual specification techniques. This IDS module can detect the topology-type threats quickly with a low rate of false detection. We also propose a monitoring architecture that uses techniques from modern technologies such as LTE (Long-term Evolution), cloud computing, and multiple interface sensor devices, to expand significantly the capability of the IDS in 6LoWPAN. This architecture can enable the running of both two proposed IDSs without much overhead created, to help the system to deal with most of the typical 6LoWPAN internal threats. Overall, the simulation results in Contiki Cooja prove that our two IDS modules are effective in detecting the 6LoWPAN internal threats, with the detection accuracy is ranging between 86 to 100% depends on the types of attacks, while the False Positive is also satisfactory, with under 5% for most of the attacks. We also show that the additional energy consumptions and the overhead of the solutions are at an acceptable level to be used in the 6LoWPAN environment
    • …
    corecore