724 research outputs found

    Implementing Advanced RBAC Administration Functionality with USE

    Get PDF
    Role-based access control (RBAC) is a powerful means for laying out and developing higher-level organizational policies such as separation of duty, and for simplifying the security management process. One of the important aspects of RBAC is authorization constraints that express such organizational policies. While RBAC has generated a great interest in the security community, organizations still seek a flexible and effective approach to impose role-based authorization constraints in their security-critical applications. In particular, today often only basic RBAC concepts have found their way into commercial RBAC products; specifically, authorization constraints are not widely supported. In this paper, we present an RBAC administration tool that can enforce certain kinds of role-based authorization constraints such as separation of duty constraints. The authorization constraint functionality is based upon the OCL validation tool USE. We also describe our practical experience that we gained on integrating OCL functionality into a prototype of an RBAC administration tool that shall be extended to a product in the future

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Flow analysis based on role and pattern matching

    Get PDF
    Flow analysis has always been a great concern for a network system. An attacker can gain important information through several ways by monitoring the frequency and timing of network packets or by impersonating another user through remote access. Access to a network system based on single-factor authentication is nothing but monitoring the perimeter around the network leaving a company\u27s a network wide open for the inside threat. There is a necessity to develop a classic network to reduce or eliminate threats within the organization. This thesis will analyze the flows to inspect every activity performed within the network in order for the untrusted flows to earn their way in becoming trusted flows based on notion of flow activity matching a specified pattern affiliated with the role

    Access Control Design and Implementations in the ATLAS Experiment

    Get PDF
    The ATLAS experiment operates with a significant number of hardware and software resources. Their protection against misuse is an essential task to ensure a safe and optimal operation. To achieve this goal, the Role Based Access Control (RBAC) model has been chosen for its scalability, flexibility, ease of administration and usability from the lowest operating system level to the highest software application level. This paper presents the overall design of RBAC implementation in the ATLAS experiment and the enforcement solutions in different areas such as the system administration, control room desktops and the data acquisition software. The users and the roles are centrally managed using a directory service based on Lightweight Directory Access Protocol which is kept in synchronization with the human resources and IT data

    Activity Theory Guided Role Engineering

    Get PDF
    Roles are convenient and powerful concept for facilitating access to distributed systems and enforcing access management polices. RBAC is one the most widely used role engineering models in enterprises. Several threats arise due to insecure and inefficient design of roles when social and interaction dynamics in an organizational setting are ignored. Activity theory is one of the most applied and researched theories in context of understanding human actions, interactions with environments and dynamics against different social entities. The paper, first, presents overview of role-engineering and activity theory. Then the paper presents different methods in which activity theory can be applied for efficient and secure role-engineering processes. A case study, carried out at a US-based midsize financial institution, is also presented to demonstrate 1) how traditional role-engineering processes give way to threats and 2) how using activity theory models (2 used in this paper) can mitigate risks in role-engineering process
    • …
    corecore