
Electronic Communications of the EASST
Volume 15 (2008)

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

8th International Workshop on

OCL Concepts and Tools (OCL 2008)

at MoDELS 2008

Implementing Advanced RBAC Administration

Functionality with USE

Tanveer Mustafa, Karsten Sohr, Duc-Hanh Dang, Michael Drouineaud and Stefan Kowski

19 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 19 Volume 15 (2008)

Implementing Advanced RBAC Administration

Functionality with USE*

Tanveer Mustafa1, Karsten Sohr1, Duc-Hanh Dang1,

Michael Drouineaud
1
 and Stefan Kowski

2

1
Technologie-Zentrum Informatik, Universität Bremen

Bibliothekstraße 1

28359 Bremen, Germany

{tanveer, sohr, handd, mdruid}@tzi.de

2 Parks Informatik GmbH

Girardetstr. 2-38

45131 Essen, Germany

stefan.kowski@parks-informatik.de

Abstract: Role-based access control (RBAC) is a powerful means for laying out and

developing higher-level organizational policies such as separation of duty, and for

simplifying the security management process. One of the important aspects of RBAC is

authorization constraints that express such organizational policies. While RBAC has

generated a great interest in the security community, organizations still seek a flexible and

effective approach to impose role-based authorization constraints in their security-critical

applications. In particular, today often only basic RBAC concepts have found their way

into commercial RBAC products; specifically, authorization constraints are not widely

supported. In this paper, we present an RBAC administration tool that can enforce certain

kinds of role-based authorization constraints such as separation of duty constraints. The

authorization constraint functionality is based upon the OCL validation tool USE. We also

describe our practical experience that we gained on integrating OCL functionality into a

prototype of an RBAC administration tool that shall be extended to a product in the future.

Keywords: Authorization constraints, Object Constraint Language, Role-based access

control

1 Introduction

Employing access control mechanisms in medium to large scale organizations always has been

crucial. One of the challenging jobs for security-critical organizations, such as financial

institutes, hospitals and, government agencies is to control access to system resources at the

highest level without violating the underlying access control policies. The research in recent

years has brought role-based access control (RBAC) [1, 2, 3] as an efficient and flexible model

for controlling access to computer resources (such as files or data base tables) and enforcing

the organizational policies. In the RBAC model, users acquire permissions on resources via

roles, and not directly.

* This work was supported in part by the German Research Foundation (DFG) under the grant SO 515/2-1 and by

the German Federal Ministry of Education and Research under the grant FKZ01ISF19B (ORKA project).

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 3 / 19

As pointed out by Ferraiolo et al. [4], one of the main advantages of RBAC is that higher-

level organizational rules can be implemented in a natural way. Specifically, advanced RBAC

concepts like role-based authorization constraints and role hierarchies are a powerful means

for laying out higher-level organizational rules [1]. Common types of authorization constraints

are separation of duty (SoD) constraints [5, 6], cardinality constraints [1], and context

constraints [7, 8].

Although the importance of authorization constraints1 has long been pointed out [1, 9],

advanced RBAC concepts are rarely well-supported in commercial RBAC products. In this

paper, we demonstrate how authorization constraints can be implemented in a prototype of an

RBAC administration tool. Specifically, we concentrate on static SoD constraints and role

hierarchies. The prototype of the RBAC administration tool has been developed in the research

and development project ORKA (Organizational Control Architecture) [21] comprised of

various academic and industrial research partners (among the partners are SAP AG and

Fraunhofer). In the future, it is envisioned to integrate this functionality into a real product

made available by the Parks Informatik company [10].

Technically, the authorization constraints are implemented by employing functionality of

the USE tool (UML-based Specification Environment), a validation tool for UML-/OCL-

models [11]. With the help of this approach, authorization constraints are formulated as OCL

invariants, and USE then checks whether the current system/security state satisfies the defined

authorization constraints. The approach is based on our earlier works and is described in more

detail elsewhere [12].

In this paper, we concentrate more on our practical experience employing a general-purpose

OCL tool within the frameworks of a project with industrial partners. Specifically, we show

that OCL tools such as USE can be employed in real-world industrial projects. However, we

also demonstrate the problems we encountered by integrating the USE functionality with the

RBAC administration tool.

The remainder of the paper is organized as follows: in Section 2 we provide a brief

overview of related concepts and technologies. Section 3 presents our UML/OCL model of

RBAC. In Section 4, we describe our implementation of authorization constraints with the help

of the USE tool. We also describe our experience on employing USE in an industrial project.

An overview of related work is given in Section 5. We outline our conclusions and future work

in Section 6.

2 Related Concepts and Technologies

In this section, we first describe the RBAC concepts with the focus of authorization

constraints. Thereafter, we explain the main functionality of USE.

2.1 RBAC and Authorization Constraints

RBAC [1, 2] has gained much attention as a promising alternative to traditional discretionary

and mandatory access control. It is an access control model in which the security

administration can be simplified by the use of roles to organize the access privileges and

ultimately reduces the complexity and cost of security administration [2]. Here we give an

1 In the following, we use the term “authorization constraint” instead of “role-based authorization constraint” for the

sake of simplicity.

 ECEASST

4 / 19 Volume 15 (2008)

overview of the components of RBAC96, a widely used RBAC model introduced by Sandhu

et al. [1]:

• the sets U, R, P, S (users, roles, permissions, and sessions, respectively)

• UA ⊆ U× R (user to role assignment relation)

• PA ⊆ P × R (permission to role assignment relation)

• RH ⊆ R× R is a partial order called the role hierarchy relation.

A user can be a member of many roles and a role can have many users. Similarly, a role can

have many permissions and the same permissions can be assigned to many roles. A user may

activate a subset of roles he or she is assigned to in a session. The permissions available to the

users are the union of permissions from all roles activated in that session. Role hierarchies can

be formed by the RH relation. Senior roles inherit permissions from junior roles through the

RH relation (e.g., the role chief physician inherits all permissions from the physician role).

Authorization constraints are an important aspect of RBAC and are sometimes considered to

be the principal motivation behind RBAC. The goal of authorization constraints is not only to

reduce the risk of fraud or a security breach but to increase the opportunity of detecting errors

within an organizational security structure. Authorization constraints may need to be imposed

on the RBAC functions and relations in order to prevent the information misuse and fraudulent

activities. In the literature, several kinds of authorization constraints have been identified such

as various types of static and dynamic SoD constraints [5, 6]; cardinality constraints [1];

context constraints [7, 8].

Specifically, SoD is a fundamental principle in security systems and is typically considered

as a requirement that, operations are divided among two or more persons so that no single

individual can compromise the security. SoD constraints are used to enforce conflict of interest

policies. One means of preventing conflict of interest is through static SoD, that is, to enforce

constraints on the assignment of users to roles. On the other hand, the dynamic SoD

constraints limit the permissions that are available to a user by placing constraints on the roles

that can be activated within or across a user's sessions.

2.2 The USE tool

USE allows the software modeller to validate UML and OCL descriptions and is the only OCL

tool allowing interactive monitoring of OCL invariants and pre- and postconditions, and the

automatic generation of non-trivial system states. These system states or system snapshots

consist of the current objects and links between those objects adhering to the UML model in

question.

The central idea of the USE tool is to check for software quality criteria like correct

functionality of UML descriptions already in the design level in an implementation-

independent manner. This approach takes advantage of descriptive design level specifications

by expressing properties concisely and in a more abstract way. Such properties are given by

invariants and pre- and postconditions, and these are checked by the USE tool against the

generated snapshots, i.e., object diagrams and operation calls given by sequence diagrams,

which the developer provides. These abstract design level tests are expected to be also used

later in the implementation phase.

The USE tool expects as an input a textual description of a model and its OCL constraints.

After syntax checks, the model can be displayed by the graphical user interface provided by

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 5 / 19

USE. In particular, USE makes available a project browser which displays all the classes,

associations, invariants, and pre- and post-conditions of the current model.

Figure 1. Screenshot of the USE tool.

Figure 1 shows a USE screenshot with an example. On the left, we see the project browser

displaying the classes, associations, invariants, and operation pre- and post-conditions. In a

detail window below, the selected class is pictured with all details. On the right, we identify a

sequence diagram presenting the operations which lead to the current system state given in the

object diagram window below. The evaluation of the invariants in this system state is pictured

in the class invariant window to the right of the object diagram window. The developer gets
feedback from USE about the validity of the invariants in the class invariant window and the

validity of the pre- and post-conditions in the sequence diagram window.

3 Specifying RBAC in UML and OCL

Subsequently, we demonstrate how RBAC including authorization constraints can be specified

in UML and OCL. Specifically, the RBAC element sets and relations are modeled in textual

UML (which is defined within the USE tool), and the authorization constraints are specified in

OCL. Owing to the fact that OCL can be used to express the authorization constraints formally

and precisely, a validation tool such as USE can be applied to recognize violations of such

constraints. Hence, one advantage of our approach is that USE can be employed both for

 ECEASST

6 / 19 Volume 15 (2008)

validation and enforcement RBAC policies2. The last point is discussed in the following

section in more detail.

Figure 2. USE specification of an RBAC policy.

In Figure 2, we show a simple RBAC policy, which is represented as a USE specification.

The USE specification consists of two parts. In the first part, the RBAC-related classes and

association definitions are formulated in textual UML. This part is a generic encoding of

RBAC. The second part then contains the domain-specific authorization constraints formulated

in OCL. Specifically, we here define two constraints. The first is a Simple Static SoD

(SimpleSSoD) constraint between two roles “Cashier” and “Cashier Supervisor”, i.e., a user

must not be assigned to both roles. The second constraint is of type Simple Permission-Based
Static SoD (SimplePSSoD) stating that conflicting permissions cannot have a common role.

Otherwise, the role in question would not be useful or even introduce a security hole. Both

constraints are later used to explain our RBAC administration tool.

The RBAC policy depicted in Figure 2 is only meant for didactic purposes; it by no means

is a complete policy that the authorization engine implements. For example, we left out the

OCL constraints representing the partial order conditions of role hierarchies. In addition, a lot

of (mostly more complex) SoD constraints as those defined in [5, 6] can be specified in OCL.

2 At minimum, an RBAC policy is comprised of users, roles, permissions, role hierarchies, user and permission

assignment relations, as well as various constraints on those relations such as authorization and integrity

constraints (cf. [12]).

model RBAC

--classes

class Role
attributes

id:String
end

class User
attributes

id:String
end

class Permission
attributes

op:Operation
o:Object
end

class Object
attributes

id:String
end

class Operation
attributes

id:String
end

class Session
attributes

id:String
end

-- associations
association UA between
User[*] role user
Role[*] role role_
end

association PA between
Permission[*] role permission
Role[*] role role_
end

association establishes between
User[1] role user
Session[*] role session
end

association activates between
Session[*] role session
Role[*] role role_
end

association RH between
Role[*] role senior
Role[*] role junior
end

Constraints

-- Simple Static SoD
context User inv SimpleSSoD:
let

 Clerk:Role=Role.allInstances->any(id='Clerk'),
 Supervisor:Role=Role.allInstances->any(id='Supervisor'),
 CR:Set(Role)=Set{Clerk, Supervisor}
in

 self.role_->intersection(CR)->size()< CR->size()

-- Simple Permission-Based Static SoD
context Role inv SimplePSSoD:
let

 loan:Object=Object.allInstances->any(id='loan'),
 prepare:Operation=Operation.allInstances->any
 (id='prepare'),
 approve:Operation=Operation.allInstances->any
 (id='approve'),
 approve_loan:Permission=Permission.allInstances->any
 (op=approve and o=loan),
 prepare_loan:Permission=Permission.allInstances->any
 (op=prepare and o=loan),
 cp: Set(Permission)=Set{prepare_loan, approve_loan}
in

 cp->intersection(self.permission)->size() < cp->size()

-- further authorization constraints …

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 7 / 19

4 Integrating USE Functionality into an RBAC Administration Tool

In previous works [12, 21], we demonstrated how to implement an authorization software with

the help of the OCL validation tool USE. This approach has several advantages.

Figure 3. ORKA-Admin tool.

First, one can utilize the benefits of the light-weight formalism OCL. Hence, a security

officer can specify access control policies (i.e., sets of authorization constraints) in a

declarative way. Thereafter, she can employ USE to validate this access control policy, for

example, to detect missing or conflicting constraints under certain circumstances [12]. Last but

not least, one can employ the USE functionality directly to implement/enforce the

authorization constraints. Due to the fact that we use a general-purpose validation tool for

OCL constraints new authorization constraint types can easily be added to the system. For

example, if the access control policy must support cardinality constraints, one only has to

specify (a template) for that new constraint type in OCL, and the authorization software can

enforce the authorization constraint type.

In the following, we describe in more detail how the USE functionality is integrated with

the RBAC administration tool made available in the ORKA project.

4.1 The RBAC Administration Tool

To reduce the complexity of security management an administrative interface is necessary to

support an administrator to define, manage and analyze security policies and to trigger policy

validation to detect inconsistencies and conflicts that may be violating underlying constraints.

 ECEASST

8 / 19 Volume 15 (2008)

Therefore, the ORKA-Admin tool, an RBAC policy administration tool, is being developed as

part of the ORKA project.

In Figure 3, a screenshot of the ORKA-Admin tool is shown. The tool provides

functionality for creating and managing RBAC policies. At the core, it supports standard

RBAC administrative functions, such as creating users, roles, permissions, role hierarchies,

assignment relations, and defining authorization constraints. While authorization constraints

play a crucial role in enforcing organizational rules, they must be satisfied throughout the

administration process. We take this fact into consideration by integrating USE validation

functionality into the ORKA-Admin tool. The details are given later in Section 4.2. The USE

validation primarily checks whether an RBAC policy satisfies the defined authorization

constraints.

Figure 4. Components of the ORKA-Admin tool.

There are two types of USE validation that can be triggered from within the ORKA-Admin

tool. First, the full validation of an RBAC policy, that is, an administrator can explicitly

validate a complete RBAC policy. All possible conflicts that are detected by the validation

process are reported back to the administrator in a user friendly manner. Second, we have an
implicit operation-specific validation, that is, for each administrative operation, such as

assigning permission(s) to a role, the USE validation is triggered automatically which checks

only those conflicts that are caused by or are specific to the administrative operation in

question.

Within the ORKA-Admin environment, the RBAC polices are usually analyzed, modified

and validated as the working versions. Once the policies are validated, they can be deployed as

production versions.

4.2 Architectural Overview

In this section, we provide more details regarding the components of the ORKA-Admin tool,

specifically focusing on how the USE validation functionality is integrated. In Figure 4, an

overview of the components of ORKA-Admin tool is given. The AdminGUI is a central place

Policy Storage

AdminGUI

Policy object

Validation results

USE

Validation

Component

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 9 / 19

for all administrative activities. Internally within the ORKA-Admin environment, an RBAC

policy is referred as policy object or ORKA policy object. It could also be called simply ORKA

policy. The policy objects are saved into and retrieved from the central Policy Storage as XML

documents, such as shown in Figure 5. The policy objects are validated automatically or

explicitly on the behalf of the policy administrator by means of the USEValidationComponent.

Figure 5. Fragment of a banking policy object.

The AdminGUI is a J2EE-based Seam application whereas the Policy Storage is a MySQL

database server. The USEValidationComponent is built around the Java API made available by

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

<?xml version="1.0" encoding="UTF-8"?>

<policy_object>

 <policy_object_modules>

 <module_rbac_core_policy>

 <users>

 <user user_id="Jennifer" />

 <user user_id="Smith" />

 <user user_id="Suzanne" />

 </users>

 <roles>

 <role role_id="Clerk" />

 <role role_id="Supervisor" />

 <role role_id="Manager" />

 <role role_id="Customer" />

 </roles>

 <permissions>

 <permission permission_id="approve_loan">

 <operation operation_id="approve" />

 <object object_id="Loan" />

 </permission>

 <permission permission_id="prepare_loan">

 <operation operation_id="approve" />

 <object object_id="Loan" />

 </permission>

 <permission permission_id="query_customer_data">

 <operation operation_id="query" />

 <object object_id="CustomerData" />

 </permission>

 </permissions>

 <user_assignments>

 <user_assignment user_id="Jennifer" role_id="Manager" />

 <user_assignment user_id="Suzanne" role_id="Supervisor" />

 </user_assignments>

 <permission_assignments>

 <permission_assignment permission_id="approve_loan" role_id="Supervisor" />

 <permission_assignment permission_id="approve_loan" role_id="Manager" />

 <permission_assignment permission_id="query_customer_data" role_id="Clerk" />

 <permission_assignment permission_id="prepare_loan" role_id="Clerk" />

 </permission_assignments>

 </module_rbac_core_policy>

 <module_sep_duty_policy>

 <simple_static_separation_of_duty>

 <critical_role_sets>

 <critical_role_set cardinality="1">

 <critical_roles>

 <critical_role role_id="Clerk" />

 <critical_role role_id="Supervisor" />

 </critical_roles>

 </critical_role_set>

 </critical_role_sets>

 </simple_static_separation_of_duty>

 <static_separation_of_duty_attached_to_permissions>

 <critical_permission_sets>

 <critical_permission_set cardinality="1">

 <critical_permissions>

 <critical_permission permission_id="prepare_loan" />

 <critical_permission permission_id="approve_loan" />

 </critical_permissions>

 </critical_permission_set>

 </critical_permission_sets>

 </static_separation_of_duty_attached_to_permissions>

 </module_sep_duty_policy>

 </policy_object_modules>

</policy_object>

 ECEASST

10 / 19 Volume 15 (2008)

USE. The AdminGUI and the USEValidationComponent communicate with each other

through a common interface PolicyValidatorInterface.

4.2.1 Policy Representation Format

As indicated earlier, the ORKA-Admin tool internally uses XML to compose and store ORKA

policies. An ORKA policy object in XML is the container for all policy rules of a particular

application domain. There may be different policy objects for the various application domains.

Each policy object is specified within a single XML file, which contains all policy rules.

However, each policy object must conform to a central DTD (document type definition) which

defines the syntax of the policy. That means the DTD provides a framework for the definition

of syntactically correct policies in XML. Therefore, each policy object created or modified

within the ORKA-Admin tool is validated against the central DTD.

In Figure 5, a fragment of a banking policy object is presented, which is created and

exported from the ORKA-Admin tool. This policy object is only for didactic purposes, which

by no means is a complete policy object that can be created, managed and validated (USE

validation) by the tool. The policy object format allows specifying users, roles, permissions,

role hierarchies, assignments relations and specifically various authorization constraints. For

example all types of separation of duty constraints are specified within the module3

<module_sep_duty_policy>. For Simple Static SoD (SimpleSSoD) and Strict Static

SoD (StrictSSoD), we have an element <critical_role_sets> which holds all the

<critical_role_set> elements of the particular type. A <critical_role_set>

element contains the element <critical_roles> which includes the critical roles as
<critical_role> elements. Additionally, the <critical_role_set> has a

mandatory attribute cardinality which specifies the cardinality of the respective role set.

For instance, in Figure 5 (lines 44-49), a constraint of type SimpleSSoD is specified, which

informally means that no user is allowed to be assigned to the critical role set comprised of the

Clerk and Supervisor roles. Similarly, lines 54-59 of Figure 5 show a Simple

Permission-Based Static SoD (SimplePSSoD) constraint, which states that the critical

permission set comprised of prepare_loan and approve_loan cannot be assigned to

the same role.

More complex authorization constraints, including role hierarchies and associated

constraints such as partial order constraints (e.g., anti-symmetry and transitivity) can be

created by using the ORKA-Admin interface, which are internally stored in the respective

policy object.

4.2.2 USE Validation

Although the ORKA-Admin tool implements a user interface to create and manage policy

objects that are internally stored in the XML format, a critical requirement is to validate the

policy objects, specifically, whether the policy objects satisfy all the defined authorization

constraints. The validation must be carried out on the policy objects before they are deployed

as production versions. The USEValidationComponent is developed around the Java API

provided by USE and integrated into the ORKA-Admin tool, which facilitates validating the

3 Within the ORKA project several modules containing exact specification(s) of authorization constraint types are

provided.

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 11 / 19

policy objects and sending back immediate feedback to the AdminGUI to reduce

administrative mistakes.

As pointed out before, the OKRA-Admin tool supports an implicit operation-specific

validation as well as an explicit full validation that can be triggered by the administrator at any

time. In case of full validation, the AdminGUI sends a complete policy object as an XML

string to the USEValidationComponent. However, in case of operation-specific validation, the

operation-specific parameters are also sent along with the policy object.

On receiving the validation request from the AdminGUI, the USEValidationComponent

carries out the following steps:

1. It initializes an internal USE model comprised of various classes and associations,

such as those shown in Figure 2. From the USE model, it also instantiates a USE

system representing a single ORKA policy object. This USE system allows one to

create, preserve and manipulate unique objects of type Role, User and

Permission, as well as the association links such as UA, PA and RH as shown in

Figure 2.

2. The authorization constraints are read from the policy object, transformed into

equivalent OCL invariants with respect to the specifications given in policy object

modules, and uniquely created into the USE model. For example, from Figure 5 the

SimpleSSoD (lines 44-49) and SimplePSSoD (lines 54-59) constraints will be

translated as SimpleSSoD and SimplePSSoD OCL invariants, respectively, as

shown in Figure 2.

3. The concrete roles, users and permissions are read from the policy object, and

corresponding unique objects of type Role, User and Permission are created

in the current USE system state. For example, a unique user object, say, user_clerk

of type User will be created for the user <user user_id="Jennifer" />

as specified in the policy object in Figure 5. The id of the object user_clerk will be

set to “Jennifer”.

4. The role hierarchy, user assignment, and permission assignment relations are read

from the policy object and are created as respective association links in the current

system state. While creating role hierarchy and assignment relations, the reflexive

transitive closure is calculated. For instance, the USE system state contains the role

hierarchy with all possible edges computed by the transitive closure algorithm.
5. Finally, the USE system evaluates the current system state with respect to the

existing invariants. If an explicit (full) validation is trigged by the ORKA-Admin

tool, then all existing invariants are checked. In case of operation-specific

validation, the invariants to be checked are selected on the basis of the

administrative operation being invoked by the ORKA-Admin tool. For all violated

invariants, the USEValidationComponent analyzes invariant types and generates

specific messages to be sent back to the AdminGUI. Each message is formatted as

an XML file and sent back to the AdminGUI as XML string, such as shown in

Figure 6. OCL queries are applied directly on the USE system state to retrieve

specific information wherever required.

In the following section, we describe in more detail how various authorization constraints

are implemented by the USEValidationComponent. Thereafter, more details regarding

message generation and OCL queries are given in Section 4.4.

 ECEASST

12 / 19 Volume 15 (2008)

4.3 Implementing Static Authorization Constraints and Role Hierarchy Relations

The USEValidationComponent of the ORKA-Admin tool implements various constraints that

can be specified using the tool interface. Specifically, we implemented partial order constraints

(e.g., anti-symmetry) and various static SoD constraints such as SimpleSSoD, StrictSSoD,

SimplePSSoD and Strict Permission-Based SSoD (StrictPSSoD).

The USEValidationComponent follows a template mechanism to implement the

aforementioned constraint types. To describe it simply, a constraint template class (Java

class) is defined for each type of authorization constraint. For instance, the

SimplePSSoDConstraint template class implements constraints of type SimplePSSoD

such as shown in Figure 5. The USEValidationComponent will therefore create a new instance

of the SimplePSSoDConstraint template class for each SimplePSSoD constraint that is

read from the policy object. These template instances which are capable of producing

corresponding OCL invariants are preserved throughout the life cycle of the USE system. The

OCL invariants are then added to the USE model accordingly.

As an example of how template classes are instantiated for specific constraint types and

what information they hold, consider the policy object shown in Figure 5, specifically, the

SimplePSSoD constraint specified between lines 54-59. Within the USEValidationComponent

an instance of the template class SimplePSSoDConstraint is created for the
SimplePSSoD constraint, which at least holds the critical permission set. This instance can

then be manipulated, for example, to produce the corresponding OCL invariant. In the current

scenario, it will produce the following OCL invariant:

context Role inv simplepssod_uniqueID:
let

 loan:Object=Object.allInstances->any(id='loan'),
 prepare:Operation=Operation.allInstances->any
 (id='prepare'),
 approve:Operation=Operation.allInstances->any
 (id='approve'),
 approve_loan:Permission=Permission.allInstances->any
 (op=approve and o=loan),
 prepare_loan:Permission=Permission.allInstances->any
 (op=prepare and o=loan),
 cp: Set(Permission)=Set{prepare_loan, approve_loan}
in

 cp->intersection(self.permission)->size()< cp->size()

In fact, within the USEValidationComponent, an instance of the template class

SimplePSSoDConstraint will be created for each set of conflicting permissions

specified in the policy object. The template class instances are used to produce corresponding

OCL invariants, which have unique names within the USE model. When we create the OCL
invariant in the USE model, the invariant is mapped to the template instance to which it

belongs. This mapping is necessary for the later use while analyzing the violation of specific

invariants and producing corresponding error messages.

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 13 / 19

4.4 Generating Error Messages

The template classes described in the previous section are not bound to produce only OCL

invariants. The template classes also hold a set of preformatted OCL queries that can be

directly applied on the USE system state to retrieve specific information of the current USE

system state. In particular, each template class is capable of producing specific warning/error

messages when the OCL invariant, it refers to in the USE system state, is violated. While

generating a specific error message, the template instance primarily uses the information it

already holds. For example, an instance of class SimplePSSoDConstraint holds a

critical permission set. In addition, it can apply OCL queries on the current USE system state

to retrieve further information, if required.

Figure 6. The ORKA-Admin tool showing an operation-specific USE validation result.

Here we present two examples which describe the USE validation results. For the first

example, an operation-specific USE validation scenario is depicted in Figure 6, which is based

upon the policy object shown in Figure 5. In this case when an administrator tries to assign

permission approve_loan to the role Clerk, then the operation-specific validation is

automatically triggered. As a result, the policy object and operation-specific information, such

as the operation name (AssignPermissionToRole) and attribute list, that is, the role Clerk and

the permission approve_loan, is sent to the USEValidationComponent to check whether

the current operation violates defined authorization constraint(s). The

USEValidationComponent carries out different steps to initialize the USE model and the USE

system as discussed earlier. In this specific case, while creating the permission assignment

relations in the system, the permission approve_loan will also be assigned to the Role

object whose id is set to “Clerk”. The same role object has already been assigned a

permission prepare_loan which is based upon the information retrieved from the policy
object. Within the USE system state, there now would be two Permission objects with the

 ECEASST

14 / 19 Volume 15 (2008)

ids “prepare_loan” and “approve_loan”, and which are assigned to a Role object with the id

“Clerk”. Hence, the Permission-Based Static SoD constraint is violated.

Further, apart from other invariants, there would be an invariant such as

simplepssod_uniqueID discussed in Section 4.2, which would always be mapped to the

corresponding instance of the template class SimplePSSoDConstraint. When USE

evaluates invariants in the current system state, the invariant simplepssod_uniqueID

will be evaluated to false because within USE system state a Role object is assigned, at least,

two Permission objects referring to the critical permissions “prepare_loan” and

“approve_loan”.

Figure 7. Fragment of an example policy object.

Figure 8. Full validation result generated by USE validation from the example policy object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

<?xml version="1.0" encoding="UTF-8"?>

<policy_object>

 <policy_object_modules>

 <module_rbac_core_policy>

 <users>

 <user user_id="Smith" />

 </users>

 <roles>

 <role role_id="Clerk" />

 <role role_id="Supervisor" />

 </roles>

 <user_assignments>

 <user_assignment user_id="Smith" role_id="Clerk" />

 <user_assignment user_id="Smith" role_id="Supervisor" />

 </user_assignments>

 </module_rbac_core_policy>

 <module_sep_duty_policy>

 <simple_static_separation_of_duty>

 <critical_role_sets>

 <critical_role_set cardinality="1">

 <critical_roles>

 <critical_role role_id="Clerk" />

 <critical_role role_id="Supervisor" />

 </critical_roles>

 </critical_role_set>

 </critical_role_sets>

 </simple_static_separation_of_duty>

 </module_sep_duty_policy>

 </policy_object_modules>

 </policy_object>

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 15 / 19

The USE system produces its own internal evaluation log for each invariant which is

evaluated to false. The evaluation log can be analyzed to find the cause of the failure in detail.

However, for the ORKA-Admin tool we need to produce specific messages for the violated

constraints that are useful for an administrator. Therefore, in the scenario being discussed here,

the USEValidationComponent would acquire the preserved instance of

SimplePSSoDConstraint that is mapped to the violated invariant

simplepssod_uniqueID. This way, the SimplePSSoDConstraint instance will

generate an XML based message as shown in Figure 6. The SimplePSSoDConstraint

instance does not execute any OCL query on the USE system state for any more information

because it already holds the necessary information that is required to produce the message. In

the current version of the ORKA-Admin tool the error messages displayed are complete XML

strings. However, error messages are supposed to be further parsed to create hyperlinks to

different elements such as users, roles and permissions to help an administrator to navigate to

the linked elements.

For the full validation case, we consider the example policy object shown in Figure 7. To

keep it simple, we are considering only a small fragment of the policy object which contains

only one conflict. In case of full validation, only the policy object is sent to the

USEValidationComponent. During the process of creating invariants, an instance of the

template class SimpleSSoDConstraint will be created for each constraint of type

SimpleSSoD read from the policy object. In our example policy object there is only one

authorization constraint specified between lines 20-25. The aforementioned

SimpleSSoDConstraint instance will produce the following OCL invariant, which is

then added to the USE model:

context User inv simplessod_uniqueID:
let

 Clerk:Role=Role.allInstances->any
(id='Clerk'),

 Supervisor:Role=Role.allInstances>any
(id='Supervisor'),

 CR:Set(Role)=Set{Clerk, Supervisor}
in

 self.role_->intersection(CR)->size()< CR->size()

While checking invariants in the USE system state, the invariant

simplessod_uniqueID is evaluated to false. The SimpleSSoDConstraint instance

corresponding to the invariant simplessod_uniqueID will therefore generate an XML

message as shown in Figure 8. In the XML message, we also need to indicate all those users

who are assigned to the critical role set comprised of the Clerk and Supervisor roles. In

other words, we need to indicate all those users who are violating the

simplessod_uniqueID invariant. However, the SimpleSSoDConstraint instance
only holds the critical role set, and is not aware of the users that are assigned to the critical role

set. While OCL queries play an important role in retrieving specific information from the USE

system state, some of the template classes contain preformatted OCL queries. These queries

acquire concrete values from the corresponding template class instances. For example, in the

above case, the SimpleSSoDConstraint instance contains the critical role set and it will

 ECEASST

16 / 19 Volume 15 (2008)

dynamically build the following concrete OCL query, which is then executed on the USE

system state:

let

 Clerk:Role=Role.allInstances->any(id ='Clerk'),
 Supervisor:Role=Role.allInstances->any
 (id ='Supervisor'),
 cr : Set(Role)=Set{Clerk,Supervisor}
in

 User.allInstances->reject(u| u.role_->intersection
 (cr)->size()< cr-> size())->iterate(u:User;

 result:Set(String)=oclEmpty(Set(String))|
 result->union(Set{u.id}))

The query will return a set of users that are assigned to the critical role set. In our case, the

resulting set would contain only one user named “Smith”.

There is also a way to automate the process of generating queries from the authorization

constraints formulated as OCL invariants. For example, if you take a look at the SoD

constraints given in Figure 2, you can see that they are of the form

context C inv:

let

 …

in

 condition

For the feedback of the USE system, we are interested in instances of the class C which are

violating the condition. Thus, we can obtain a corresponding query of the following form:

let

…

in

 C.allInstances->reject(c| condition)

Note that all self expressions must be replaced by the instance c because we do not have

a context here.

4.5 Lesson Learned

We demonstrated that it is possible to integrate USE functionality with an industrial RBAC
administration tool. The strength of this approach lies in its flexibility, i.e., various forms of

static SoD can be implemented and new forms can be added relatively easily. Due to the fact

that we always create a new USE system state to validate a policy object, this approach may

slow down the RBAC administration task if the underlying policy object of larger size has to

be validated automatically for each administrative operation. Therefore, an offline validation is

also provided, that is, a policy object can be validated at once before the deployment.
The main work in this approach remained to produce understandable warning/error

messages, i.e., to interpret the feedback from USE. For each type of authorization constraint,

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 17 / 19

specially tailored messages must be constructed (cp. Section 4.4). However, we gave in

Section 4.4 a scheme how to automate the process of retrieving feedback from USE.

Furthermore, there are other tasks that could be carried out with the help of USE. For

example, one might want to check if administrative RBAC operations have unexpected side

effects. For example, a permission might be revoked from a role r, and as an unexpected side

effect, it might also be revoked from a role senior to r. Thus, the query functionality would be

helpful to detect such effects. Due to the fact that only a few side effect checks have been

considered in ORKA, it was decided not to utilize USE for that purpose, but implement such

checks in an ad hoc fashion.

5 Related Work

There is a plethora of works in the context of embedding RBAC into UML/OCL such as [13,

14, 15, 16]. In addition, our results presented in this paper are based upon our earlier work

[12]. There, we showed how to build an authorization engine by means of the USE

functionality. In contrast, the focus of this paper lies more on integrating the USE functionality

with an industrial RBAC administration tool.

As indicated above, the USE system is a general-purpose validation tool and can hence be

employed for the other UML/OCL encodings of RBAC policies mentioned above. In

particular, Basin et al. present a modeling language SecureUML for integrating the

specification of access control into application models [13]. Extending their work, Basin et al.

present a validation approach, which allows one to automatically analyze RBAC policies

formulated in UML/OCL [17]. OCL queries on RBAC policies can be automatically

evaluated, i.e., RBAC policies can be tested for non-trivial access control requirements. The

theoretical foundations of queries are given through meta-modeling. In addition, a validation

tool, called SecureMOVA, is made available for checking RBAC policies. Similarly, our

RBAC admin tool could be extended with such a query functionality to check access control

requirements (beyond static SoD properties).

RBAC functionality is also incorporated into many products such as operating systems,

applications (e.g., clinical information systems, banking software), and databases. Specifically,

enterprise administration tools such as DirXMetaRole from Siemens [18], or the Jupiter

system from Beta Systems [19] support RBAC. However, most of these engines only

implement basic RBAC concepts. If authorization constraints are supported at all, they are

mostly limited to Simple Static SoD (which is also defined in the ANSI standard for RBAC

[2]). Other types of authorization constraints are rarely implemented.

In addition, a comparison of our work with XACML is also worthwhile. XACML is an

OASIS standard that supports the specification of authorization policies and related queries in

a standardized, machine-readable way [22]. The RBAC profile of XACML 2.0 extends the

standard for expressing authorization policies that use RBAC with a scope limited to core and

hierarchical RBAC [23]. UML/OCL, however, is a standard modelling approach that can be

used to express the RBAC policies more abstractly in a human-readable way. Specifically,
OCL can be used to express various kinds of role-based authorization constraints, whereas the

RBAC profile of XACML 2.0 lacks the full support of SOD constraints and other variations of

authorization constraints. It could be argued that RBAC policies can be specified directly in

XACML. However, manually specifying such policies directly in XACML could be

comparatively complicated and time consuming.

 ECEASST

18 / 19 Volume 15 (2008)

6 Conclusions and Outlook

We demonstrated in this paper how to implement advanced administrative RBAC functionality

by means of the USE tool. In particular, static authorization constraints such as Simple Static

SoD and Permission-Based Static SoD have been implemented with the help of this approach.

Other types of authorization constraints such as cardinality constraints can also be

implemented. This way, the RBAC administration tool is extensible and helps to keep RBAC

policies consistent with respect to defined authorization constraints. Implementing the static

authorization constraints is comparatively easy with the USE tool. However, in case of

authorization constraint violation(s) the essential requirement is to retrieve the relevant

information from the USE system and to generate adequate error messages for the ORKA-

Admin tool. Due to the fact that the RBAC administration tool is still being developed within

the frameworks of a research project with industrial partners there is hope that OCL

functionality will be used in security products in the future.

In addition, USE functionality can also be employed for implementing dynamic

authorization constraints such as History-Based SoD [20]. This way, a policy decision point

for workflow engines [21] can be realized based upon an OCL tool. This, however, remains

future work. Other RBAC encodings such as SecureUML could also be implemented through

our USE approach. Last but not least, our approach is not restricted to RBAC or IT security in

general. It could also be applied to problems in other domains such as safety-critical systems.

References

1. R. Sandhu, E. Coyne, H. Feinstein, C. Youman. Role-based access control models, IEEE Computer,

vol. 29, no. 2, pp. 38–47, Feb. 1996.
2. American National Standards Institute Inc. Role Based Access Control, ANSI-INCITS 359-2004,

2004.

3. D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli, Role-based access control, Artec House, Boston, 2003.

4. D. Ferraiolo, D. Gilbert, N. Lynch. An examination of federal and commercial access control policy

needs, in Proc. of the NIST-NCSC Nat. (U.S.) Comp. Security Conference, 1993, pp. 107–116.

5. G.-J. Ahn. The RCL 2000 language for specifying role-based authorization constraints, Ph.D.

dissertation, George Mason University, Fairfax, Virginia, 1999.

6. V. D. Gligor, S. I. Gavrila, D. Ferraiolo. On the formal definition of separation-of-duty policies and

their composition. In 1998 IEEE Symposium on Security and Privacy, May 1998, pp. 172–185.

7. K. Sohr, M. Drouineaud, G.-J. Ahn. Formal Specification of Role-based Security Policies for Clinical

Information Systems, Santa Fe, New Mexico, in Proc. of the 20
th
 ACM Symposium on Applied

Computing, 2005.

8. J. Joshi, E. Bertino, U. Latif, A. Ghafoor. A generalized temporal role-based access control model.

IEEE Trans. Knowl. Data Eng., vol. 17, no. 1, pp. 4–23, 2005.

9. T. Jaeger and J. Tidswell. Practical Safety in Flexible Access Control Models, ACM Trans.

Information and System Security, vol. 4, no. 2, pp. 158-190, May 2001.

10.Parks Informatik. The Parks Security Manager, 2008

 http://www.parks-informatik.de/de/product/psm/ParksSecurityManagement.html

11.M. Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD thesis.

Universität Bremen. Logos-Verlag, Berlin, BISS Monographs, No. 14. 2002.

12.K. Sohr, M. Drouineaud, G.-J. Ahn, M. Gogolla. Analyzing and Managing Role-Based Access

Control Policies, IEEE Trans. Knowl. Data Eng., vol. 20., no 7, 2008.

13.T. Lodderstedt, D. Basin, J. Doser. SecureUML: A UML-Based Modeling Language for Model-
Driven Security, UML, 5

th
 International Conference. Vol. 2460. Dresden, Germany, pp.426-441,

2002.

 Implementing Advanced RBAC Administration Functionality with USE

Proc. OCL 2008 19 / 19

14.I. Ray, N. Li, R. France, D.-K. Kim. Using UML to visualize role-based access control constraints. In

Proc. of the 9th ACM Symposium on Access Control Models and Technologies, pp. 115–124, USA,

2004.

15.T. Priebe, W. Dobmeier, B. Muschall, G. Pernul. ABAC - Ein Referenzmodell für attributbasierte
Zugriffskontrolle, Sicherheit 2005, pp. 285-296.

16.Gail-Joon Ahn , Michael E. Shin, Role-Based Authorization Constraints Specification Using Object

Constraint Language, Proceedings of the 10th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, p.157-162, June 20-22, 2001.

17.David Basin and Manuel Clavel and Jürgen Doser and Marina Egea. Automated Analysis of

Security-Design Models. In Information and Software Technology, 2008.

18.Siemens AG. DirXMetaRole Administration Guide.

19.Beta Systems Software AG. SAM Jupiter User Guide, 2008

 http://ww2.betasystems.com/de/produkte/idm/produkte/sam_jupiter.html

20.R. Simon, M. Zurko. Separation of duty in role-based environments, In 10th IEEE Computer

Security Foundations Workshop (CSFW ’97), June 1997, pp. 183–194.
21.Project ORKA. http://www.orka-projekt.de/index-en.htm

22.OASIS. eXtensible Access Control Markup Language (XACML), Vers. 2.0, February 2005.

23.A. Anderson. Core and hierarchical role based access control (RBAC) profile of XACML v2.0,

 OASIS Standard, 2005.

