81,257 research outputs found

    Investigation of a multi-layer perceptron network to model and control a non-linear system.

    Get PDF
    This thesis describes the development and implementation of an on-line optimal predictive controller incorporating a neural network model of a non-linear process. The scheme is based on a Multi-Layer Perceptron neural net-work as a modelling tool for a real non-linear, dual tank, liquid level process. A neural network process model is developed and evaluated firstly in simulation studies and then subsequently on the real process. During the development of the network model, the ability of the network to predict the process output multiple time steps ahead was investigated. This led to investigations into a number of important aspects such as the network topology, training algorithms, period of network training, model validation and conditioning of the process data. Once the development of the neural network model had been achieved, it was included into a predictive control scheme where an on-line comparison with a conventional three term controller was undertaken. Improvements in process control performance that can be achieved in practice using a neural control scheme are illustrated. Additionally, an insight into the dynamics and stability of the neural control scheme was obtained in a novel application of linear system identification techniques. The research shows that a technique of conditioning the process data, called spread encoding, enabled a neural network to accurately emulate the real process using only process input information and this facilitated accurate multi-step-ahead predictive control to be performed

    Reconciling Predictive Coding and Biased Competition Models of Cortical Function

    Get PDF
    A simple variation of the standard biased competition model is shown, via some trivial mathematical manipulations, to be identical to predictive coding. Specifically, it is shown that a particular implementation of the biased competition model, in which nodes compete via inhibition that targets the inputs to a cortical region, is mathematically equivalent to the linear predictive coding model. This observation demonstrates that these two important and influential rival theories of cortical function are minor variations on the same underlying mathematical model

    Predictive-State Decoders: Encoding the Future into Recurrent Networks

    Full text link
    Recurrent neural networks (RNNs) are a vital modeling technique that rely on internal states learned indirectly by optimization of a supervised, unsupervised, or reinforcement training loss. RNNs are used to model dynamic processes that are characterized by underlying latent states whose form is often unknown, precluding its analytic representation inside an RNN. In the Predictive-State Representation (PSR) literature, latent state processes are modeled by an internal state representation that directly models the distribution of future observations, and most recent work in this area has relied on explicitly representing and targeting sufficient statistics of this probability distribution. We seek to combine the advantages of RNNs and PSRs by augmenting existing state-of-the-art recurrent neural networks with Predictive-State Decoders (PSDs), which add supervision to the network's internal state representation to target predicting future observations. Predictive-State Decoders are simple to implement and easily incorporated into existing training pipelines via additional loss regularization. We demonstrate the effectiveness of PSDs with experimental results in three different domains: probabilistic filtering, Imitation Learning, and Reinforcement Learning. In each, our method improves statistical performance of state-of-the-art recurrent baselines and does so with fewer iterations and less data.Comment: NIPS 201

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques
    corecore