1,507 research outputs found

    Monolithic simulation of convection-coupled phase-change - verification and reproducibility

    Full text link
    Phase interfaces in melting and solidification processes are strongly affected by the presence of convection in the liquid. One way of modeling their transient evolution is to couple an incompressible flow model to an energy balance in enthalpy formulation. Two strong nonlinearities arise, which account for the viscosity variation between phases and the latent heat of fusion at the phase interface. The resulting coupled system of PDE's can be solved by a single-domain semi-phase-field, variable viscosity, finite element method with monolithic system coupling and global Newton linearization. A robust computational model for realistic phase-change regimes furthermore requires a flexible implementation based on sophisticated mesh adaptivity. In this article, we present first steps towards implementing such a computational model into a simulation tool which we call Phaseflow. Phaseflow utilizes the finite element software FEniCS, which includes a dual-weighted residual method for goal-oriented adaptive mesh refinement. Phaseflow is an open-source, dimension-independent implementation that, upon an appropriate parameter choice, reduces to classical benchmark situations including the lid-driven cavity and the Stefan problem. We present and discuss numerical results for these, an octadecane PCM convection-coupled melting benchmark, and a preliminary 3D convection-coupled melting example, demonstrating the flexible implementation. Though being preliminary, the latter is, to our knowledge, the first published 3D result for this method. In our work, we especially emphasize reproducibility and provide an easy-to-use portable software container using Docker.Comment: 20 pages, 8 figure

    A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters

    Get PDF
    In this work, we consider the solution of boundary integral equations by means of a scalable hierarchical matrix approach on clusters equipped with graphics hardware, i.e. graphics processing units (GPUs). To this end, we extend our existing single-GPU hierarchical matrix library hmglib such that it is able to scale on many GPUs and such that it can be coupled to arbitrary application codes. Using a model GPU implementation of a boundary element method (BEM) solver, we are able to achieve more than 67 percent relative parallel speed-up going from 128 to 1024 GPUs for a model geometry test case with 1.5 million unknowns and a real-world geometry test case with almost 1.2 million unknowns. On 1024 GPUs of the cluster Titan, it takes less than 6 minutes to solve the 1.5 million unknowns problem, with 5.7 minutes for the setup phase and 20 seconds for the iterative solver. To the best of the authors' knowledge, we here discuss the first fully GPU-based distributed-memory parallel hierarchical matrix Open Source library using the traditional H-matrix format and adaptive cross approximation with an application to BEM problems

    A multiscale finite element framework for additive manufacturing process modeling

    Get PDF
    This thesis describes a finite element framework for solving partial differential equations with highly varying spatial coefficients. The goal is to model the heat transfer in a heterogeneous powder medium of the selective laser melting process. An operator based framework is developed and the implementation details are discussed. The main idea of the work is based on the two level domain decomposition and construction of special operators to transfer the system between the coarse and fine levels. The system of equations is solved on a coarse level and the solution is transferred to the fine level. The operators are computed using Localized Orthogonal Decomposition (LOD) method. The method is applied to several numerical experiments and an optimal convergence rates in the H1 and L2 norms are observed. The computational efficiency of LOD is studied and its limitations are discussed

    A partition of unity approach to fluid mechanics and fluid-structure interaction

    Get PDF
    For problems involving large deformations of thin structures, simulating fluid-structure interaction (FSI) remains challenging largely due to the need to balance computational feasibility, efficiency, and solution accuracy. Overlapping domain techniques have been introduced as a way to combine the fluid-solid mesh conformity, seen in moving-mesh methods, without the need for mesh smoothing or re-meshing, which is a core characteristic of fixed mesh approaches. In this work, we introduce a novel overlapping domain method based on a partition of unity approach. Unified function spaces are defined as a weighted sum of fields given on two overlapping meshes. The method is shown to achieve optimal convergence rates and to be stable for steady-state Stokes, Navier-Stokes, and ALE Navier-Stokes problems. Finally, we present results for FSI in the case of a 2D mock aortic valve simulation. These initial results point to the potential applicability of the method to a wide range of FSI applications, enabling boundary layer refinement and large deformations without the need for re-meshing or user-defined stabilization.Comment: 34 pages, 15 figur

    Numerical model building based on XFEM/level set method to simulate ledge freezing/melting in Hall-HĂ©roult cell

    Get PDF
    Au cours de la production de l'aluminium via le procédé de Hall-Héroult, le bain gelé, obtenu par solidification du bain électrolytique, joue un rôle significatif dans le maintien de la stabilité de la cellule d'électrolyse. L'objectif de ce travail est le développement d'un modèle numérique bidimensionnel afin de prédire le profil du bain gelé dans le système biphasé bain liquide/bain gelé, et ce, en résolvant trois problèmes physiques couplés incluant le problème de changement de phase (problème de Stefan), la variation de la composition chimique du bain et le mouvement de ce dernier. Par souci de simplification, la composition chimique du bain est supposée comme étant un système binaire. La résolution de ces trois problèmes, caractérisés par le mouvement de l'interface entre les deux phases et les discontinuités qui ont lieu à l'interface, constitue un grand défi pour les méthodes de résolution conventionnelles, basées sur le principe de la continuité des variables. En conséquence, la méthode des éléments finis étendus (XFEM) est utilisée comme alternative afin de traiter les discontinuités locales inhérentes à chaque solution tandis que la méthode de la fonction de niveaux (level-set) est exploitée pour capturer, implicitement, l'évolution de l'interface entre les deux phases. Au cours du développement de ce modèle, les problématiques suivantes : 1) l'écoulement monophasique à densité variable 2) le problème de Stefan couplé au transport d'espèces chimiques dans un système binaire sans considération du phénomène de la convection et 3) le problème de Stefan et le mouvement du fluide qui en résulte sont investigués par le biais du couplage entre deux problèmes parmi les problèmes mentionnées ci-dessus. La pertinence et la précision de ces sous-modèles sont testées à travers des comparaisons avec des solutions analytiques ou des résultats obtenus via des méthodes numériques conventionnelles. Finalement, le modèle tenant en compte les trois physiques est appliqué à la simulation de certains scénarios de solidification/fusion du système bain liquide-bain gelé. Dans cette dernière application, le mouvement du bain, induit par la différence de densité entre les deux phases ou par la force de flottabilité due aux gradients de température et/ou de concentration, est décrit par le problème de Stokes. Ce modèle se caractérise par le couplage entre différentes physiques, notamment la variation de la densité du fluide et de la température de fusion en fonction de la concentration des espèces chimiques. En outre, la méthode XFEM démontre sa précision et sa flexibilité pour traiter différents types de discontinuité tout en considérant un maillage fixe.During the Hall-Héroult process for smelting aluminium, the ledge formed by freezing the molten bath plays a significant role in maintaining the internal working condition of the cell at stable state. The present work aims at building a vertically two-dimensional numerical model to predict the ledge profile in the bath-ledge two-phase system through solving three interactive physical problems including the phase change problem (Stefan problem), the variation of bath composition and the bath motion. For the sake of simplicity, the molten bath is regarded as a binary system in chemical composition. Solving the three involved problems characterized by the free moving internal boundary and the presence of discontinuities at the free boundary is always a challenge to the conventional continuum-based methods. Therefore, as an alternative method, the extended finite element method (XFEM) is used to handle the local discontinuities in each solution space while the interface between phases is captured implicitly by the level set method. In the course of model building, the following subjects: 1) one-phase density driven flow 2) Stefan problem without convection mechanism in the binary system 3) Stefan problem with ensuing melt flow in pure material, are investigated by coupling each two of the problems mentioned above. The accuracy of the corresponding sub-models is verified by the analytical solutions or those obtained by the conventional methods. Finally, the model by coupling three physics is applied to simulate the freezing/melting of the bath-ledge system under certain scenarios. In the final application, the bath flow is described by Stokes equations and induced either by the density jump between different phases or by the buoyancy forces produced by the temperature or/and compositional gradients. The present model is characterized by the coupling of multiple physics, especially the liquid density and the melting point are dependent on the species concentration. XFEM also exhibits its accuracy and flexibility in dealing with different types of discontinuity based on a fixed mesh
    • …
    corecore