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Abstract 

Phase change in solidification and melting can be described with the aid of discontinuous 

functions. The aim of this project is to establish effective methodologies for the solution of 

discontinuous phase-change problems. The classic capacitance method, which distributes 

the effect of any discontinuity present over a finite region (typically an element), can suffer 

from inaccurate energy transport.  Improvement is possible with the application of the classic 

non-physical enthalpy method. However, this approach is known to suffer with the 

imposition of material velocity, which gives rise to negative thermal capacitance providing 

a source of error and instability.  In order to improve on the performance of the capacitance 

method and the classic non-physical enthalpy method, this research introduces a series of 

new non-physical variables. Firstly, a new non-physical enthalpy is defined via the weak 

form of the energy transport equation. The classical non-physical enthalpy was defined using 

a temporal integral term. In the new definition, the non-physical enthalpy involves both a 

temporal and an advection term, which is shown to avoid the generation of negative 

capacitance and improve the stability of advection heat transfer in numerical methods. 

Secondly, control volume analysis is performed on weighted and unweighted forms of the 

governing energy equation involving non-physical enthalpy. The analysis is shown to reveal 

non-physical source terms that facilitate the removal of phase-change discontinuities. 

Thirdly, it is demonstrated in the thesis how a non-physical heat source must be introduced 

into the governing non-physical transport equation to remove discontinuities arising from 

non-physical terms related to advection. To demonstrate the accuracy and stability of the 

new method, it is implemented in the finite element method for both one-dimensional linear 

rod elements and two dimensional triangular elements. Update techniques and root finding 

methods, such as the predictor-corrector method, the secant method and the homotopy 

method, are applied to solve the non-linear system of equations, which are constructed with 

the new theory. Results returned from the one-dimensional numerical experiments are 

compared with exact solutions, which show reasonable accuracy. Numerical experiments for 

isothermal solidification with advection-diffusion in both one and two dimensions 

demonstrate the feasibility of the new methodology. 
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Nomenclature 

Latin alphabet: 

𝑎  = parameter for the MMS  𝑇𝑚  = melting temperature 

𝑎Θ  = additional unknown degree   ℎ̂′   = non-physical jump term 

    freedom  ℎ𝑐  = force convective coefficient 

𝐴𝑒  = cross-sectional area of element  ℎ𝑙  = specific enthalpy of liquid 

𝑏  = parameter for the MMS  ℎ𝑠  = specific enthalpy of solid 

𝑐̂  = non-physical capacitance  ℎ𝑠𝑜𝑙  = enthalpy of solidification 

[𝐶̂]  = capacitance matrix  𝐻  = enthalpy 

𝑐𝑎𝑝𝑝   = apparent capacitance  [𝐽]  = Jacobian matrix 

𝑐𝑒𝑓𝑓  = effective capacitance  𝑘𝑙  = thermal conductivity of liquid 

𝑐𝑙  = specific capacitance of liquid  𝑘𝑠  = thermal conductivity of solid 

𝑐𝑠  = specific capacitance of solid  [𝐾]  = conductivity matrix 

𝐶  = Concentration  [𝐾̃]  = enriched conductivity matrix 

𝐶𝑗  = unknown constant for trail  𝐿  = latent heat of fusion 

    solution  𝐿𝑒  = length of element 

𝐷  = coefficient of diffusion  𝑀𝑒  = total mass 

𝑓𝑙  = volume liquid fraction  𝑀𝑙  = mass in the liquid phase 

𝑓𝑠  = volume solid fraction  𝑛  = outward unit normal 

𝑓𝑗  = trial solutions  𝑁𝑗  = element shape functions 
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𝑔𝑙  = volume ratio of liquid  𝑁𝐸  = total number of enriched 

nodes 

𝑔𝑚  = volume ratio of mushy zone  𝑁𝑁  = total number of nodes 

𝑔𝑠  = volume ratio of solid  𝑃𝑒  = elemental Peclèt number 

𝐺  = Gibbs free energy  𝑞  = heat flux of conduction 

𝐺𝑉  = volumetric Gibbs free energy  {𝑞}  = loading vector of flux 

ℎ  = specific enthalpy  {𝑄̃}  = loading vector of non-physical 

ℎ̂  = non-physical enthalpy       source 

{𝑄}  = loading vector of external heat  𝑄  = external heat source 

𝑄𝑚  = manufactured source  {𝑇𝑝}  = predicted temperature field 

𝑄̂  = non-physical source  𝑇𝑠  = temperature of solid 

𝑟  = radius of nuclei  𝑇𝑠𝑜𝑙  = solidus temperature 

𝑟∗  = critical radius of nuclei  𝛿𝑇  = artificial temperature range 

𝑅  = residual  𝑣  = material velocity field 

𝑠  = general flux term  𝑣∗  = CV velocity field 

𝑆𝑡 = Stefan Number  𝑣+  = discontinuity velocity field 

𝑆  = entropy  𝑣×  = elemental discontinuity 

𝑡  = time      velocity field 

∆𝑡  = time interval  𝑣𝑖  = velocity of the phase interface 

𝑡𝑛  = tangent outward unit normal  𝑣𝑠  = velocity of solid material 

𝑇  = temperature  𝑣𝑙  = velocity of liquid material 

𝑇′  = 1st order derivative of   𝑉𝑒  = volume of element 
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     temperature  𝑉𝑙  = volume of liquid 

𝑇𝑜  = fixed boundary temperature  𝑉𝑚  = volume of mushy zone 

𝑇𝑎𝑚𝑏  = ambient temperature  𝑉𝑠  = volume of solid 

𝑇𝑒  = trial solution of temperature  𝑊  = weighting functions 

𝑇𝑖𝑛𝑖𝑡  = initial temperature  𝑥, 𝑦, 𝑧  = space coordinates 

𝑇𝑙  = temperature of liquid  x = co-ordinate in the spatial 

𝑇𝑙𝑖𝑞  = liquidus temperature      reference system 

𝑇𝑟𝑒𝑓  = reference temperature  𝑋𝑖  = the phase interface position 

Greek alphabet: 

𝛼  = thermal diffusivity  𝜌   = density 

𝛼𝑙  = thermal diffusivity of liquid  𝜌𝑠  = the density of solid 

𝛼𝑠  = thermal diffusivity of solid  𝜌𝑙  = the density of liquid 

𝛽  = parameter for liquid fraction  Σi  = boundary of Γ𝑖 

𝛿𝑇 = artificial temperature range  Υ = element based volume fraction 

Γ  = control surface  𝜍 = node number 

Γ𝐷  = boundary for Dirichlet’s BC  𝜑  = general unknown field  

Γ𝑖  = boundary of phase interface      variable function 

Γ𝑁  = boundary for Neumann’s BC  𝜓Θ  = enrichment shape function 

𝜀  = emissivity  𝜒∗  = co-ordinate in the  

𝜖 = relative error      computational reference system 

𝜃  = weighting term of 𝜃-method  Ω  = control volume 

𝜗 = number of simultaneous  Ω+  = CV encloses to the phase 
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 algebraic equations       interface 

𝜅  = parameter for the MMS  Ωe  = elemental control volume 

𝜆  = transcendental parameter  Ωf  = swept CV by the discontinuity 

𝜈  = viscosity   front 

Η = enthalpy per unit volume  Ω𝑙  = control volume of liquid 

𝜉, 𝜂  = natural space   Ω𝑠  = control volume of solid 

    coordinates  Ω\Γ𝑖  = CV without discontinuity 

Subscripts: 

𝑒   = element  𝑁  = normal component 

𝑓  = swept control volume by   𝑠  = solid 

   the discontinuity  𝑇  = tangential component 

𝑖  = phase interface  𝑥𝑥  = component in x direction 

𝑙  = liquid  𝑦𝑦  = component in y direction 

 

Superscripts: 

∗   = related to the computational  ×  = related to a discontinuity 

     reference system      in a moving element 

+  = related to the discontinuity     

    in a moving CV     

 

Operators: 

∇ ∙ ∎  = the divergence operator  𝒔𝒊𝒈𝒏(∎) = signed function 

𝛻∎  = gradient operator  ‖∎‖  = norm 

𝛻𝛤𝑖  = gradient operator on the  ]∎[  = jump 
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    tangential plane of the 

phase interface 

 ⌊∎⌋ = row vector 

∎  = vector  {∎} = column vector 

∎ = Laplace transform  𝒎𝒊𝒏(∎)     = minimum value 

∎̂  = non-physical  𝒆𝒓𝒇(∎) = error function 

∎̃̅ = enriched  ∎:∎ = Frobenius inner product 

∎̃  = non-physical variables in    

  system of equations    

 

Abbreviations 

1D            one dimension 

2D            two dimension 

CS            control surface 

CV           control volume 

CVCM     control volume capacitance method 

FDM        finite difference method 

FEM         finite element method 

FVM        finite volume method 

MES        method of exact solutions 

MMS       method of manufactured solutions 

NN           number of node 

NELS       total number of elements 

PDE         partial differential equation 
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XFEM      extended finite element method 

 



Chapter 1: Introduction     24 
  

Chapter 1 Introduction 

Solidification is the phase transformation in which the liquid turns into the solid when its 

temperature is lowered below its freezing point. Solidification involves two stages, which 

are nucleation and crystallization. The molecules gather into clusters during nucleation, and 

a nuclei is formed when the cluster reaches a critical radius. In the second stage, crystal 

growth originates from the nuclei and proceeds until the material is completely solid. During 

the solidification process, latent heat is released because no energy is required to overcome 

the intermolecular attractive force to keep the molecules apart.  This phenomenon is reflected 

in a strong discontinuity in enthalpy (there is a jump in the change of enthalpy) and a weak 

discontinuity (there is a jump in the gradient) in temperature. Solidification is of industrial 

importance because it is a feature of welding and casting processes [1]. Casting of metals 

has a very long history, and it is still one of the most important processes for the 

manufacturing industry. It is claimed that 90% of manufactured goods make use of the 

casting process [2-3]. Foundry reports indicate that solidification modelling is not only a 

cost-effective investment but also a major technical asset [4]. Thus, both academic 

researchers and industrial technicians are interested in studying and understanding the 

solidification process. A good understanding of such phenomena leads to better control and 

improvement in the quality of products. In recent years, mathematical models and numerical 

methods have developed greatly, which has helped the research community to understand 

the physical behaviour of solidification. 

The mathematical modelling of solidification involves the conservation equations of mass, 

momentum, energy and concentration. The conservation equations can be formulated in a 

strong form involving partial differential equations, or in a weak form which involves 

integrals and typically Lagrangian or Eulerian descriptions of the governing physics. This 

project particularly focuses on the conservation of energy in its weak form. As regards 

solidification problems, the sensible heat is the heat exchange of a thermodynamic system, 

which can be evaluated from the mass of the system, the specific capacity and the 

temperature change of the system. Solidification is also a moving boundary problem, where 

the latent heat energy is associated with the movement of the boundary/phase interface. In 

the mathematical modelling and analysis, the latent heat of fusion makes the solidification 

problem highly nonlinear. Such problems were first established by Stefan in 1889. The 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Melting_point
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relationship between the phase interface/moving boundary and the latent heat of fusion is 

termed a Stefan condition. Consequently the mathematical modelling of solidification is 

often categorized as a Stefan problem. 

The transport equation that governs the conservation of energy can be solved by numerical 

methods. The numerical methods for solidification can be divided into moving mesh 

methods and fixed grid methods. Early research on the moving mesh methods involved the 

placement of extra nodes on the phase interface [5-7]. The position of phase boundary is 

approximated by the Stefan Condition. This strategy was only applied effectively to two-

dimensional problems with time being one of the dimensions accounted for in the 

computational grid [5-7]. Recently, studies on the front tracking method have become more 

active. Well-known approaches include the extended finite element method (XFEM) [8-14] 

and the level-set method [8,11,13-22]. In references [8, 12, 16, 19], the research focuses 

particularly on solidification problems. An essential component of the front tracking method 

is believed to be the evaluation of the position of the phase front or the velocity of the phase 

front. The fixed grid method can be further classified into capacitance methods [23-41] and 

the source-based methods [42-55]. Their difference is that the latent heat effect is captured 

by the capacitance or by the source term. These methods do not need to track the phase front. 

Consequently, the fixed grid method can be easily implemented into any existing finite 

element program. In the earlier works on the capacitance method, it was usually incorporated 

into the FDM [23-28]. Several critics indicated that capacitance methods suffer inaccuracy, 

wrong phase transformation time and oscillations of temperature after phase change [7, 25, 

28]. However, the method has been improved by scientists and engineers in many ways, 

such as the approximation of liquid fraction/ratio of liquid phase, the weak formulation and 

the evaluation of thermal capacitance [28-41]. The source-based method is the “twin brother” 

of the capacitance method. It is known that latent heat is essential to Stefan problems [28]. 

The difference between the various approaches is how they deal with the latent heat. If latent 

heat is evaluated with capacitance, then it is a capacitance method. If the latent heat is treated 

as a source, then it is the source based method. To the author’s knowledge, the source based 

method is less popular than the enthalpy method (a particular type of capacitance method), 

and it seems that the source based method is only used in conjunction with the FDM and 

FVM. In the recent years, thanks to the significantly advanced performance of computers, 

the front tracking methods have been developed for multi-dimensional problems with 

complex geometry. The simulation of dendrite growth is of particular interest to researchers 
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[56-57]. For the capacitance and the source-based methods, they are preferred by engineers 

because they are more physically understandable. The methods are modified more or less to 

satisfy specific cases [57-61].  

Two studies highlighted in this field are the non-physical enthalpy method provided by 

Davey and Mondragon [62-63], and an enrichment scheme provided by Cosimo et al.[64]. 

The non-physical enthalpy method can be classified as a fixed grid method. In this method, 

a non-physical enthalpy is defined through the transport equation in weak form. With this 

definition, the rate change of physical enthalpy and the change of advection/convection are 

reflected by the rate change of non-physical enthalpy alone. The non-physical enthalpy is 

made continuous at a discontinuity and it gives rise to the possibility that a physical 

discontinuity can be represented by a continuous non-physical field on which a non-physical 

source is superimposed. The non-physical enthalpy method can be a fixed grid method, 

which means that, it can be easily implemented with existing finite-element programmes. 

Also it is able to provide excellent accuracy with great computational time-efficiency. The 

enrichment scheme provided by Cosimo et al. can be classified as a front tracking method. 

It is founded on XFEM, in which, the enrichment shape function is used to discretize the 

element with discontinuity. The formulation of enrichment shape function requires the 

position of phase interface and it is approximated by the temperature profile from current 

time step. It is accurate, and its major advantage is that it avoids the complex meshing and 

re-meshing technique of front tracking method by the application of XFEM. 

However, the non-physical enthalpy method has its limitations. First of all, when considering 

the numerical aspect, the non-physical source is accounted for with a capacitance term, 

which more or less returns the method back to the CVCM. Secondly, the non-physical 

enthalpy method does not consider the possibility that the weighting functions may vary with 

movement of the control volume. Control volumes (used in the analysis) track the movement 

of the discontinuity and care must be taken to properly describe the behaviour of the 

weighting functions, which are typically considered invariant with respect to mesh 

movement.  Thirdly, the solution method for the non-physical enthalpy method is a bisection 

method. This method requires that the solution should be between the present value and 

predicted value. This criteria is not always guarantied in the solution procedure and the 

programme may fail to converge. Lastly, the non-physical enthalpy method is only able to 

deal with advection-diffusion problems where the material velocity is relatively small. The 

enrichment scheme has only been applied to one-dimensional conduction-diffusion 
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problems so far, and advection is not considered. Hence, the non-physical enthalpy method 

has room for improvement. 

The main objective of this project is to establish an effective methodology for discontinuous 

phase change problems. Isothermal solidification is of particular interest, which has a distinct 

phase interface between solid and liquid. The concept underpinning this project is to 

introduce non-physical variables through transport equations, which helps to remove the 

discontinuity from these equations, but it generates non-physical source-like term that 

captures the discontinuity. This non-physical variable method can be categorized as a fixed 

grid method. The benefit of this concept may be the improvement of stability and accuracy 

when advection terms are present in the transport equations. Furthermore, the finite element 

method (FEM) has its advantages when modelling problems with complex geometry and 

boundaries, and it is also a well-developed technique. Thus, this project prefers to do 

investigations with the FEM. 

This project firstly tries to enhance the non-physical enthalpy method provided by references 

[62-63]. A new analysis of discontinuity embodied in the weighted non-physical transport 

equation is given by considering the variable weighting function in a moving control volume. 

Then, new system of finite element equations is established with the consideration of a non-

physical source which captures the latent heat energy. And at last, three alterative solution 

methods are implemented to the non-physical enthalpy method, which are the predictor 

corrector method, the secant method and the homotopy method. The actions mentioned 

above helps to better understand the non-physical concept. Then, a new definition of non-

physical enthalpy is provided which includes a non-physical advective term and a non-

physical source term, and the introduction of these new non-physical terms enables the non-

physical method to deal with the phase change problem with advection. 

The contribution of this subject involves: 

(1) Alternative solution methods such as the predictor-corrector method, the secant 

method and the homotopy method are now available for the classical non-physical 

enthalpy method; 

(2) The effects of liquid fraction and the update procedure on the non-physical variable 

are studied, which can serve as a guide for the development of this method; 

(3) The applications of both non-physical capacitance method and non-physical source 

method can provide accurate results for isothermal solidification; 
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(4) The application of non-physical capacitance and non-physical source through a new 

definition can accurately simulate isothermal solidification with advection-diffusion. 

This can be applied to the industrial processes such as continuous casting, squeezing 

casting, etc.; 

(5) The new definition of non-physical variable method is applied to two-dimensional 

simulation, which makes it more practical. 

The layout of this thesis is as follow: 

Chapter 2: A literature review is presented in this chapter, which includes the basic 

knowledge of non-physical methods such as the transport equation, the Lagrangian and 

Eulerian descriptions etc.. 

Chapter 3: This chapter is the theoretical study on the non-physical enthalpy method 

introduced by [62-63], which shows the mathematical procedure involved in the definition 

of the non-physical variables from transport equations. A new analysis of a discontinuity 

embodied in the weighted non-physical transport equation is given by considering the 

variable weighting function in a moving control volume.  A new system of finite element 

equations is established with the consideration of a non-physical source which captures the 

latent heat energy. Moreover, the importance of volume fraction to the non-physical method 

is highlighted. 

Chapter 4: This chapter is the numerical study on the non-physical enthalpy method with 

reconstructed system of finite element equations, which illustrates how non-physical 

variables such as the non-physical capacitance and the non-physical source are implemented 

into one-dimensional solidification cases. 

Chapter 5: This chapter shows the mathematical procedure involved in a new definition of 

the non-physical variables from the transport equations. This new definition involves 

advection in the governing equation. The advection means that both solid and liquid are 

transporting energy by the movement of material. Such phenomenon can be seen in 

industrial processes such as continuous casting and squeezing casting. 

Chapter 6: The new non-physical variable method is applied to one-dimensional finite 

element method, which examines the feasibility of the method. 
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Chapter 7: Two dimensional models are made in this chapter, in order to further examine 

the feasibility of applying the non-physical variable methods in commercial-like practical 

higher dimensional models. 

Chapter 8 This chapter is about conclusions which include the achievements made, the 

limitations of the work and some possible future works. 
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Chapter 2 Literature Review 

2.1 General 

The solidification problem is a coupled problem of heat transfer and fluid dynamics. The 

physics behind the solidification process includes the conservation of mass, the conservation 

of concentration, the conservation of momentum and the conservation of energy. This 

project focuses on the conservation of energy, which is governed by the first law of 

thermodynamics. The governing equation can be written in a strong from as 

𝜕

𝜕𝑡
𝜌ℎ + ∇ ∙ (𝜌ℎ𝑣) = ∇ ∙ (𝑘∇𝑇) + 𝑄                                                                               (2—1) 

where 𝜌 is the density, ℎ is the specific enthalpy, 𝑣 is the velocity field, 𝑘 is the conductivity, 

𝑇 is the temperature and Q is the heat source. The operator ∇ ∙= 𝜕 𝜕𝑥⁄ + 𝜕 𝜕𝑦 + 𝜕 𝜕𝑧⁄⁄  is 

the divergence operator. 

Solidification is not only a problem of heat transfer but also a problem of phase change. In 

a phase change problem, the system generates one or more moving boundary interfaces. 

Certain jump conditions are associated with these boundary interfaces. How to evaluate the 

jump conditions as well as the boundary interface position is a particular difficulty for the 

solution of the phase change problem. With solidification, the phase change involves 

differences in material properties, such as 

𝜌 = 𝑔𝑠𝜌𝑠 + 𝑔𝑙𝜌𝑙                                                                                                            (2—2a) 

𝑘 = 𝑔𝑠𝑘𝑠 + 𝑔𝑙𝑘𝑙                                                                                                           (2—2b) 

where 𝑔 denotes the volume fraction of solid/liquid [28, 32-60] or the ratio of solid/liquid 

within a control volume (CV) [24], and the subscript 𝑠 and 𝑙 refer to the solid and liquid 

respectively. The evaluation of 𝑔 can be achieved in various schemes, and they are essential 

to the enthalpy method and the source based method [29, 65, 44].  

The boundary conditions of the phase interface is governed by 

𝑘𝑠∇𝑇𝑠 − 𝑘𝑙∇𝑇𝑙 = 𝜌𝐿
𝑑𝑋𝑖

𝑑𝑡
                                                                                                (2—2c) 
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where ∇  is the gradient operator defined in a Cartesian system by ∇=

{𝜕 𝜕𝑥⁄ 𝜕 𝜕𝑦⁄ 𝜕 𝜕𝑧⁄ }. 

Equation (2—2c) is the well-known Stefan condition, where 𝐿  is the latent heat and 𝑋𝑖 

denotes the interface position. 

The partial differential equation (2—1) cannot be directly applied at the phase interface. 

Thus, the Stefan condition is used to describe the behaviour at the phase interface. It shows 

that the difference in temperature gradients at both side of the phase interface is related to 

the phase interface velocity. The relationship between enthalpy and the temperature is 

sketched in Figure 2.1, where 𝑇𝑚  denotes the melting temperature and 𝑇𝑣  denotes the 

vaporization temperature. In the enthalpy method, latent heat is accounted for through the 

definition of enthalpy. This diagram gives rise to the following relationships: 

 

Figure 2.1: The relationship between enthalpy and temperature in the change of phase 

ℎ𝑠 = ℎ𝑠𝑜𝑙 + ∫ 𝑐𝑠(𝑇′)𝑑
𝑇

𝑇𝑠𝑜𝑙
𝑇′                                                                                           (2—3a) 

ℎ𝑙 = ℎ𝑠𝑜𝑙 + 𝐿 + ∫ 𝑐𝑙(𝑇′)
𝑇

𝑇𝑙𝑖𝑞
𝑑𝑇′                                                                                     (2—3b) 
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where ℎ  represents the specific enthalpy, 𝑇𝑠𝑜𝑙  is the solidus temperature and ℎ𝑠𝑜𝑙  is the 

reference specific enthalpy, i.e. ℎ𝑠𝑜𝑙 = 𝑐𝑠𝑇𝑠𝑜𝑙. The subscripts 𝑠 and 𝑙 denote the solid phase 

and liquid phase respectively [65, 39, 41, 62-53]. 

The problem is transient, so it requires an initial condition (IC) along with boundary 

conditions (BC), i.e. 

𝑇(𝑥, 𝑡) = 𝑇𝑖𝑛𝑖𝑡(𝑥)    𝑖𝑓  𝑡 = 0, ∀𝑥 ∈Ω                                                                       (2—4d) 

𝑇(𝑥, 𝑡) = 𝑇𝑜   𝑖𝑓  𝑥 ∈ Γ𝑁                                                                                               (2—4e) 

−𝑘∇𝑇(𝑥, 𝑡) = 𝑞 ∙ 𝑛    𝑖𝑓 𝑥 ∈ Γ𝐷                                                                                    (2—4f) 

Equation (2—4d) is the prescribed value for field unknowns to initialise and start the solution 

of the problem. For example, the temperature 𝑇𝑖𝑛𝑖𝑡 refers to the initial temperature of the 

material. Equation (2—4e) is the Robin boundary condition. Equation (2—4f) is the 

Dirichlet boundary condition, where the flux 𝑞 can be the boundary fluxes due to conduction, 

convection or radiation. A sketch of the thermal system is depicted in Figure 2.2. Equations 

(2—4a) to (2—4f) are the complete mathematical model, which requires to be solved for 

solidification problems. 

 

Figure 2.2: Thermal system for solidification problems 
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Figure 2.3: Semi-infinite Stefan problem 

The exact solution of a classic Stefan problem can be found in references [67-68]. As seen 

in these references, the exact solution is obtained by the consideration of a one-dimensional 

semi-infinite slab, which is originally liquid and is solidifying. A sketch of the problem is 

shown in Figure 2.3. The boundary condition is the Dirichlet boundary condition. 

Application of the Neumann’s method gives the exact solution as 

𝑇(𝑥, 𝑡) =

{
 
 

 
 
𝑇2 + (𝑇𝑠𝑜𝑙 − 𝑇2)

𝒆𝒓 𝒇(
𝑥

2√𝛼𝑠𝑡
)

𝒆𝒓𝒇(𝜆)
        𝑖𝑓  𝑥 < 𝑋𝑖

𝑇1 + (𝑇𝑠𝑜𝑙 − 𝑇1)
𝒆𝒓 𝒇 𝒄(

𝑥

2√𝛼𝑙𝑡
)

𝒆𝒓𝒇𝒄(𝜈𝜆)
       𝑖𝑓   𝑋𝑖 ≤ 𝑥

                                                (2—5) 

where 𝑇1  is the initial temperature, 𝑇2  is the fixed boundary temperature, and thermal 

diffusivity of material 𝛼 = 𝑘 𝜌𝑐⁄ , 𝜈 = √𝛼𝑠 𝛼𝑙⁄ . The position of phase interface 𝑋𝑖 =

2𝜆√𝛼𝑠𝑡. The operator 𝒆𝒓𝒇(∎) is the error function and 𝒆𝒓𝒇𝒄(∎) is the complementary 

error function. The parameter 𝜆 can be calculated through 

𝑆𝑡𝑠

𝜆√𝜋𝑒𝜆
2
𝒆𝒓𝒇(𝜆)

+
𝑆𝑡𝑙

(𝜈𝜆)√𝜋𝑒(𝜈𝜆)
2
𝒆𝒓𝒇𝒄(𝜈𝜆)

= 1                                                                          (2—6) 

where 𝑆𝑡𝑠 = 𝑐𝑝(𝑇𝑠𝑜𝑙 − 𝑇1) 𝐿⁄  and 𝑆𝑡𝑙 = 𝑐𝑝(𝑇𝑠𝑜𝑙 − 𝑇2) 𝐿⁄ , are the Stefan numbers. 

The exact solution can be used as a criterion to determine how accurate the numerical method 

is. Therefore, this project also uses another exact solution as benchmark, which is obtained 

by replacing the Dirichlet boundary to the Robin boundary condition, i.e. 𝑘𝑠𝜕𝑇 𝜕𝑥⁄ =

ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏). The exact solution with this type of boundary condition can be written as
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𝑇(𝑥, 𝑡) =

{
 
 

 
 (

𝑇𝑠𝑜𝑙−𝑇𝑎𝑚𝑏
1

ℎ𝑐√𝜋𝛼𝑠𝑡
+erf (

𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)
)𝒆𝒓𝒇(

𝑥

2√𝛼𝑠𝑡
) +

𝑇𝑠𝑜𝑙+𝑇𝑎𝑚𝑏ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

1+ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

  (0 ≤ 𝑥 < 𝑋𝑖(𝑡))

𝑇𝑖𝑛𝑖𝑡 + (𝑇𝑠𝑜𝑙 − 𝑇𝑖𝑛𝑖𝑡)
𝒆𝒓𝒇𝒄(

𝑥

2√𝛼𝑙𝑡
)

𝒆𝒓𝒇𝒄(𝜆√
𝛼𝑠
𝛼𝑙
)
                                                         (𝑥 > 𝑋𝑖(𝑡))

  

                                                                                                                                        (2—7) 

where 𝑇𝑖𝑛𝑖𝑡  is the initial temperature and 𝑇𝑎𝑚𝑏  is the ambient temperature. Its detailed 

derivation can be seen in Appendix I—(a). 

The value of 𝜆 can be computed via a transcendental equation, which is established by 

substituting equation (2—7) into the Stefan condition. After simplification, the equation is 

written as 

√𝜋𝜆 = −
𝑆𝑡𝑠

𝑒𝜆
2
(

1

ℎ𝑐√𝜋𝛼𝑠𝑡
+erf(𝜆))

+
𝑆𝑡𝑙

𝑣𝑒(𝑣𝜆)
2
𝑒𝑟𝑓𝑐(𝑣𝜆)

                                                                  (2—8) 

where 𝑆𝑡𝑠 = 𝑐𝑠(𝑇𝑠𝑜𝑙 − 𝑇2) 𝐿⁄  and 𝑆𝑡𝑙 = 𝑐𝑙(𝑇1 − 𝑇𝑠𝑜𝑙 𝐿⁄  are the Stefan numbers, and 𝑣 =

√𝛼𝑠 𝛼𝑙⁄ .  

A direct solution of equation (2—8) can be conducted through a good root finding method, 

such as the Newton’s method, which is used in this project. 

2.2 The front tracking method 

The extended finite element method (XFEM) has become a hot topic for front tracking 

methods recently. It is developed from the Galerkin finite element method (GFEM), so they 

have many features in common. The XFEM is aimed at solving the discontinuous problems. 

In place of the normal shape functions which are utilised in the GFEM, the shape functions 

established for the XFEM are called the enrichment functions. An example of one-

dimensional shape functions is provided in Figure 2.4. In the XFEM, the enrichment 

functions are applied to the element which contains the discontinuity front; this element is 

called an enriched element. The nodes of the enriched element are called the enriched nodes. 

The adjacent elements, which share the node with the enriched element, are the partially 

enriched elements. The unknown field variables, such as temperature, are usually 

approximated as 
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𝑇𝑒 = ∑ 𝑁𝜍𝑇𝜍
𝑁𝑁
𝜍=1 + ∑ 𝐸Θ𝑎Θ

𝑁𝐸
Θ=1                                                                                         (2—9) 

where 𝑇𝑒 is the trial solution of temperature, 𝑁𝜍 is the classical FEM shape function, 𝑇𝜍 is 

the nodal temperature, 𝐸Θ is the enriched shape function and 𝑎Θ are additional unknown 

degrees of freedom. Here, 𝑁𝑁 is the total number of nodes of an element and 𝑁𝐸 is the total 

number of the enriched functions. 

 

Figure 2.4: The one-dimensional XFEM 

An enrichment scheme provided by Cosimo et al is a typical application of XFEM [64]. This 

scheme starts from the application of weighed residual method to equation (2—1). The 

weighted governing equation is expressed as 

∫ 𝑊
Ω

(𝜌ℎ̇ − ∇ ∙ (𝑘∇𝑇) − 𝑄)𝑑𝑉 = 0                                                                           (2—10) 

where ℎ̇ is the rate change of specific enthalpy, and 𝑊 is the shape function. 

The latent heat energy influences the thermodynamic system by the identity 

ℎ(𝑇) = ∫ 𝑐(𝑇′)𝑑𝑇′ + 𝐿𝑓𝑙(𝑇)
𝑇

𝑇𝑟𝑒𝑓
                                                                                  (2—11) 

which is identical to the relationships described in equations (2—3a) and (2—3b). The liquid 

fraction is evaluated as a Heaviside step function, i.e. 𝑓𝑙(𝑇) = 𝐻𝑒𝑎𝑣(𝑇 − 𝑇𝑚) [64]. 

The enrichment scheme uses the enrichment function provided by Coppola-Owen and 

Codina in reference [69]. In order to construct the enrichment shape function, the enrichment 

scheme firstly consider a simple level set function 𝜑 as 

𝜑 = 𝑥 − 𝑥𝑎                                                                                                                   (2—12) 
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where the position of phase interface is evaluated as 𝑥𝑎 = 𝑥1 + 𝑠(𝑥2 − 𝑥1). 

The enrichment scheme contains one enriched node, i.e. Θ = 1 in equation (2—9). So the 

enrichment shape function is given as 

𝐸(𝑥) = {

𝑥−𝑥1

𝑥𝑎−𝑥1
=

𝜑1−𝜑

𝜑1
       𝑥 ≤ 𝑥𝑎

𝑥2−𝑥

𝑥2−𝑥𝑎
=

𝜑2−𝜑

𝜑2
       𝑥 > 𝑥𝑎

                                                                               (2—13) 

Thus, equation (2—9) reduces to 

𝑇𝑒 = ∑ 𝑁𝜍𝑇𝜍
𝑁𝑁
𝜍=1 + 𝐸(𝑥)𝑎                                                                                              (2—14) 

where 𝑎 is the only enriched nodal value for one-dimensional problem. 

It can be seen from equation (2—12) to equation (2—14) that, the construction of enrichment 

shape functions requires the evaluation of phase interface position 𝑥𝑎. Classic front tracking 

methods prefer to construct a hyperbolic-type partial differential equation to evaluate the 

interface position [8, 70]. Rao et al. [70] and Chessa et al. [8] considered that the phase 

interface position is moving with a velocity 𝑣𝑖, thus the level set field 𝜑(𝑥, 𝑡) is governed 

by a hyperbolic-type PDE which is 

𝜕𝜑

𝜕𝑡
+ 𝑣𝑖 ∙ ∇𝜑 = 0                                                                                                           (2—15) 

when 𝜑 = 0, the 𝑥 ∈ Γ𝑖  is called the 0 level set. In order to solve equation (2—15), the 

velocity field 𝑣𝑖 is a vector i.e. 𝑣𝑖 = 𝑉𝑖𝑛𝑖, and the scalar 𝑉𝑖 is required to be found. Since 

equation (2—15) is hyperbolic, a least-squared method is typically required for numerical 

stabilization [71-76]. As a matter of fact, in order to solve Stefan problems by the XFEM 

and level set method, two extra systems of equations (equation (2—15) and equation (2—

2c)) are required to be solved. On top of that, the velocity of phase interface must be 

evaluated. Unfortunately, studies so far on the front tracking method, such as in reference [8, 

14, 106-107], do not provide much detail on how the Stefan Condition is evaluated. Sethian 

et. al. [77] determine the phase front velocity through the Stefan equation. However the 

application of Green function, Fourier series and Taylor series to the Stefan equation makes 

it rather complicated. The enrichment scheme uses a simple strategy to avoid constructing 

and evaluating a level-set function such as equation (2—15). The strategy is to evaluate the 

parameter 𝑠 in equation (2—12) through temperature as
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𝑠 =
𝑇𝑚−𝑇1−𝑎

𝑇2−𝑇1
                                                                                                                  (2—16) 

Then, the enrichment function can be constructed. It is only applied to the element in which, 

the discontinuity is contained. For the continuous elements, normal shape functions are 

applied. The system of equations is solved by the Newton-Raphson method and the line-

search method [64]. 

To author’s knowledge, several difficulties of XFEM are listed as below: 

(1) The enrichment shape functions and the extra nodal degree of freedom generates a 

larger matrix than the GFEM, which will obviously cost extra computational time 

and storage space; 

(2) Special attention must be taken when assembling the system because three kinds of 

matrices are involved. These matrices are the standard matrix, the partial enriched 

matrix and the fully enriched matrix; 

The XFEM requires the accurate position of the interface. Therefore, the high accuracy 

achieved by XFEM is related to the accuracy of the prescribed interface position. However, 

for Stefan-like problems, the evaluation of interface position itself is a great challenge for 

multi-dimensional problems. 

2.3 The non-physical enthalpy method 

This project is based on the recent non-physical enthalpy method provided by Davey and 

Mondragon [63]. In references [63], the definition of non-physical enthalpy is defined via 

the weak form of energy transport equation as 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ
Γ

(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ = −∫ 𝑞
Γ

∙ 𝑛𝑑Γ + ∫ 𝜌𝑄
Ω

𝑑𝑉  

                                                                                                                                       (2—17) 

where ℎ̂  is the non-physical enthalpy, 𝑣∗  is the control volume velocity, Ω  is a control 

volume transported with 𝑣∗ and Γ is the boundary of Ω. The derivative 𝐷∗ 𝐷∗𝑡⁄ = 𝜕 𝜕𝑡⁄ +

𝑣∗ ∙ ∇. 

It can be seen in equation (2—17) that, the rate change of physical enthalpy and the change 

of enthalpy due to advection are now all reflected by the change of non-physical enthalpy 
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alone. The non-physical enthalpy is forced to be continuous in the control volume, i.e. 

]ℎ̂𝑛[ = 0, where the bracket ]∎[ signifies a jump. Then, discontinuity can be isolated in a 

non-physical source ℎ′̂  through mathematical analysis. A schematic sketch of the 

relationship between the non-physical enthalpy ℎ̂ and the non-physical source ℎ′̂ can be seen 

in Figure 2.5. 

 

Figure 2.5: Non-physical behaviour on 1D elements: (a) moving source; (b) edge discontinuities; 

and (c) moving source and edge discontinuities [63]. 

Both Figure 2.5 (a) and Figure 2.5 (c) depict possible relationships of ℎ̂ and ℎ′̂ depending on 

how the two terms are evaluated. If the non-physical source ℎ′̂ is able to completely remove 

the discontinuity in ℎ̂ , then their relationship is depicted in Figure 2.5 (a). If the non-physical 

source ℎ′̂ only removes part of the discontinuity in ℎ̂, but the magnitude of discontinuity is 

much lowered in ℎ̂, then their relationship is depicted in Figure 2.5 (c). It has to be mentioned 

that, the non-physical enthalpy ℎ̂ is still continuous within the element which contains the 

phase interface. The Figure 2.5 (b) is a sketch of control volume capacitance method which 

was developed by Davey et al [66]. 

In the definition of non-physical enthalpy, the control volume velocity 𝑣∗ governs the shape 

and position of the control volume. It is defined for the convenience of analysis and solution. 

For example, on setting 𝑣∗ = 𝑣, where 𝑣 is the material velocity, equation (2—17) becomes 
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the Lagrangian descripted transport equation. This is not always permitted because the 

material velocity is discontinuous on the phase interface. So, one simple setting is 𝑣∗ = 0, 

and equation (2—17) returns the Eulerian descripted transport equation. It is always 

permitted because 0 is continuous. 

The transport equation (2—17) is not ideally suited for analysing a phase interface, and it 

can be seen that no information about discontinuity is provided in this equation. Therefore, 

it is necessary to consider another control volume Ω+ which movement is controlled by 

velocity 𝑣+. The transport equation with in this control volume is 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω+

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω+

𝑑𝑉 + ∫ 𝜌ℎ
Γ+

(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ = −∫ 𝑞
Γ+

∙ 𝑛𝑑Γ + ∫ 𝜌𝑄
Ω+

𝑑𝑉  

                                                                                                                                      (2—18) 

Application of equation (2—18) to a control volume Ω𝑖 which encloses to the phase interface, 

it gives 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω𝑖

𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑𝐴
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙

Γ𝑖
𝑙

(−𝑛)𝑑Γ =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω𝑖

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 +

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑙 = −∫ 𝑞 ∙ 𝑛𝑑Γ

Γ−Γ𝑖
𝑠−Γ𝑖

𝑙 − ∫ 𝑞 ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑠 − ∫ 𝑞 ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑙 +

∫ 𝜌𝑄
Ω𝑖

𝑑𝑉                                                                                                                      (2—19) 

where Γ − Γ𝑖
𝑠 − Γ𝑖

𝑙, Γ𝑖
𝑠 and Γ𝑖

𝑙 are the boundary of Ω𝑖. 

When the control volume Ω𝑖 is shrunk down until its volume is zero, i.e. 𝑣𝑜𝑙(Ω𝑖) → 0 with 

Γ𝑖 ⊂ Ω𝑖. A source equation can be derived as 

𝐷+

𝐷+𝑡
∫ ℎ̂′
Γ𝑖

𝑑Γ + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

+ ∫ ]ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

= ∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙
Γ𝑖

(−𝑛)[𝑑Γ = −∫ ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

                                                                                  (2—20) 

where the bracket ]∎[ signifies a jump term,  Σi is the boundary of Γ𝑖, and 𝑡𝑛 is the outward 

pointing unit normal in the tangent plane of the Γ𝑖 on the curve Σi. Equation (2—20) provides 

the definition for non-physical source ℎ̂′ in Figure 2.5 (a) and (c). It also facilitates the 

isolation of discontinuity from the non-physical enthalpy ℎ̂. 
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The non-physical enthalpy method can be a fixed grid method, which means that, it can be 

easily implemented into the existing finite element method and programmes. The semi-

discretized equation can be obtained by the application of weighed residual method. The 

weighed transport equation is 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ
Ω

𝑑𝑉 − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω

𝑑𝑉 + ∫ 𝑊𝜌ℎ
Γ

(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ =

∫ 𝑞 ∙ ∇𝑊
Ω

𝑑𝑉 − ∫ 𝑊𝑞
Γ

∙ 𝑛𝑑Γ + ∫ 𝜌𝑄
Ω

𝑑𝑉                                                                (2—21) 

where W is the weighting function, and it is assumed transport invariantly with the control 

volume Ω [63]. Analysis shows that some sources are contained in the terms ∫ 𝜌ℎ(𝑣 −
Ω

𝑣∗) ∙ ∇𝑊 𝑑𝑉  and ∫ 𝑞 ∙ ∇𝑊
Ω

𝑑𝑉 . The annihilation of these sources are achieved by the 

application of 𝛼-time integration to the term ∫ 𝑞 ∙ ∇𝑊
Ω

𝑑𝑉 and the strong form of source 

equation (2—20). 

The discontinuity can be isolated by the subtraction of the weighted source equation off from 

the weighted transport equation. The weighted transport equation without discontinuity can 

be written as 

 
𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω\Γ𝑖

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− (∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

) =

−∫ 𝑞 ∙ 𝑛𝑑𝐴
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉 − (−∫ ]𝑞 ∙ (−𝑛)[ 𝑑𝐴
Γ𝑖

)                                                   (2—22) 

where Ω\Γ𝑖 signifies the control volume without discontinuity. 

With the discontinuity isolated, the element continuous approximation for the weighting 

function 𝑊  and the non-physical enthalpy ℎ̂  can be applied. In order to calculate the 

temperature field through equation (2—22), the non-physical capacitance 𝑐̂ is introduced, 

i.e. ℎ̂ = 𝑐̂𝑇 for 𝑇 ≠ 0. The evaluation of 𝑐̂ can be conducted by the application of mean-

value approach to the integration. Then, equation (2—22) can be solved by the application 

of bisection method and the successive over-relaxation method [63].

Review of reference [63] generates some considerations about the non-physical enthalpy 

method. Firstly, reference [63] considers the weighting function transport invariantly with 

the control volume Ω. However, further consideration needs to be taken for the weighting 

function transporting with the control volume Ω+, where the derivative 𝐷+𝑊 𝐷+𝑡⁄  is not 
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necessarily zero. Secondly, the mathematical derivation of non-physical enthalpy method is 

very clear. The equation required to be solved by finite element method is well established 

as equation (2—21). However, when considering the numerical aspect, the source 

(−∫ ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

) is accounted for with a capacitance term, which more or less returns 

the method back to the CVCM. Thirdly, the bisection method is a simple and robust root 

finding method. However, this method requires that the root should be between the present 

value and predicted value. This criterion is not always guarantied in the solution procedure 

and the programme may fail to converge. Fourthly, the non-physical enthalpy method 

ignores the movement of material, i.e. the material velocity 𝑣 = 0. For advection dominated 

problem, it will give rise to negative capacitance, and the influence of negative capacitance 

requires further study. 

2.4 Advection/convection in solidification 

Much research neglects the term of advection/convection. Advection is defined as the 

transport of property, such as enthalpy, by the motion of material. The motion can exist in 

both solid and liquid. Convection is defined as the transport of property by the fluid flow or 

the diffusion. Therefore, convection only exists in the liquid and not in the solid. However, 

the process of solidification does not only involve thermal conduction through solid phase 

and liquid phase, it also involves heat transfer due to the motion of material [78]. Advection 

is related to the velocity of material, which is present in the second term ∇ ∙ (𝜌ℎ𝑣)  in 

equation (2—1). This term may also relate to natural convection, which has both advection 

and diffusion. It is driven by the buoyancy forces [79-81]. Many solidification phenomena 

can be affected by the natural convection, such as macrosegregation, phase-interface stability, 

dendrite growth, etc. [82]. The solid phase has no natural convection, so only conductive 

heat transfer is considered in solid. But liquid material can flow, so the heat transfer of liquid 

is controlled by both diffusion and advection [83]. In other studies, such as ice in a stream, 

the solid is also moving with flowing water. In industry, squeeze casting and continuous 

casting, solid material is forced to move through a mould by the incoming liquid material, 

so, advection exists in both phases. 

Advection brings the issue of instability to the numerical methods. Numerical oscillations 

[71-74] arise as a consequence of unstable modes associated with complex eigenvalue from 

large elemental Peclèt numbers [84-86]. In order to resolve this problem, Courant et al. 
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introduced the upwind method to the hyperbolic PDEs [87]. This technique has been applied 

to numerical methods, such as in references [88-89]. The upwind method is popular for the 

FDM and FVM. With the FEM gaining popularity for fluid applications, the Petrov-Galerkin 

method and the least-squares methods have developed for enhancing the stability of the 

general Galerkin method. The Petrov-Galerkin is also an upwind method, which has been 

applied to the solidification [90-94]. Applications of the least-squared method can be found 

in references [95-100]. 

In the Petrov-Galerkin method, the weighting functions adopted in the Galerkin method are 

modified to weight the node from upwind element heavier than the node from the current 

element. The idea of least-squares method came from the field of probability and statistics, 

due to an interest in the establishment of a linear relationship between variables. In the 

normal weighted residual method, for an equation such as 

𝑣
𝜕𝑇

𝜕𝑥
= 𝑞                                                                                                                        (2—23) 

The residual 𝑅(𝑇, 𝑥) = 𝑣(𝜕𝑇 𝜕𝑥⁄ ) − 𝑞  goes to 0, which is identically zero for an exact 

solution but non-zero otherwise. The finite element equation is obtained by weighting 

equation over the domain of interest, i.e. 

∫ 𝑊𝑅(𝑇, 𝑥)
Ω𝑒

𝑑𝑉 = 0                                                                                                   (2—24) 

where Ω𝑒 is the domain of an element. 

The difference between the least-squares method and the normal weighted residual method 

is that the weighting function is the derivative of residual instead of the shape functions, such 

as 

𝑊 =
𝜕𝑅(𝑇,𝑥)

𝜕𝑇
                                                                                                                  (2—25) 

Assuming that 𝑇  is the unknown field variable, the equation 

∫ (𝜕𝑅(𝑇, 𝑥) 𝜕𝑇⁄ )𝑅(𝑇, 𝑥)
Ω𝑒

𝑑𝑉 = 0 tries to find the best 𝑇 that minimizes the error. 

Comparing the upwind method, the Petrov-Galerkin method and the least-squares method 

from the literature, it can be seen that, the classical upwind method suffers the problem of 

under-diffusion [101], though it is the simplest method to stabilise the numerical methods, 

and it can be easily applied to the FDM, FVM and FEM. The Petrov-Galerkin method is 
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applied to the FEM, where the weighting function is changed, which gives rise to assembled 

system matrices, which are slightly more complex than that involved in the standard 

Galerkin method. Once the matrices are created, however they can be used widely to solve 

a great many of problems. The approach overcomes the under-diffusion problem encounted 

in the classical finite element method. The least-squared method is less popular than the 

other two methods. The main drawback of this method is that, it gives rise to relatively 

complex system matrices. For first-order PDE [102], such as reduced wave equation [103], 

it is relatively easy to apply the least-squared method. However, for second order PDEs, 

such as steady state convection-diffusion heat transfer [104], the difficulty is significantly 

increased.  

2.5 Summary 

This chapter aimed to review previous research related to the study of the numerical methods 

for solidification. Solidification is a phase change problem, and the evaluation of latent heat 

of fusion is needed prior to the problem. If the method focuses on the condition of the phase 

interface through Stefan condition, such as the interface position and the interface velocity, 

then the method is categorized into the front tracking method. If the method attempts to deal 

with the latent heat of fusion, then it is categorized as an enthalpy method. In this chapter, 

deep review of two recent studies are provided, one is for the front tracking method and the 

other is for the enthalpy method. Voller [105] in 1990 listed some requirements for the 

methods. Over the last twenty years, the classical methods have been improved, while some 

new methods are developed. The front tracking methods are now able to deal with the multi-

dimensional problems with complex geometry. This advance has been achieved with the 

dramatically advanced performance of computers. However, they are still difficult to be 

implemented into the existing computer codes because extra systems of equations are 

generated to track and update the condition of the phase front. It also makes the front tracking 

method not very computationally effective, although it is considered more accurate than 

enthalpy methods. Enthalpy methods have also been improved greatly, such as the control 

volume capacitance method. The modern enthalpy method inherits many advantages of the 

classical enthalpy method. It can be easily applied to the existing finite element method to 

deal with the multidimensional problems. Also, the simplicity of the enthalpy methods 

makes them more efficient than the front tracking method, and nowadays, they are able to 

provide results with desired accuracy. 
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Both methods however have some drawbacks. For example, the front tracking methods have 

to evaluate the Stefan condition, but the evaluation procedure is still problematic. And for 

the enthalpy method, good evaluation of liquid fraction and update techniques are still 

waiting to be developed. The enthalpy method is also weak when the phase front must be 

determined, such as the simulation of dendrite growth. What’s more, for both methods, the 

advection/convection coupled problems are becoming hot topics. 

In general, the author believes that the enthalpy methods have the advantages to deal with 

the solidification with advection/convection or other phenomena. This is due to the easy 

implementation into well-developed finite element methods. Scientists and engineers are 

able to focus more on the other aspects, such as advection, electro-magnetic effect, 

convection, etc. instead of putting much attention on dealing with complicated mathematics. 
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Chapter 3 The Theoretical Study on 

the Non-physical Enthalpy Method  

3.1 General 

The non-physical enthalpy method can be categorised as a fixed domain method. The term 

‘non-physical’ means that, the enthalpy is not required to have any physical meaning, but it 

should still satisfy the mathematical laws related to the governing equations. This concept is 

developed from the effective capacitance method [39, 41] and the control volume 

capacitance method (CVCM) [66], and it was first introduced by Davey et al [62-63]. The 

non-physical method uses continuous but non-physical variables to replace the 

discontinuous physical variables. However, in this procedure, one or more source-like term 

will be generated, which can be difficult to implement with numerical methods. There are 

two reasons for the difficulties. Firstly, the non-physical jump is generated from the phase 

interface, however, in the fixed grid method, the phase interface is not tracked, and the non-

physical jump has to be applied to the existing elements and nodes through approximations. 

Secondly, the non-physical jump is related to the latent heat energy which can be very large, 

and this may cause numerical temperature overflow during computation. The new non-

physical variables are not unique because their definition is through transport equations, and 

they change if a different analysis type is applied. The method for the definition and the 

evaluation of non-physical enthalpy is still an open problem. This chapter starts from the 

study of the recently developed non-physical enthalpy method by Davey and Mondragon 

[62-63]. The analysis is conducted on the definition of non-physical enthalpy, which is 

provided in references [62-63]. This chapter adopts the same analysis as provided in 

references [62-63] for the non-weighted non-physical transport equation. As a matter of fact, 

it evolves four different velocities in the mathematical modelling. The material velocity 𝑣 

controls the motion of material which is for advection. The velocity 𝑣∗ controls the shape 

and position of a control volume. It offers an opportunity to switch the transport equation 

between the Lagrangian description and the Eulerian description. The velocity 𝑣+ is used to 

describe the propagation of phase interface through the control volume Ω+, which is moving 

with the phase interface. And the velocity 𝑣× is also for the phase interface but particularly 
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for the elemental control volume Ω×. Unlike the analysis in references [62-63], a different 

analysis on the weighted non-physical transport equation is provided. This analysis considers 

a situation that, the weighting function can vary with time and space in the domain Ω+, i.e. 

𝐷+𝑊/𝐷+𝑡 is non-zero. Moreover, a further study of the behaviour of non-physical source 

with prescribed temperature and various approximations of solid/liquid volume fraction is 

conducted. This study is aimed to examine the feasibility and capability of discontinuity 

isolation. Generally speaking, This chapter helps to achieve a better understanding of the 

idea of the non-physical enthalpy method. 

3.2 The definition of non-physical enthalpy 

A conservation law for enthalpy is of the form 

𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉                            (3—1) 

where Ω is a control volume (CV) transported with velocity 𝑣∗, the control surface Γ (CS) is 

the boundary of Ω, the vector 𝑛 is the outward pointing unit normal to the boundary Γ, 𝜌 is 

the density, ℎ is the specific enthalpy, 𝑞 is the heat flux and 𝑄 is the specific heat source [62-

63]. The temporal derivative 𝐷∗ 𝐷∗𝑡⁄  outside the integration in the Equation (3—1) signifies 

the CV is moving, and its movement is governed by the velocity field 𝑣∗. The velocity field 

𝑣∗ can be time and spatial dependent, i.e. 𝑣∗(𝒙, 𝑡), where 𝒙 is the co-ordinates in the spatial 

reference system. The points 𝒙 can be a function of vector 𝒙(𝜒∗, 𝑡), where a reference 

control volume Ω∗  is regarded as a collection of points 𝜒∗ . The control volume Ω∗  can 

change its shape due to the velocity 𝑣∗ . Consequently, this velocity can be defined as 

𝑣∗(𝒙(𝜒∗, 𝑡), 𝑡) = 𝐷∗𝒙 𝐷∗𝑡⁄ = 𝜕𝒙(𝜒∗, 𝑡) 𝜕𝑡⁄ , where 𝐷∗ 𝐷∗𝑡⁄ = 𝜕 𝜕𝑡⁄ + 𝑣∗ ∙ ∇ [62-63]. 

,Equations (3—1) can be transformed into more familiar forms by just letting 𝑣∗ = 𝑣 if 

permitted or 𝑣∗ ∙ 𝑛 = 0, which is always permitted, so the Lagrangian and the Eulerian forms 

can be obtained as 

𝐷

𝐷𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 = −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉                                                                    (3—2a) 

and 

𝜕

𝜕𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉                                         (3—2b) 



Chapter 3: 3.2 The definition of non-physical enthalpy     47 
 

The permission means that if the material velocity 𝑣 is discontinuous in different phases due 

to material property difference, the relation 𝑣∗ = 𝑣  cannot be set, because the domain 

velocity 𝑣∗ is always considered as continuous. Setting 𝑣∗ = 0 is always permitted because 

zero is continuous and the problem becomes a fixed domain problem. 

The Eulerian and Lagrangian descriptions of flow field can be understood as followed. If a 

field quantity, i.e. temperature 𝑇, is measured at two fixed computational points, and is vary 

with time. The change of this field quantity in a time period ∆𝑡  can be described as 

∆𝑡(𝜕𝑇 𝜕⁄ 𝑡) + ∆𝑣 ∙ 𝛻𝑇, which is known as the Eulerian description of flow field. If the field 

quantity is measured at a material point, and this point is moving with the flow. The change 

of the field quantity in a time period ∆𝑡 can be described as ∆𝑡[𝜕𝑇 𝜕⁄ 𝑡 + 𝑣 ∙ 𝛻𝑇], which is 

known as the Lagrangian discerption of flow field. Both descriptions can be related by the 

identity that 

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑣 ∙ ∇                                                                                                               (3—3) 

where 𝑣 is the material velocity field, ∇(∎) = {𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦⁄ , 𝜕 𝜕𝑧⁄ } is the gradient, and ∇ ∙

(∎) = 𝜕 𝜕𝑥⁄ + 𝜕 𝜕𝑦⁄ + 𝜕 𝜕𝑧⁄  is the divergence. The Eulerian control volume is fixed. The 

heat change in the control volume is the difference between the heat flow in and the heat 

flow out. The Lagrangian control volume can change its shape. The material is tracked, and 

the shape changes because of the material velocity. 

The non-physical enthalpy ℎ̂ is defined via the energy transport equation in references [62-

63] as 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉     (3—4) 

With this definition, the rate change of physical enthalpy and the change of 

advection/convection are accounted for by the rate change of non-physical enthalpy alone. 

The non-physical enthalpy is made continuous at a discontinuity and it gives rise to the 

possibility that a physical discontinuity can be represented by a continuous non-physical 

field on which a non-physical source is superimposed. The non-physical enthalpy method 

can be a fixed grid method by setting 𝑣∗ = 0, which means that, it can be easily implemented 

with existing finite-element programmes. 
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The sketch of the CV is depicted in Figure 3.1. The phase interface Γ𝑖 separates the CV Ω 

into two phases, the solid phase Ω𝑠 and the liquid phase Ω𝑙. When the material in the CV is 

solidifying, the interface Γ𝑖  is propagating with the velocity 𝑣𝑖 . The symbols Γ𝑖
𝑠  and Γ𝑖

𝑙 

denote the portions of the boundaries of the sub-domain  Ω𝑠 and Ω𝑙, which are alongside the 

phase interface, respectively. The vectors 𝑛𝑠 and 𝑛𝑙 are the outward pointing unit normal at 

Γ𝑖
𝑠 and Γ𝑖

𝑙.  

 

Figure 3.1: The control volume with phase change 

Application of the Divergence theorem and the Reynold-type transport theorem to equation 

(3—4) gives 

𝐷∗

𝐷∗𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣∗ =

𝐷∗ℎ

𝐷∗𝑡
+ 𝜌(𝑣 − 𝑣∗)𝛻ℎ = −𝛻 ∙ (𝑞) + 𝜌𝑄                                              (3—5) 

The derivation of equation (3—5) from equation (3—4) can be found in the Appendix I—

(b). It is readily apparent from equation (3—5) that the physical specific enthalpy ℎ is not 

dependent on the velocity field 𝑣∗, but the non-physical enthalpy ℎ̂ however is governed by 

the velocity 𝑣∗. This is an important point as it highlights the non-physical nature of ℎ̂ being 

dependent on the analysis type. 

Equation (3—4) cannot immediately be applied to find a relationship between the non-

physical enthalpy ℎ̂  and the discontinuity embodied in the governing equation. This is 

because in equation (3—4), the condition of the discontinuous interface is not specified. 
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Thus, an analysis provided by Davey and Mondragon [62-63] is adopted here, which is to 

consider a new CV Ω+ with particular features. The CV Ω+ is transported with the phase 

interface, and its propagation is governed by a velocity field 𝑣+. As a consequence, the 

relationship 𝑣+ ∙ 𝑛 = 𝑣𝑖 ∙ 𝑛 occurs at the interface boundary Γ𝑖. The transport equation with 

respect to the domain Ω+ is 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω+

𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

=
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω+

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

= −∫ 𝑞 ∙
Γ+

𝑛𝑑Γ + ∫ 𝜌𝑄
Ω+

𝑑𝑉                                                                                                           (3—6) 

where the boundary integral on the left hand side (LHS) of equation (3—6) is required to 

ensure ℎ̂ is identical to that found in equations (3—4) and (3—5). Equation (3—6) also 

ensures that the non-physical enthalpy ℎ̂ is independent on the velocity 𝑣+ .  Moreover, 

applying the Reynold transport theorem and the divergence theorem to the LHS term of 

equation (3—6) gives 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω+

𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

= ∫
𝐷+

𝐷+𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣+ + ∇ ∙ (ℎ̂(𝑣∗ − 𝑣+)) 𝑑𝑉

Ω+
  

                                                                                                                                       (3—7) 

Then, by the product rule of differentiation, it gives 

∫
𝐷+

𝐷+𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣+ + ∇ ∙ (ℎ̂(𝑣∗ − 𝑣+)) 𝑑𝑉

Ω+
= ∫

𝜕

𝜕𝑡
ℎ̂ + ∇ ∙ (ℎ̂𝑣+) + ∇ ∙ (ℎ̂(𝑣∗ − 𝑣+)) 𝑑𝑉

Ω+
  

                                                                                                                                        (3—8) 

The velocity 𝑣+ is cancelled, then 

∫
𝜕

𝜕𝑡
ℎ̂ + ∇ ∙ (ℎ̂𝑣+) + ∇ ∙ (ℎ̂(𝑣∗ − 𝑣+)) 𝑑𝑉

Ω+
= ∫

𝜕

𝜕𝑡
ℎ̂ + ∇ ∙ (ℎ̂𝑣∗)𝑑𝑉

Ω+
                       (3—9) 

Equation (3—9) proves that in the CV Ω+, 𝐷+ (∫ ℎ̂
Ω+

𝑑𝑉) 𝐷+𝑡⁄ + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

=

𝐷∗ (∫ ℎ̂
Ω+

𝑑𝑉) 𝐷∗𝑡⁄ , which is the LHS term of equation (3—4). The corresponding strong 

form (PDE) is 

𝜕ℎ̂

𝜕𝑡
+ 𝜌(𝑣∗ − 𝑣+) ∙ ∇ℎ̂ = 𝜌

𝐷+ℎ

𝐷+𝑡
+ 𝜌(𝑣 − 𝑣+) ∙ ∇(ℎ) = −∇ ∙ 𝑞 + 𝜌𝑄                           (3—10) 
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From the previous section, the non-physical term is forced to be continuous at the phase 

interface, that is to say ]ℎ̂𝑛[ = ℎ̂𝑙𝑛𝑙 + ℎ̂𝑠𝑛𝑠 = (ℎ̂𝑙 − ℎ̂𝑠)𝑛𝑙 = 0 , so the discontinuity is 

accounted for by the non-physical source ℎ̂′ . This source term however facilitates the 

isolation of any discontinuity from the LHS of equation (3—4). So it is necessary to apply 

equation (3—6) to each sub-domain gives three transport equations which are 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω𝑖

𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙

Γ𝑖
𝑙

(−𝑛)𝑑Γ =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω𝑖

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 +

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑙 = −∫ 𝑞 ∙ 𝑛𝑑Γ

Γ−Γ𝑖
𝑠−Γ𝑖

𝑙 − ∫ 𝑞 ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑠 − ∫ 𝑞 ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑙 +

∫ 𝜌𝑄
Ω𝑖

𝑑𝑉                                                                                                                     (3—11a) 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω𝑙

𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γl

+ ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ𝑖
𝑙 =

𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω𝑙

𝑑𝑉 +

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γl

+ ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ𝑖
𝑙 = −∫ 𝑞 ∙ 𝑛𝑑Γ

Γl
− ∫ 𝑞 ∙ 𝑛𝑑Γ

Γ𝑖
𝑙 + ∫ 𝜌𝑄

Ω𝑙
  

                                                                                                                                     (3—11b) 

and 

𝐷+

𝐷+𝑡
∫ ℎ̂
Ω𝑠

𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γs

+ ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ𝑖
𝑠 =

𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω𝑠

𝑑𝑉 +

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γs

+ ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ𝑖
𝑠 = −∫ 𝑞 ∙ 𝑛𝑑Γ

Γs
− ∫ 𝑞 ∙ 𝑛𝑑Γ

Γ𝑖
𝑠 + ∫ 𝜌𝑄

Ω𝑠
𝑑𝑉   

                                                                                                                                     (3—11c) 

where Ω+ = Ω𝑖 ∪ Ω𝑠 ∪ Ω𝑙,  𝜕Ω𝑠 = Γs ∪ Γ𝑖
𝑠,  𝜕Ω𝑙 = Γ𝑙 ∪ Γ𝑖

𝑙. 

A jump-like non-physical source term ℎ̂′ can be gained either by shrinking the Ω𝑖 down, that 

is to say, 𝑣𝑜𝑙(Ω𝑖) → 0 with Γ𝑖 ⊂ Ω𝑖 , or by subtracting equations (3—11b) and (3—11c) 

from the equation (3—6). And the definition of ℎ̂′ is 

𝐷+

𝐷+𝑡
∫ ℎ̂′
Γ𝑖

𝑑Γ + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

+ ∫ ]ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

= ∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙
Γ𝑖

(−𝑛)[𝑑Γ = −∫ ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

                                                                                   (3—12) 



Chapter 3: 3.3 Removal of the non-physical source term     51 
 

where the bracket ]∎[ signifies a jump term,  Σi is the boundary of Γ𝑖, and 𝑡𝑛 is the outward 

pointing unit normal in the tangent plane of the Γ𝑖 on the curve Σi. A sketch of  𝑡𝑛 is shown 

in the Figure 3.2. The vector 𝑡𝑛 indicates that the phase interface Γi may shrink or expand in 

the direction of 𝑡𝑛 to accommodate the shape of the external boundary Γ𝑖. 

 

Figure 3.2: The tangent unit outward normal 𝑡𝑛 

Equation (3—12) can be obtained either by letting the Ω𝑖 shrinks down to a volume with 

infinitesimal thickness which is shown in equation (3—11a), or by summing equations (3—

11b) and (3—11c), then compare with equation (3—6). All values are related to the volume, 

such as ∫ 𝜌ℎ
Γ𝑖

𝑑Γ, because Γ𝑖 in equation (3—12) has an infinitesimal thickness. Assuming 

that no additional heat is applied to the system at Γ𝑖, which gives ∫ 𝜌𝑄
Γ𝑖

𝑑Γ = 0. The non-

physical enthalpy is considered to be continuous at the interface boundary Γ𝑖, thus the third 

term on the LHS of equation (3—12) has to be 0, i.e. ∫ ]ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

= 0. For 

fixed grid mesh, i.e. 𝑣∗ = 0. 

3.3 Removal of the non-physical source term 

In section 3.2, the non-physical source ℎ̂′ is defined through the transport equation. The 

sources equation is established for the isolation of discontinuity from the transport equation. 

A schematic sketch of the relationship between non-physical enthalpy ℎ̂ and non-physical 

sourceℎ̂′ is depicted in Figure 2.5 (a). The isolation of discontinuity is achieved by noting 

that the relationship between the two transporting control volumes is 
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𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ ℎ̂
Ω

𝑑𝑉 + ∫ ℎ̂
Γ

(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ                                                   (3—13) 

where 𝑣∗ ∙ 𝑛 = 𝑣+ ∙ 𝑛 on Γ. 

Thus, discontinuity exclusion for equation (3—5) can be achieved by 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω\Γ𝑖

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ ℎ̂
Ω

𝑑V + ∫ ℎ̂
Γ

(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ − (
𝐷+

𝐷+𝑡
∫ ℎ̂′
Γ𝑖

𝑑Γ + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙
Σi

𝑡𝑛𝑑Σ) = −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉 − (
𝐷+

𝐷+𝑡
∫ ℎ̂′
Γ𝑖

𝑑Γ + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

)     (3—14) 

where the notation Ω\Γ𝑖  means that the boundary Γ𝑖  is excluded from Ω . The term 

𝐷+ (∫ ℎ̂′
Γ𝑖

𝑑Γ) /𝐷+𝑡  is correspond to the discontinuous interface of the CV 

integral𝐷+ (∫ ℎ̂
Ω

𝑑𝑉) /𝐷+𝑡 , and the term ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

 is corresponds to the 

discontinuous boundary of the CS integral ∫ ℎ̂
Γ

(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ. 

Substituting equation (3—12) into equations (3—14) gives 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω\Γ𝑖

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− (∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

) =

−∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉 − (−∫ ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

)                                                  (3—15) 

For the convenience of solution, equation (3—15) can be divided into two equations, which 

are 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω\Γ𝑖

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− (∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

)  

                                                                                                                                      (3—16) 

and 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω\Γ𝑖

𝑑𝑉 = −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉 − (−∫ ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

)                         (3—17) 

The evaluation of non-physical enthalpy ℎ̂ can in principle be achieved via equation (3—

16), which provides the relationship between the non-physical and physical enthalpy. 

Equation (3—17) can in principle be discretised and solved by numerical methods. On the 

LHS of this equation, the term is absent of any discontinuity. But the price is that, on the 

RHS of the equation, two extra terms have been generated through the discontinuity removal 
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procedure. The terms are non-linear and have the potential to cause problems for any 

numerical method. How to incorporate these terms into a numerical method needs to be 

further investigated. 

3.4 The weighted non-physical governing equations 

Equation (3—17) can be solved by the finite element method. To derive a finite element 

system, the weighted-residual approach is adopted, which is able to generate the 

characteristic matrices and vectors directly from the governing transport equations. And the 

Galerkin method is applied for the spatial discretization [108-112]. Unlike the recent non-

physical enthalpy method, this section aims to analysis the weighted transport equation and 

the discontinuity isolation by considering a situation that (𝐷+𝑊 𝐷+𝑡⁄ ) is non-zero. This new 

analysis avoid the consideration of the strong form of source equation. 

The weighted form of equation (3—4) is given as 

 
𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω

𝑑𝑉 =

−∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑞 ∙ ∇𝑊𝑑Γ
Ω

+ ∫ 𝜌𝑄
Ω

𝑑𝑉                                                              (3—18) 

where 𝑊 is the weighting function which in the first instance is assumed smooth or at least 

continuous up to the first derivative i.e., is in C1(Ω). It is also transported invariantly with 

the domain Ω, i.e. 𝐷∗𝑊 𝐷∗𝑡⁄ = 0. 

Similarly, the weighted transport governing equation (3—6) for the domain Ω+ is 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂
Ω+

𝑑𝑉 − ∫ (
𝐷+𝑊

𝐷+𝑡
) ℎ̂

Ω+
𝑑𝑉 + ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ

Γ+
− ∫ ℎ̂(𝑣∗ − 𝑣+) ∙

Ω+

∇𝑊𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω+

𝑑𝑉 − ∫ (
𝐷+𝑊

𝐷+𝑡
) 𝜌ℎ

Ω+
𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ

Γ+
− ∫ 𝜌ℎ(𝑣 −

Ω+

𝑣+) ∙ ∇𝑊 𝑑𝑉 = −∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ+

+ ∫ 𝑞 ∙ ∇𝑊
Ω+

𝑑𝑉 + ∫ 𝑊𝜌𝑄
Ω+

𝑑𝑉                            (3—19) 

The assumptions made for the weighting function 𝑊 in the domain Ω apply to the domain 

Ω+ , but to accommodate for the possibility that 𝐷+𝑊 𝐷+𝑡⁄ ≠ 0  the terms 

∫ (𝐷+𝑊 𝐷+𝑡⁄ )ℎ̂
Ω+

𝑑𝑉 and ∫ (𝐷+𝑊 𝐷+𝑡⁄ )𝜌ℎ
Ω+

𝑑𝑉 are required in equation (3—19). 

The two derivatives involved for the weighting function are related by the identity 
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𝐷+𝑊

𝐷+𝑡
=

𝐷∗𝑊

𝐷∗𝑡
+ (𝑣+ − 𝑣∗) ∙ ∇𝑊 = (𝑣+ − 𝑣∗) ∙ ∇𝑊                                                       (3—20) 

where simplification arises because 𝐷∗𝑊 𝐷∗𝑡⁄ = 0 as mentioned previously. 

Substitution of equation (3—20) into equation (3—19) gives 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂
Ω+

𝑑𝑉 − ∫ ℎ̂(𝑣+ − 𝑣∗) ∙ ∇𝑊
Ω+

𝑑𝑉 + ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

− ∫ ℎ̂(𝑣∗ − 𝑣+) ∙
Ω+

∇𝑊𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω+

𝑑𝑉 − ∫ 𝜌ℎ(𝑣+ − 𝑣∗) ∙ ∇𝑊
Ω+

𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

−

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ ∇𝑊
Ω+

𝑑𝑉 = −∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ+

+ ∫ 𝑞 ∙ ∇𝑊
Ω+

𝑑𝑉 + ∫ 𝑊𝜌𝑄
Ω+

𝑑𝑉         (3—21) 

which reduces to 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂
Ω+

𝑑𝑉 + ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

=
𝐷+

𝐷+𝑡
∫ 𝜌ℎ
Ω+

𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

−

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω+

𝑑𝑉 = −∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ+

+ ∫ 𝑞 ∙ ∇𝑊
Ω+

𝑑𝑉 + ∫ 𝑊𝜌𝑄
Ω+

𝑑𝑉           (3—22) 

Consider again, applying the weighted transport equation (3—22) to a CV Ωi which encloses 

to the phase interface Γi, to give 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂
Ω𝑖

𝑑𝑉 + ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 + ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 +

∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑙 =

𝐷+

𝐷+𝑡
∫ 𝑊𝜌ℎ
Ω𝑖

𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 +

∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑠 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑙 − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊

Ω𝑖
𝑑𝑉 =

−∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 − ∫ 𝑊𝑞 ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 − ∫ 𝑊𝑞 ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑙 + ∫ 𝑞 ∙ ∇𝑊

Ω𝑖
𝑑𝑉 +

∫ 𝑊𝜌𝑄
Ω𝑖

𝑑𝑉                                                                                                                   (3—23) 

In the limit 𝑣𝑜𝑙(Ω𝑖) → 0 with Γ𝑖 ⊂ Ω𝑖, equation (3—23) shrinks to 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′
Γ𝑖

𝑑Γ + ∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

= ∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

−

lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω𝑖

𝑑𝑉 = −∫ ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

+ lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉  (3—24) 

However, the direct weighting of equation (3—12) provides 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′
Γ𝑖

𝑑Γ − ∫ ℎ̂′
Γ𝑖

(𝑣+ − 𝑣∗) ∙ ∇𝑊𝑑Γ + ∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

− ∫ ℎ̂′(𝑣∗ −
Γ𝑖

𝑣+)
𝑇
 ∙ ∇Γ𝑖𝑊𝑑Γ = ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ

Γ𝑖
= −∫ 𝑊 ]𝑞 ∙ (−𝑛)[ 𝑑Γ

Γ𝑖
              (3—25) 
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where the subscript 𝑇 denotes the tangential component of velocities. 

Substitution of equation (3—24) into equation (3—25) gives 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′
Γ𝑖

𝑑Γ + ∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

+ ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

=

∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

= −∫ 𝑊 ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

                                             (3—26) 

where the subscript 𝑁 denotes the normal component of velocities. The relationship between 

the tangential component and normal component of velocities is depicted in Figure 3.3. 

Comparison between equations (3—25) and (3—26) indicates that 

∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

= lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω𝑖

𝑑𝑉 = − lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙
Ω𝑖

∇𝑊𝑑𝑉                                                                                                                          (3—27) 

where it is recognised that the limits in Equation (3—27) are ill-defined as a consequence of 

discontinuities at Γ𝑖. 

 

Figure 3.3: Discontinuity front moving in a finite element CV 

The LHS of equation (3—24) reveals that the source terms are present in the LHS of equation 

(3—18). The source terms can be removed by subtracting equation (3—24) from equation 

(3—18), i.e.
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𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂
Ω\Γ𝑖

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙
Γ𝑖

(−𝑛)[𝑑Γ − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω

𝑑𝑉 + ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

= −∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ

−

−∫ 𝑊 ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

− ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

+ ∫ 𝜌𝑄
Ω

𝑑𝑉  

                                                                                                                                       (3—28) 

Equation (3—28) can be split into two equations, which are 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂
Ω\Γ𝑖

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙
Γ𝑖

(−𝑛)[𝑑Γ − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω\Γ𝑖

𝑑𝑉                                                                        (3—29) 

and 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂
Ω\Γ𝑖

𝑑𝑉 = −∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ

− (−∫ 𝑊 ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

) − ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω\Γ𝑖

+

∫ 𝜌𝑄
Ω

𝑑𝑉                                                                                                                       (3—30) 

Equation (3—29) is the linkage equation which relates the non-physical enthalpy and the 

physical enthalpy, equation (3—30) is the weighted non-physical governing equation which 

requires to be solved by numerical methods. In equations (3—29) and (3—30), the terms 

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω

𝑑𝑉  and ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

 also contain sources. According to equation 

(3—27), sources contained in both terms cancel with the term ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

. 

3.5 The evaluation of each term in the finite element equations 

3.5.1 Implementation of non-physical enthalpy method in the FEM 

In the Galerkin method, the trial solution functions are assumed to be the elemental shape 

functions, and the unknown constants are regarded as the nodal degree of freedoms. A brief 

derivation of Galerkin weighted residual method can be seen in Appendix I—(c). The 

weighting functions are also shape functions in accordance with the Galerkin approach and 

consequently equation (3—30) can be rewritten as 
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𝐷∗

𝐷∗𝑡
∫ 𝑁𝜗ℎ̃𝑒Ω𝑒\Γ𝑖

𝑒 𝑑𝑉 = −∫ 𝑁𝜗𝑞 ∙ 𝑛𝑑ΓΓe
+ ∫ 𝑞 ∙ ∇𝑁𝜗𝑑ΓΩ𝑒

+ ∫ 𝑁𝜗𝜌𝑄Ω𝑒\Γ𝑖
𝑒 𝑑𝑉 − (−∫ 𝑁𝜗 ]𝑞 ∙Γ𝑖

(−𝑛)[ 𝑑Γ)                                                                                                                    (3—31) 

where the subscript 𝑒 denotes that this is in an elemental domain, and the 𝜗 refers to the 

number of simultaneous algebraic equations of an element. In references [62-63], the term 

−∫ 𝑁𝜗 ]𝑞 ∙ (−𝑛)[ 𝑑ΓΓ𝑖
 is accounted for as a source. The behaviour of this term as a source 

in the finite element system of equations requires to be studied. This is one of the objective 

of this chapter. 

The corresponding approximate solution with respect to non-physical enthalpy is 

ℎ̃𝑒 = ∑ 𝑁𝜍ℎ̂𝜍
𝑁𝑁
𝜍=1                                                                                                              (3—32) 

where ℎ̃𝑒 refers to the trial solution with respect to the element, and the upper-case letters 

𝑁𝑁 refers to the local number of the element node. 

The weighting function of the linkage equation (3—29) can be different to the governing 

equation (3—31), as the linkage equation can only be solved analytically. As a matter of fact, 

the weighing function for equation (3—29) is set to be 1, thus equation (3—29) reduces to 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω𝑒\Γ𝑖

𝑒 𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ωe

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γe

− ∫ ]𝜌ℎ(𝑣 − 𝑣× ) ∙ (−𝑛)[𝑑Γ
Γ𝑖
𝑒   

                                                                                                                                      (3—33) 

where the subscript/superscript 𝑒 and a different velocity 𝑣× indicate that equation (3—33) 

is for an element domain. The velocity 𝑣×  is similar to the velocity 𝑣+. The difference 

between them is that, the velocity 𝑣+  transports the propagation of the phase interface 

through arbitrary CV, but the velocity 𝑣× transports the interface in a finite elemental CV. 

In references [62-63], the material velocity 𝑣 is set to be zero. The influence of non-zero 

material velocity to the change of non-physical capacitance needs to be further examined. 

3.5.2 General simplifications 

The non-uniqueness of the ℎ̂ is apparent from its definition. Through the definition of the 

non-physical enthalpy, extra terms have to be generated. These new terms require 

mathematical evaluation. Then the final solution (nodal temperatures) can be computed by 

the numerical method, such as the finite element method. The evaluation of the ℎ̂ can be 
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achieved via equation (3—33) in the last section, and the evaluation of the ℎ̂′ should be 

conducted via equation (3—12), but it is not necessary because the jump will be evaluated 

through the term ∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣
×) ∙ (−𝑛)[𝑑Γ

Γ𝑖
𝑒  directly in an element. Prior to solving 

equation (3—33), it is prudent to establish a direct mathematical relationship between the 

non-physical enthalpy ℎ̂ and the temperature 𝑇. The simplest approach is to set 

ℎ̂ = 𝑐̂𝑇                                                                                                                           (3—34) 

which is well defined for 𝑇 ≠ 0. 

Substitution of equation (3—34) into equation (3—33) gives 

𝐷∗

𝐷∗𝑡
∫ 𝑐̂𝑇
Ωe\Γ𝑖

𝑒 𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ωe

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γe

− ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖
𝑒   

                                                                                                                                     (3—35) 

The easiest way to simplify equation (3—35) is to set the domain velocity 𝑣∗ = 0, which is 

always permitted as mentioned before. And the mesh becomes a fixed grid. Equation (3—

35) is rewritten as 

𝜕

𝜕𝑡
∫ 𝑐̂𝑇
Ωe\Γ𝑖

𝑒 𝑑𝑉 =
𝜕

𝜕𝑡
∫ 𝜌ℎ
Ωe

𝑑𝑉 + ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

− ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖
𝑒           (3—36) 

The velocity 𝑣×  presented indicates that equation (3—36) is evaluated in an elemental 

domain Ωe, which boundary is Γe. The interface boundary Γ𝑖
𝑒 is also in the domain Ωe. 

Integration of equation (3—36) from time 𝑡𝑛 to time 𝑡𝑛+1 gives 

∫
𝜕

𝜕𝑡
∫ 𝑐̂𝑇
Ωe\Γ𝑖

𝑒 𝑑𝑉
𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = ∫ 𝜌𝑛+1ℎ𝑛+1

Ωe
𝑛+1 𝑑𝑉 − ∫ 𝜌𝑛ℎ𝑛

Ωe
𝑛 𝑑𝑉 + ∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ

Γe
𝑑𝑡

𝑡𝑛+1

𝑡𝑛
−

∫ ∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖
𝑒

𝑡𝑛+1

𝑡𝑛
𝑑𝑡                                                                            (3—37) 

Observing the first two terms on the RHS of equation (3—37), when the domain velocity 

𝑣∗ ≠ 0, the CV Ωe expands and shrinks, thus Ωe
𝑛+1 ≠ Ωe

𝑛 . But in this project, it is assumed 

that 𝑣∗ = 0, which means the elemental CV is stationary, therefore Ωe
𝑛+1 = Ωe

𝑛. 

Evaluation of the third term on the RHS of equation (3—37) is achieved by 

∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
= ∫ 𝜌ℎ(𝑋𝑛+1 − 𝑋𝑛) ∙ 𝑛

Γe
𝑑Γ                                                  (3—38) 
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where the position 𝑋𝑛 is the original position of material at time 𝑡𝑛 and the position 𝑋𝑛+1 is 

the future position of material at time  𝑡𝑛+1 . The simplest approximation can be 

(𝑋𝑛+1 − 𝑋𝑛) = 𝑣(𝑡𝑛+1 − 𝑡𝑛) ≈ ∫ 𝑣𝑑𝑡
𝑡𝑛+1

𝑡𝑛
. Further information on the evaluation of this 

term can be found in Appendix I—(d). 

The non-physical capacitance is evaluated through the mean-value approach to the 

integration. Assuming that the non-physical capacitance 𝑐̂ takes an intermediate value in 

each time interval, so it comes outside the integration. Thus, equation (3—37) returns to 

𝑐̂ =
∫ 𝜌𝑛+1hn+1𝑑𝑉Ωe

−∫ 𝜌𝑛hn𝑑𝑉Ωe
+∫ 𝜌ℎ(𝑋𝑛+1−𝑋𝑛)∙𝑛Γe

𝑑Γ−∫ ∫ ]𝜌ℎ(𝑣−𝑣×)∙(−𝑛)[𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛 𝑑𝑡 

∫ Tn+1𝑑𝑉Ωe
−∫ Tn𝑑𝑉Ωe

           (3—39) 

If there is no material movement (𝑣 = 0), then equation (3—39) returns to 

𝑐̂ =
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉𝛺𝑒

−∫ 𝜌𝑛ℎ𝑛𝑑𝑉𝛺𝑒
+∫ ∫ ]𝜌ℎ𝑣×∙(−𝑛)[𝑑Γ𝛤𝑖

𝑒
𝑡𝑛+1

𝑡𝑛 𝑑𝑡 

∫ 𝑇𝑛+1𝑑𝑉𝛺𝑒
−∫ 𝑇𝑛𝑑𝑉𝛺𝑒

                                                 (3—40) 

As it has been mentioned before, there is no advective term appearing on the RHS of 

equation (3—31), because this is reflected in a change of non-physical enthalpy and 

therefore by a non-physical capacitance change which can be seen in equation (3—39). In 

equation (3—39), the advection is governed by the term ∫ 𝜌ℎ(𝑋𝑛+1 − 𝑋𝑛) ∙ 𝑛
Γe

𝑑Γ. Any 

change of this term will result in a change of non-physical capacitance, and furthermore the 

advection is accounted for by the change of non-physical capacitance. 

The extraction of the jump term ∫ ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 from equation (3—39) 

results an extra term appearing on the RHS of equation (3—31). Both terms require 

evaluation. The approximation to the term ∫ ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 could follow 

the same approach adopted for the approximation of ∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛
Γe

𝑑Γ
𝑡𝑛+1

𝑡𝑛
𝑑𝑡, i.e. 

∫ ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖𝑒

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = ∫ ∫ 𝜌𝑙(ℎ𝑠 − ℎ𝑙)𝑣𝑙 ∙ 𝑛𝑙𝑑ΓΓ𝑖

e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 +

∫ ∫ (𝜌𝑙ℎ𝑙 − 𝜌𝑠ℎ𝑠)𝑣
× ∙ 𝑛𝑙𝑑ΓΓ𝑖

e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡                                                                              (3—41) 

Detailed approach of equation (3—41) can be found in Appendix I—(e). The first term on 

the RHS of equation (3—41) mathematically represents the energy swept by the phase 
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interface by advection, and similarly, the second term on the RHS of equation (3—41) 

mathematically represents the energy swept by the phase interface due to the motion of 

interface itself. 

The application of equations (3—39) and (3—40) for solidification problems requires a 

further evaluation of the volumetric enthalpy 𝜌ℎ as it appears many times in the numerator. 

The following relationships 

ℎ𝑠 = ℎ𝑟𝑒𝑓 + ∫ 𝜌𝑠𝑐𝑠(𝑇′)𝑑𝑇′
𝑇

𝑇𝑟𝑒𝑓
                                                                                    (3—42a) 

and 

ℎ𝑙 = ℎ𝑙𝑖𝑞 + ∫ 𝑐𝑙(𝑇′)𝑑𝑇′
𝑇

𝑇𝑙𝑖𝑞
                                                                                         (3—42b) 

are currently used [39, 41, 62-63, 66]. The subscript 𝑠 and 𝑙 denote the solid phase and the 

liquid phase respectively. In addition ℎ𝑟𝑒𝑓 = 𝑐𝑠𝑇𝑟𝑒𝑓 , where 𝑇𝑟𝑒𝑓  represents the reference 

temperature. Moreover ℎ𝑙𝑖𝑞 = ℎ𝑠𝑜𝑙 + 𝐿 , where 𝐿  is the latent heat of solidification and 

ℎ𝑠𝑜𝑙 = 𝑐𝑠𝑇𝑠𝑜𝑙 is the enthalpy of solidification. 

In some studies, researchers set 𝑇𝑟𝑒𝑓 = 0  [37, 40, 46], other studies regard 𝑇𝑟𝑒𝑓  as the 

solidus temperature 𝑇𝑠𝑜𝑙 in equation (3—42a) and the liquidus temperature 𝑇𝑙𝑖𝑞 in equation 

(3—42b) [39, 41, 43, 62-63, 66]. This project prefers the second configuration, because this 

configuration allows the method to be easily applied to both isothermal solidification and 

mushy zone solidification. Thus equations (3—42a) and (3—42b) become 

ℎ𝑠 = ℎ𝑠𝑜𝑙 + ∫ 𝑐𝑠(𝑇′)𝑑𝑇′
𝑇

𝑇𝑠𝑜𝑙
                                                                                          (3—43a) 

and 

ℎ𝑙 = ℎ𝑙𝑖𝑞 + ∫ 𝑐𝑙(𝑇′)𝑑𝑇′
𝑇

𝑇𝑙𝑖𝑞
                                                                                           (3—43b) 

where the specific capacitance 𝑐𝑠, 𝑐𝑙 are assumed to be constant. The material property of 

different phases are set to be different, i.e. 𝑐𝑠 ≠ 𝑐𝑙 . This makes sure that the strong 

discontinuity in the change of enthalpy. 
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In the isothermal solidification, according to equations (3—43a) and (3—43b), for the 

integral ∫ (𝜌𝑙ℎ𝑙 − 𝜌𝑠ℎ𝑠)𝑣
× ∙ 𝑛𝑙𝑑𝐴Γ𝑖

e  on the RHS of equation (3—41), the approximation 

applies 

(𝜌𝑙ℎ𝑙 − 𝜌𝑠ℎ𝑠) ≈ (𝜌𝑙 − 𝜌𝑠)ℎ𝑠𝑜𝑙 + 𝜌𝑙𝐿                                                                           (3—44) 

In the previous studies, such as the enthalpy method reviewed by Voller et al [7], the density 

of the liquid 𝜌𝑙 is assumed equal to the density of the solid 𝜌𝑠. With equation (3—31), the 

jump term returns a familiar form 𝜌𝑙𝐿(𝑑𝑋𝑖 𝑑𝑡⁄ ) ∙ 𝑛 = ]𝑞 ∙ 𝑛[, which is identical to the Stefan 

condition. 

For a material point, which contains both the solid phase and liquid phase, the enthalpy is 

represented by 

𝜌ℎ = 𝑔𝑠𝜌𝑠ℎ𝑠 + 𝑔𝑙𝜌𝑙ℎ𝑙                                                                                                   (3—45) 

where 𝑔𝑠 and 𝑔𝑙 represent the solid volume fraction and liquid volume fraction respectively. 

There are various approaches for approximation of 𝑔𝑠 and 𝑔𝑙, and the approach adopted can 

affect accuracy and stability; for all approaches however the identity 𝑔𝑠 + 𝑔𝑙 = 1 applies.  

To explain the application of the non-physical variable methods and the above 

approximation approaches in details, a one-dimensional rod element is utilised as an example. 

Illustrated below is how the non-physical capacitance and the conductivity are evaluated in 

a one-dimensional element. 

Substituting of equations (3—43a) and (3—43b) in to equation (3—45) and applying it into 

a one-dimensional elemental CV gives 

∫ 𝜌𝑛ℎ𝑛
Ω𝑒

𝑑𝑉 = ∫ 𝑔𝑠
𝑛𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑒

𝑑𝑉 + ∫ 𝑔𝑠
𝑛

Ω𝑒
𝜌𝑠 ∫ 𝑐𝑠(𝑇

′)𝑑𝑇′
𝑇𝑛

𝑇𝑠𝑜𝑙
𝑑𝑉 + ∫ 𝑔𝑙

𝑛
Ω𝑒

𝜌𝑙ℎ𝑠𝑜𝑙𝑑𝑉 +

∫ 𝑔𝑙
𝑛𝜌𝑙𝑙Ω𝑒

𝑑𝑉 + ∫ 𝑔𝑙
𝑛𝜌𝑙Ω𝑒

∫ 𝑐𝑙(𝑇
′)𝑑𝑇′

𝑇𝑛

𝑇𝑙𝑖𝑞
                                                                                 (3—46) 

In equation (3—50), as well as the temperature, the solid volume fraction is also an important 

parameter for the computation of enthalpy. The methods utilised to predict and evaluate the 

solid fraction/liquid fraction dramatically affect the enthalpy methods such as the non-

physical capacitance method, and the source-based method such as the non-physical source 

method [37, 46, 105]. It can be seen that the solid fraction/liquid fraction not only governs 

the magnitude of sensible heat but also controls the rate release of latent heat. In most 
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simulations, the fraction 𝑔𝑠 or 𝑔𝑙 are usually considered as a function of temperature. The 

numerical evaluation of fraction 𝑔𝑠 or 𝑔𝑙 are point based and usually applied to the methods 

such as FDM and FVM. Voller and Swaminathan [46] considered different approximations 

for the liquid fraction when 𝑇𝑠𝑜𝑙 ≠ 𝑇𝑙𝑖𝑞, and the relationships are shown in Table 3.1. They 

also indicated that the update of liquid fraction is very important to the source based method. 

However, for the isothermal solidification, the relationship 𝑇𝑙𝑖𝑞 = 𝑇𝑠𝑜𝑙  makes all the 

equations in the Table 3.1 undefined.  A Heaviside step function is applied for liquid fraction 

in reference [113], which is 

Type Value of 𝑔𝑙 Condition 

Linear 

𝑇 − 𝑇𝑙𝑖𝑞
𝑇𝑠𝑜𝑙 − 𝑇𝑙𝑖𝑞

 
 

Linear Eutectic 

(1 − 𝑔𝐸)𝑇 + 𝑔𝐸𝑇𝑠𝑜𝑙 − 𝑇𝑙𝑖𝑞
𝑇𝑠𝑜𝑙 − 𝑇𝑙𝑖𝑞

 
𝑔𝐸 = 0.2 

Scheil 
(
𝑇𝑠𝑜𝑙−𝑇

𝑇𝑠𝑜𝑙−𝑇𝑙𝑖𝑞
)
−𝛽

  
𝛽 = 1.163 

Power 
(
𝑇 − 𝑇𝑙𝑖𝑞

𝑇𝑠𝑜𝑙 − 𝑇𝑙𝑖𝑞
)

𝑛

 
𝑛 = 0.2 𝑜𝑟 5 

Table 3.1: Liquid Fraction of mushy zone solidification 

𝑔𝑙 = {
1           𝑇 ≥ 𝑇𝑠𝑜𝑙
0           𝑇 < 𝑇𝑠𝑜𝑙

                                                                                                  (3—47) 

Clyne [135] indicates that the relationship between the liquid fraction and the temperature is 

greatly influenced by the solute redistribution, and this effect must be calculated. In some 

studies, a small artificial mushy region is created to replace the isothermal case by 

introducing the neighbourhood ±𝛿𝑇 of the temperature 𝑇𝑠𝑜𝑙, so the liquid fraction can be 

computed by 

𝑔𝑙 = {

1                                             𝑇𝑠𝑜𝑙 + 𝛿𝑇 ≤ 𝑇
𝛿𝑇+𝑇𝑠𝑜𝑙−𝑇

2𝛿𝑇
                 𝑇𝑙𝑖𝑞 − 𝛿𝑇 < 𝑇 < 𝑇𝑠𝑜𝑙 + 𝛿𝑇

0                                            𝑇 ≤ 𝑇𝑠𝑜𝑙 − 𝛿𝑇

                                                 (3—48) 

One disadvantage with this approximation is that there is no precise definition of 𝛿𝑇, The 

other problem is that, like equation (3—47), they are designed for node-based numerical 

methods such as the FVM, where usually only one node is positioned in the centre of the 

element. The substitution of nodal temperature into the above equations only results in one 

liquid fraction and one capacitance. However, for the FEM, there are usually more than one 
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node associated with an element, so applying the point based approximation of liquid 

fraction, at every node in an element will give different liquid fractions and capacitances. 

This makes the capacitance matrix difficult to construct and assemble. One possible solution 

to this problem is to substitute an averaged elemental temperature 𝑇𝑒 =

(1 𝑉𝑒⁄ )∫ {𝑁}{𝑇}𝑇
Ω𝑒

𝑑𝑉 in to the equations instead of the nodal temperatures. But this is a 

rather crude approximation; for example, for a two-node one-dimensional element, the nodal 

temperatures are 𝑇1 = 399℃  and 𝑇2 = 405℃ . Assuming that the solidification is 

isothermal and the solidus temperature is 𝑇𝑠𝑜𝑙 = 400℃. In this situation, it is obvious that 

this one-dimensional element contains the phase interface, both solid and liquid coexist in 

the element. But the temperature 𝑇𝑒 = 402℃, which is above the solidus temperature. If 

substituting the temperature 𝑇𝑒  into equation (3—47), the equation will give the system 

wrong information that the element is staying in liquid. Accordingly, the point-based 

evaluation of liquid fraction cannot be directly applied to the FEM, and an element-based 

evaluation is required. 

In reference [28], liquid fraction is regarded as a function of enthalpy. It can be used on an 

element base, but unfortunately, only applies to mushy-zone solidification. This thesis 

adopts an element-based evaluation of liquid fraction, but adapted for the simulation of 

isothermal solidification. However, it can also be applied to mushy-zone solidification. 

Figure 3.4 shows sketches of two phase changing elements in the solidification simulation. 

On the left is the isothermal solidification (pure metal solidification) and on the right is the 

mushy zone solidification (alloy solidification). To make a distinction between the point-

based fraction and the element-based fraction, different notation is used.  At time 𝑡𝑛, the 

volume of solid region is V𝑠 = Υ𝑠
𝑛𝑉𝑒, and the volume of liquid region is V𝑙 = Υ𝑙

𝑛𝑉𝑒, where 

𝑉𝑒 is the volume of the element, and Υ𝑠
𝑛

 and Υ𝑙
𝑛

 are the elemental solid volume fraction and 

elemental liquid volume fraction, respectively.  

 

Figure 3.4: Isothermal solidification in 1D element (left) and Mushy zone solidification in 1D 

element (right) 
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For mushy zone solidification, the fraction of mushy zone is Υ𝑚
𝑛 = 1 − Υ𝑠

𝑛 − Υ𝑙
𝑛

, so the 

volume of mushy zone is defined as 𝑉𝑚 = Υ𝑚
𝑛𝑉𝑒 and the identity Υs + Υ𝑚 + Υ𝑙 = 1 applies. 

For isothermal solidification, it is assumed that the temperature of the phase interface is the 

solidus temperature, thus, the nodal temperatures of an element can be used to approximate 

the solid fraction. For example, in one-dimensional case, the liquid fraction is given by 

Υ𝑠 = {

1                                  𝑇𝑠𝑜𝑙 ≤ 𝑇1 ≤ 𝑇2
𝑇𝑠𝑜𝑙−𝑇1

𝑇2−𝑇1
                         𝑇1 < 𝑇𝑠𝑜𝑙 ≤ 𝑇2

0                                   𝑇1 < 𝑇2 < 𝑇𝑠𝑜𝑙

                                                                   (3—49) 

where the temperature 𝑇1 and 𝑇2 are the nodal temperatures of node 1 and node 2 of an 

element. 

If the position of the phase interface can be calculated, the solid fraction can also be 

evaluated as 

Υ𝑠 = {

1                                  𝑋𝑖 ≤ 𝑥1 ≤ 𝑥2
𝑋𝑖−𝑥1

𝑥2−𝑥1
                         𝑥1 < 𝑋𝑖 ≤ 𝑥2

0                                   𝑥1 < 𝑥2 < 𝑋𝑖

                                                                     (3—50) 

where 𝑥1 and 𝑥2 are the nodal coordinates of node 1 and node 2 of the element. 

Equations (3—49) and (3—50) ensures that the elemental solid volume fraction Υ𝑠 ∈ [0, 1], 

the ‘over shoot/under shoot’ correction considered by Voller et. al. [105] for the point-based 

approximation is not required. 

Since the fraction Υ𝑠 ∈ [0, 1], and from equation (3—50) it can be seen that the evaluation 

of elemental solid fraction Υ𝑠 is conducted in a Cartesian coordinate system. Even through 

the temperature approach, it is assumed to be identical in the Cartesian coordinate system. 

However, the one-dimensional linear shape functions adopted requires the integration of 

equation (3—46) to be conducted in the natural coordinate system, i.e. 𝜉 ∈ [−1,1]. As a 

consequence, a mapping of elemental solid fraction in the Cartesian coordinate system and 

the elemental solid fraction in the natural coordinate system is required to be established. 

Figure 3.5 shows the elemental solid fraction in the natural coordinate system. 
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Figure 3.5: The elemental solid volume fraction in the natural coordinate system 

With the relationship as shown in Figure 3.5, substitution of the shape functions to equation 

(3—46) gives 

∫ 𝜌𝑛ℎ𝑛
Ω𝑒

𝑑𝑉 ≈ 𝑀𝑒
𝑛ℎ𝑠𝑜𝑙 + 𝜌𝑠𝑐𝑠

𝐴𝑒𝐿𝑒
2
Υ𝑠

𝑛
[2𝑇1

𝑛 − 2𝑇𝑠𝑜𝑙 +Υ𝑠
𝑛
(𝑇2

𝑛 − 𝑇1
𝑛
)]+𝑀𝑙

𝑛𝐿 +

𝜌𝑙𝑐𝑙
𝐴𝑒𝐿𝑒
2
(1 − Υ𝑠

𝑛)[𝑇1
𝑛 + 𝑇2

𝑛 − 2𝑇𝑠𝑜𝑙 + Υ𝑠
𝑛
(𝑇2

𝑛 − 𝑇1
𝑛
)]                                            (3—51) 

where 𝑀𝑒 is the total mass of material in the element, 𝑀𝑙 is the total mass of liquid in the 

element, 𝐴𝑒 is the element cross-sectional area, 𝐿𝑒 is the element length. The superscript 𝑛 

refers to the time step. A complete approach from equation (3—46) to equation (3—51) can 

be found in Appendix I—(f). 

The elemental integral ∫ 𝑇𝑛𝑑𝑉
𝛺𝑒

 appearing in equations (3—39) and (3—40) can simply 

achieved by 

∫ 𝑇𝑛𝑑𝑉
𝛺𝑒

= ∫ 𝑁1𝑇1
𝑛 + 𝑁2𝑇2

𝑛𝑑𝑉 = 𝐴𝑒
𝐿𝑒

2
∫

1−𝜉

2

1

−1𝛺𝑒
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛𝑑𝜉 =

𝑉𝑒

2
(𝑇1

𝑛 + 𝑇2
𝑛)     (3—52) 

In section 3.4, the discontinuity contained in the term ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

 is annihilated by the 

term ∫ ℎ̂′(𝑣 − 𝑣+)
𝑁
∙ ∇𝑊𝑑𝐴

Γi
. As a matter of fact, with relationship 𝑞 = −𝑘∇𝑇, the thermal 

conductivity of material can be evaluated in a mixture approach [37, 46, 62-63, 105], which 

is 

𝑘𝑛 = Υ𝑠
𝑛𝑘𝑠 + Υ𝑙

𝑛𝑘𝑙                                                                                                      (3—53) 
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on the assumption that the thermal conductivity of solid 𝑘𝑠 and the thermal conductivity of 

liquid 𝑘𝑙 are both constant. 

3.5.3 The behaviour of non-physical capacitance and source 

In section 3.5.2 is given a mathematical derivation of non-physical capacitance and non-

physical source terms. The approximations conducted in an element domain are given. 

However, the behaviour of non-physical properties in an element is not intuitive through 

complicated equations. Therefore, it is useful to use a prescribed temperature to substitute 

into the above equations to reveal their response. The temperature profiles are calculated 

from the exact solution as obtained in chapter 2. A finite-volume element and a finite element 

as shown in Figure 3.6 are used as examples for a point-based approximation and the 

element-based approximation, respectively. For the finite volume element, the node is 

positioned at 𝑥 = 0.02 𝑚, and for the finite element, the node 1 is positioned at 𝑥 = 0.02 𝑚 

and the node 2 is positioned at 𝑥 = 0.03 𝑚. Consequently, the length of the example finite 

element 𝐿𝑒 = 0.01 𝑚. And the example finite volume element is set as the same length of 

the finite element. Moreover, since the examples are in one-dimension, the cross-sectional 

area 𝐴𝑒  can be simply set as 1. Assuming the time step size is Δ𝑡 = 0.05 𝑠𝑒𝑐, with the 

known positions 𝑥 = 0.02 𝑚 and 𝑥 = 0.03 𝑚, the prescribed temperature for {𝑇𝑛+1} can be 

calculated through equation (2—7), which is 

𝑇(𝑥, 𝑡) =

{
 
 

 
 (

𝑇𝑠𝑜𝑙−𝑇𝑎𝑚𝑏
1

ℎ𝑐√𝜋𝛼𝑠𝑡
+𝒆𝒓𝒇 (

𝑋(𝑡)

2√𝛼𝑠𝑡
)
)𝒆𝒓𝒇 (

𝑥

2√𝛼𝑠𝑡
) +

𝑇𝑠𝑜𝑙+𝑇𝑎𝑚𝑏ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋(𝑡)

2√𝛼𝑠𝑡
)

1+ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋(𝑡)

2√𝛼𝑠𝑡
)

  (𝑥 < 𝑋(𝑡))

𝑇𝑖𝑛𝑖𝑡 + (𝑇𝑠𝑜𝑙 − 𝑇𝑖𝑛𝑖𝑡)
𝒆𝒓𝒇𝒄(

𝑥

2√𝛼𝑙𝑡
)

𝒆𝒓𝒇𝒄(𝜆√
𝛼𝑠
𝛼𝑙
)
                                                         (𝑥 ≥ 𝑋(𝑡))

  

                                                                                                                                       (3—54) 
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Figure 3.6: The example elements with prescribed temperature 

The initial temperature (𝑇𝑖𝑛𝑖𝑡) 405℃ 

The forced convective term (ℎ𝑐) 12000𝑊/𝑚2℃ 

The ambient temperature (𝑇𝑎𝑚𝑏) 25℃ 

Thermal diffusivity of solid (𝛼𝑠) 1.515 × 10−5 𝑚2/𝑠𝑒𝑐 

Thermal diffusivity of liquid (𝛼𝑙) 3.623 × 10−5 𝑚2/𝑠𝑒𝑐 

Latent Heat (𝐿) 130000𝐽/𝑘𝑔 

Solidus temperature (𝑇𝑠𝑜𝑙) 400℃ 

Liquidus temperature (𝑇𝑙𝑖𝑞) 400℃ 

Table 3.2: The material properties 

The reasons for using an analytical solution (3—55) as the prescribed temperature for 

substitution into the equations for non-physical variables are: 

(1) It makes the non-physical capacitance and non-physical source behave exactly as 

they are in the numerical simulation of solidification; 

(2) It avoid the effects from the numerical solvers such as solution method and the update 

method, and shows exactly how the non-physical variables behave with correct 

temperatures substituted; 
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(3) the behaviour of liquid fraction can be found for both point-based approximation and 

the element-based approximation, their influences on the non-physical variables can 

be easily identified. 

Figure 3.7 shows a group of plots for point-based approximations of liquid fraction. The 

liquid fraction (vertical) is plotted against time (horizontal). In chapter 2, the position of 

phase interface is able to be calculated by equation 𝑋𝑖(𝑡) = 2𝜆√𝛼𝑠𝑡. Consequently, the 

liquid fraction of the given finite-volume element can be evaluated through the exact position 

of 𝑋𝑖(𝑡) from the analytical method. It is placed on the top left corner of Figure 3.3. The title 

“position approximation” means the evaluation of interface position is tracked via the 

analytical method. This evaluation assumes that the phase interface is distinct, thus the term 

“approximation” is used rather than “exact”. On the top right of Figure 3.7 is the Heaviside 

step function which is given by equation (3—47). The bottom two plots are evaluated from 

equation (3—48) with different neighbourhood factor 𝛿𝑇 = 0.5℃  (left) and 𝛿𝑇 = 1.5℃ 

(right). 

 

Figure 3.7: Point based Liquid fraction approximations of solidification 

The liquid fraction 𝑔𝑙 = 1 indicates that the finite volume is completely liquid, and when 

𝑔𝑙 = 0, the finite volume is completely solid. The position approximation shows that the 

decrease rate of the liquid fraction is almost constant. However, in the approximations, the 
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Heaviside side function (3—47) makes the liquid fraction suddenly jump down from 1 to 0, 

which is too abrupt; the “neighbourhood” method (3—48) is gentler, and larger value of 𝛿𝑇 

makes the decrease of liquid fraction smoother. However, a problem can be easily identified 

is that the decreasing rate is uneven in the “neighbourhood” method. No matter how much 

the 𝛿𝑇 is, the liquid fraction drops down to 0 instantly after around 16.5 seconds. The nodal 

temperature profile displayed in the Figure 3.8 explains the reason why this problem happens. 

When 𝛿𝑇 = 1.5 ℃ and the time step size ∆𝑇 = 0.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, before the nodal temperature 

below the solidus temperature 𝑇𝑠𝑜𝑙 = 400 ℃, there are 7 time steps in which the nodal 

temperature is in the range [𝑇𝑠𝑜𝑙 + 𝛿𝑇, 𝑇𝑠𝑜𝑙]. But when the Nodal temperature is just below 

the solidus temperature, the nodal temperature is 397.879 ℃ , which is out of the range 

𝑇𝑠𝑜𝑙, 𝑇𝑠𝑜𝑙 − 𝛿𝑇. This is because of the different cooling rates of different phases, and the 

weak discontinuous (only kink appeared in the change of temperature) behaviour of the 

temperature profile. 

 

Figure 3.8: Nodal temperatures in the artificial mushy region 

The different approximations of liquid fraction will give different behaviour of non-physical 

capacitance and non-physical source term in the numerical simulation. 

Based on the assumption that the material is stationary, i.e. 𝑣 = 0 , the non-physical 

capacitance and the non-physical jump can be evaluated through equation (3—40). It can be 

compared with the non-physical capacitance 𝑐̂ that contains discontinuity, which is 
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𝑐̂ =
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉𝛺𝑒

−∫ 𝜌𝑛ℎ𝑛𝑑𝑉𝛺𝑒

∫ 𝑇𝑛+1𝑑𝑉
𝛺𝑒

−∫ 𝑇𝑛𝑑𝑉
𝛺𝑒

                                                                                        (3—55) 

which is provided by Davey et. al [66]. 

Figure 3.9 shows the point-based non-physical capacitance according to equation (3—55), 

which is mainly applied to the control volume method. The term “point-based” means that 

the evaluations of liquid fraction and the non-physical variables are conducted through single 

node. The liquid fraction is consequently evaluated by the point-based approximation such 

as equations (3—47) and (3—48). The label “position approximations” means that the liquid 

fraction utilized for the evaluation of non-physical capacitance is evaluated through the 

interface position which is tracked by the analytical method. The top right plot of non-

physical capacitance in Figure 3.9 is calculated by the substitution of liquid fraction from 

equation (3—47) and the bottom two plots of non-physical capacitance are calculated with 

equation (3—48). Each individual plot of the Figure 3.9 starts at the value 𝑐̂ = 𝜌𝑙𝑙𝑙 =

330,000 𝐽 ℃𝑚3⁄ , which is maintained for a period of time, then the phase change makes the 

value increase. When the phase change is over, the non-physical capacitance ends at the 

value 𝑐̂ = 𝜌𝑠𝑐𝑠 = 276,000 𝐽 ℃𝑚
3⁄ . During phase change, the behaviour of the non-physical 

capacitance is corresponding to the evolution of liquid fraction. In the Heaviside step 

approximation, there is only one singularity in the plot. In the Neighbourhood 

approximations, greater 𝛿𝑇 makes the magnitude of non-physical capacitance smaller, but 

the increase of the number of time steps in the phase change period makes the range of the 

peak wider. 
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Figure 3.9: Point-based non-physical capacitance by CVCM 

The application of equation (3—40) results in the removal of discontinuities from the 

enthalpy when the material velocity 𝑣 = 0. As a consequence, the peaks appearing in Figure 

3.9 do not now appear. Figure 3.10 shows the node-based non-physical capacitance obtained 

after the discontinuity is removed. All four graphs show that the change of non-physical 

capacitance is smoother to that produced by equation (3—55). The aftermath of applying 

this method is that a non-physical source-term ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑𝐴
Γ𝑖𝑒

 is generated, this 

source term is evaluated by equations (3—41) and (3—44) and is shown in the Figure 3.11. 

The change of the non-physical source terms shares the same characteristics as the non-

physical capacitance. For example, in the Heaviside step approximation, the singular peak 

now is removed from the non-physical capacitance, but reappears as a source term. The 

behaviour of non-physical source also changes with different approximation of liquid 

fraction adopted.  
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Figure 3.10: Node based non-physical capacitance without discontinuity 

 

Figure 3.11: Node based non-physical source term 

The above study shows the successful removal of the discontinuities from the non-physical 

capacitance in “ideal conditions” in which the temperature is correctly calculated by the 

analytical method. It shows the feasibility of the application of non-physical variable method 
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to the point-based numerical method such as FVM, though the FVM is not chosen in this 

project. This project uses the FEM, in which the approach is conducted on an element base 

and the element-based approximations are required. 

The plot on the RHS of Figure 3.12 shows the element-based liquid fraction Υ𝑙. The fraction 

Υ𝑙  is evaluated by the temperature approximation as shown in equation (3—49). The 

temperature substituted into equation (3—49) is calculated by the analytical method which 

is the same as used in the analysis of point-based approximations. The shape of the curve 

plotted by equation (3—49) is similar to a cumulative distribution function. It is different 

from the node based approximations that the phase change is not steep. The plot on the LHS 

of Figure 3.12 is the liquid fraction Υ𝑙  evaluated by equation (3—50). The “position 

approximation” is conducted by equation (3—50), and the phase interface position 𝑋𝑖  is 

from the analytical method, say 𝑋𝑖(𝑡) = 2𝜆√𝛼𝑠𝑡. 

 

 

Figure 3.12: The element based approximation of liquid fraction 

For both the position approximation and the temperature approximation, the phase interface 

is propagating through the example element from about 16 seconds to 28 seconds. But the 

behaviour of the liquid fractions is very different with different approaches. Through the 

position approximation, the decreasing rate of liquid fraction is almost constant, which leads 

to the non-physical capacitance of the element increasing gently during the phase change. 

However, in the temperature approximation, the decreasing rate of liquid fraction is 

cumulative, as a consequence, a spike is generated in the change of non-physical capacitance 

with equation (3—52). The peak of the non-physical capacitance through temperature 

approximation (3 × 108  𝐽 𝑚3℃⁄ ) is about 7.5 times higher than that obtained from position 

approximation (4 × 107  𝐽 𝑚3℃⁄ ).  
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Figure 3.13: The element-based non-physical capacitance by CVCM 

Figure 3.14 shows the non-physical capacitance evaluated by equation (3—37) in which the 

discontinuity is excluded. It confirms that the discontinuity can be removed from the 

enthalpy and capacitance via the non-physical variable method in a finite element domain. 

Figure 3.15 shows the non-physical source generated as the companion of removal procedure. 

Moreover, the behaviour of non-physical capacitance and non-physical enthalpy is related 

to the approximation of liquid fraction adopted. 

 

Figure 3.14: The element-based non-physical capacitance without discontinuity 

 

Figure 3.15: The element-based non-physical source
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3.6 Summary 

In this chapter, a detailed theoretical discussion of non-physical variable methods is given. 

The concept of non-physical variable method is introduced at the beginning of the chapter. 

This chapter provides a definition of non-physical enthalpy. Then, the volume analysis is 

conducted for both the weak form non-physical transport equation and the weighted weak 

form non-physical transport equation, which give rise to a jump that contains the 

discontinuity. The discontinuity removal from the weak form transport equation is attempted 

with respect to a finite element CV. 

Through the substitution of prescribed temperature, which is calculated by the analytical 

method, to the non-physical variable method, it confirms that: 

(1) The discontinuity in the enthalpy and the capacitance can be successfully removed 

by the non-physical variable method; 

(2) The non-physical variable is not unique since it is defined without regard to initial 

conditions. The behaviour of non-physical variable is dependent on the 

approximation adopted for the liquid/solid fraction. 

The above investigations give rise to further considerations, which are: 

(1) How do non-physical variables actually behave in numerical methods with the 

involvement of approximations; 

(2) The importance of the dependence of non-physical variables on the future tempera-

ture {𝑇𝑛+1} which appears to require an update procedure; 

(3) The influences of the behaviour of non-physical variables on the stability and 

accuracy of the numerical methods; 

(4) The effects of the peaks in the non-physical variables to the numerical simulation of 

solidification especially when advection is involved with solidification. 

To illuminate these aspects, a numerical study is required. 
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Chapter 4 The Numerical Trials on 

the Non-physical Enthalpy Method 

and Its Solutions 

4.1 General 

In Chapter 3, a mathematical analysis of the recent non-physical enthalpy method [62-63] is 

provided. A situation, i.e. 𝐷+𝑊 𝐷+𝑡⁄  is non-zero, is considered in the analysis of weighted 

transport equation. This leads to a same result as can be seen in references [62-63], which 

confirms the correctness of both analyses. A non-physical source ℎ′̂ is obtained through the 

definition of non-physical enthalpy. The discontinuity removal approach generates three 

equations, which are: 

𝐷∗

𝐷∗𝑡
∫ 𝑁𝜗ℎ̂Ωe\Γ𝑖

𝑒 𝑑𝑉 = −∫ 𝑁𝜗𝑞 ∙ 𝑛𝑑ΓΓe
+ ∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γ𝑖

𝑒 + ∫ 𝑁𝜗𝜌𝑄Ωe
𝑑𝑉 −

(∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣
+) ∙ (−𝑛)[𝑑Γ

Γ𝑖
𝑒 )                                                                                  (4—1) 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω𝑒\Γ𝑖

𝑒 𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ωe

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γe

− ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖
𝑒   

                                                                                                                                         (4—2) 

and 

𝐷×

𝐷×𝑡
∫ 𝑁𝜗ℎ̂′Γ𝑖

𝑒 𝑑𝑉 + ∫ 𝑁𝜗ℎ̂′(𝑣
∗ − 𝑣×) ∙ 𝑡𝑛𝑑Σ

Σi
𝑒 + ∫ ℎ̂′(𝑣∗ − 𝑣×) ∙ ∇𝑁𝜗𝑑ΓΓ𝑖

𝑒 = ∫ 𝑁𝜗]𝜌ℎ(𝑣 −Γ𝑖
𝑒

𝑣×) ∙ (−𝑛)[𝑑Γ = −∫ 𝑁𝜗 ]𝑞 ∙ (−𝑛)[ 𝑑ΓΓ𝑖
                                                                       (4—3) 

Equation (4—1) is the semi-discretised finite element equation which requires to be solved 

by the finite element method (FEM). Equation (4—2) is the linkage equation which is 

applied to evaluate the non-physical variables. Equation (4—3) is the source equation which 

facilitates the discontinuity removal from equation (4—1). The evaluation of (4—2) is 

already described in Chapter 3. The discontinuity removal approach is also confirmed 

available with the substitution of temperature from exact solution. The investigations in 
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Chapter 3 give rise to several further considerations. The development of non-physical 

enthalpy method should lead to concept as can be seen in Figure 4.1 (a) and Figure 4.1 (c), 

where discontinuity is completely or partially isolated from the non-physical enthalpy ℎ̂ and 

is accounted for by the non-physical source ℎ̂′. References [62-63] approximate the non-

physical source −∫ 𝑁𝜗 ]𝑞 ∙ (−𝑛)[ 𝑑ΓΓ𝑖
 as a capacitance, which substitute the isolated 

discontinuity back to the non-physical enthalpy. This approximation returns the non-

physical enthalpy method to a concept similar to Figure 4.1 (b), which is the control volume 

capacitance method provided by Davey et. al.[66]. It confirms the relationship between the 

non-physical enthalpy method and the control volume capacitance method, as the control 

volume capacitance method can also be categorised into the non-physical method, depending 

on how the non-physical enthalpy ℎ̂ is initially defined. However, the treatment of non-

physical source −∫ 𝑁𝜗 ]𝑞 ∙ (−𝑛)[ 𝑑ΓΓ𝑖
 as a source term alone certainly required to be 

studied, which is one of the objectives of this chapter. 

 

Figure 4.1: Non-physical behaviour on 1D elements: (a) moving source; (b) edge discontinuities; 

and (c) moving source and edge discontinuities [63]. 

Furthermore, as mentioned in Chapter 3, references [62-63] uses bisection method as the 

solution method. This method requires that the solution should be between the present value 

and predicted value. This criteria is not always guaranteed in the solution procedure and the 

programme may fail to converge. Thus, this chapter introduces three alternative solution 
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methods, which are the Predictor-Corrector method, the Secant method and the Homotopy 

method. Their application to other numerical methods can be seen in references [109, 113, 

115, 124]. At last, the presence of advection, i.e. the material velocity is non-zero, requires 

exploration. 

This chapter aims to illustrate the numerical solution of new transport equation (4—1). A 

complete procedure which includes the discretization with respect to one-dimensional linear 

finite element; the evaluation of non-physical variables and the updating procedure; and the 

solution methods adopted. 

4.2 Discretization of time dependent solidification problem 

In Chapter 3, a direct mathematical relationship between the non-physical enthalpy ℎ̂ and 

the temperature 𝑇 is given as 

ℎ̂ = 𝑐̂𝑇                                                                                                                             (4—4) 

where 𝑐̂ is the non-physical capacitance. 

The evaluation of non-physical capacitance 𝑐̂ is conducted via equation (3—39). The mean-

value approach allows 𝑐̂ to come outside of the integration. For that reason, an equivalent 

matrix form of equation (4—1) is expressed as 

[𝐶̂]{𝑇̇} + [𝐾]{𝑇} = {𝑄} + {𝑞} + {𝑞̂}                                                                              (4—5) 

where [∎]  indicates the coefficient matrix and {∎}  indicates the term is either a field 

variable vector or a loading vector, and 𝑇̇ = 𝜕𝑇 𝜕𝑡⁄ . Details of each term are discussed as 

below. The element capacitance matrix [𝐶̂]
𝑒
 is given by 

[𝐶̂]
𝑒
= ∫ {𝑁}𝑇{𝑁}𝑐̂

Ωe
𝑑𝑉                                                                                                (4—6a) 

where 𝑐̂ is the non-physical capacitance, the operator ∎𝑇 is the transposition of matrix or 

vector. The element capacitance matrix [𝐶̂]
𝑒
 has a superposed 𝐶̂ to denote the non-physical 

property. Similarly, the element conductivity matrix is 

[𝐾]𝑒 = ∫ {∇𝑁}𝑇
Ωe

[

𝑘𝑥𝑥 0 0
0 𝑘𝑦𝑦 0

0 0 𝑘𝑧𝑧

] {∇𝑁}𝑑𝑉                                                               (4—6b) 
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where an orthotropic material is assumed here in the matrix [𝐾]𝑒. The elements 𝑘𝑥𝑥, 𝑘𝑦𝑦 

and 𝑘𝑧𝑧 are the conductivities in the principle directions. The element loading vectors are: 

{𝑄} = ∫ {𝑁}𝑇𝜌𝑄𝑑𝑉
Ωe

                                                                                                     (4—6c) 

{𝑞} = ∫ {𝑁}𝑇𝑞
Γe

𝑑Γ                                                                                                        (4—6c) 

and 

{𝑞̂} = ∫ {𝑁}𝑇 ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

                                                                                        (4—6e) 

Direct integration of equation (4—6a) gives a non-diagonal matrix, which is called a 

consistent matrix. An alternative form is a lumped capacitance matrix, which is diagonal. 

This is believed to be stable and computational cost effective [62]. Though it is an advection 

problem, no advective term appears on the RHS of equation (4—5), because this is reflected 

in a change of non-physical enthalpy and therefore by a non-physical capacitance change. 

The vector {𝑄} is the heat source, and {𝑞} relates to heat loading at the boundary. The 

loading vector {𝑞̂} is a jump at the phase interface, it has to been evaluated on an element 

base for the fixed grid finite element method.  

Applying the forward Eulerian difference approximation and the 𝜃 method for temporal 

approximation gives 

{𝑇̇} =
{𝑇𝑛+1}−{𝑇𝑛}

∆𝑡
                                                                                                             (4—7) 

and 

{𝑇} = 𝜃{𝑇𝑛+1} + (1 − 𝜃){𝑇𝑛}                                                                                       (4—8) 

where ∆𝑡 is the time interval, and 𝜃 ∈ [0, 1] is a blending coefficient. By setting the 𝜃 to 

different numbers, different approximation can be obtained, standard choices are: 

𝜃 = 0, the explicit method; 

𝜃 = 0.5, the Crank-Nicolson method; 

𝜃 =
2

3
, the Galerkin method; 

𝜃 = 1, the implicit method [109, 125]. 
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For a blending term 𝜃 ≥ 0.5, the method is unconditionally stable [125]. But when 𝜃 < 0.5, 

such as the explicit method, particular restrictions must be satisfied; otherwise instability 

problems will occur [125]. A limitation on the time interval for 𝜃 < 0.5 is provided by 

∆𝑡 < 𝑐̂
(𝐿𝑒)

2

2𝑘
                                                                                                                      (4—9) 

where the capacitance 𝑐̂ can be physical or non-physical, 𝐿𝑒 is the length of a finite element, 

and 𝑘 is the thermal conductivity [125]. 

Substitution of equations (4—7) and (4—8) into equation (4—5) gives 

[𝐶̂]
{𝑇𝑛+1}−{𝑇𝑛}

∆𝑡
+ (𝜃[𝐾𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑛]{𝑇𝑛}) = 𝜃{𝑄𝑛+1} + (1 − 𝜃){𝑄𝑛} +

𝜃{𝑞𝑛+1} + (1 − 𝜃){𝑞𝑛} + 𝜃{𝑞̂𝑛+1} + (1 − 𝜃){𝑞̂𝑛}                                                      (4—10) 

Rearranging equation (4—10) gives 

([𝐶̂𝑛+1] + 𝜃∆𝑡[𝐾𝑛+1]){𝑇𝑛+1} = ([𝐶̂𝑛] − (1 − 𝜃)∆𝑡[𝐾𝑛]){𝑇𝑛} + ∆𝑡(𝜃{𝑄𝑛+1} + (1 −

𝜃){𝑄𝑛}) + ∆𝑡(𝜃{𝑞𝑛+1} + (1 − 𝜃){𝑞𝑛}) + ∆𝑡(𝜃{𝑞̂𝑛+1} + (1 − 𝜃){𝑞̂𝑛})                   (4—11) 

The non-physical capacitance 𝑐̂ for each time step is evaluated through the linkage equation 

(4—11), then the matrix [𝐶̂] is constructed through equation (4—6a). The conductivity 

matrix [𝐾] can change with time, the superscript 𝑛 and 𝑛 + 1 refer to the present time step 

and the future time step. The conductivity is linear because the source is absent as discussed 

in Section 3.4.2. The loading vector {𝑄} can be pre-defined if additional heat energy rate is 

applied to the system. The flux {𝑞} arises at the boundary which can be applied as conduction, 

convection or radiation. The non-physical vector {𝑞̂} is evaluated by the jump equation. All 

the three loading vectors can be time dependent, but direct relationship between them and 

the temperature may not exist, and an update technique may be required. 

In this chapter, a one-dimensional numerical model is used. The reason is to better explain 

the non-physical variable method and to compare with known analytical solutions. 

The shape functions for a one-dimensional linear rod element are 

⌊𝑁⌋ = ⌊𝑁1 𝑁2⌋ = ⌊
1−𝜉

2
 
1+𝜉

2
⌋                                                                                           (4—12) 

where 𝜉 is a local co-ordinate in a natural coordinate space, the bracket ⌊∎⌋ signifies a row 

vector. 
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With regard to a linear isoparametric element, the spatial approximation is 

𝑥𝑒 = 𝑁1𝑥1 + 𝑁2𝑥2 = ⌊𝑁⌋{𝑥}                                                                                         (4—13) 

with node coordinates 𝑥1 and 𝑥2, the bracket {𝑥} signifies a column vector. Furthermore the 

approximated solution for temperature 𝑇𝑒 with the nodal variable 𝑇1 and 𝑇2 is 

𝑇𝑒 = 𝑁1𝑇1 +𝑁2𝑇2 = ⌊𝑁⌋{𝑇}                                                                                         (4—14) 

Figure 4.2 shows a sketch of a one-dimensional linear element. When 𝜉 = −1 , the 

approximate solution 𝑇𝑒 = 𝑇1, which is the temperature at position 𝑥 = 𝑥1; and when 𝜉 = 1, 

the approximate solution 𝑇𝑒 = 𝑇2, which is the temperature at position 𝑥 = 𝑥2. 

 

Figure 4.2: One-dimensional linear element 

The non-physical element capacitance matrix [𝐶̂]
𝑒
 and the element conductivity matrix [𝐾]𝑒 

are estimated as 

[𝐶̂]
𝑒
=

𝑐̂𝐿𝑒

2
𝐴𝑒 ∫ [

𝑁1𝑁1 𝑁1𝑁2
𝑁2𝑁1 𝑁2𝑁2

] 𝑑𝜉 =
1

−1

𝑐̂𝐴𝑒𝐿𝑒

2
[

2

3

1

3
1

3

2

3

]                                                     (4—15) 

and 

[𝐾]𝑒 =
𝑘𝐿𝑒

2
𝐴𝑒 ∫ (

{
𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

}

1

2
𝐿𝑒

) ∙
1

1

2
𝐿𝑒𝑑𝜉

{

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

}𝑑𝜉 =
1

−1

𝑘𝐴𝑒

𝐿𝑒
[
1 −1
−1 1

]                                (4—16) 

respectively.
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In the simulation of solidification, additional heat source is not under consideration, thus, 

{𝑄} = {0}. The vector {𝑞} is where the boundary conditions should apply, and is evaluated 

as 

{𝑞} = −∫ ({
𝑁1
𝑁2
} 𝑘∇T) ∙ n𝑑Γ = {

𝑞𝑖𝐴𝑒
𝑞𝑗𝐴𝑒

}
Γ𝑒

                                                                    (4—17) 

It should be mentioned that, in the finite element approximation, two adjacent elements share 

the same boundary node, which will make the numerical flux 𝑞𝑗 cancel for any node 𝑗 shared 

by two elements after assembly. The cancellation of numerical flux is because that, at node 

j, the flux leaving the present element and the flux entering the next element are equal, but 

they have opposite direction and opposite signs in the equations. The jump term {𝑞̂} is an 

integration over the phase interface Γ𝑖, but for the fixed grid finite element method, although 

the interface is able to be tracked by the temperature profile, but the information of interface 

such as position and velocity is not reflected in the mesh. In the FEM, all loading vectors are 

applied on the nodes, however, the interface position does not always coincide with the 

position of nodes. As a consequence, the term {𝑞̂} needs to be approximated in another way, 

and its approximation should be coupled to the approach taken with the non-physical 

capacitance. 

4.3 The solution procedure 

It can be seen from equations (3—41) and (3—43) that, the non-physical enthalpy and the 

non-physical source are dependent on both the temperature of present time step and the 

temperature of future time step. An update procedure is required. 

Assuming that the temperature of the present time {𝑇𝑛} step is known, with given material 

properties, BCs and ICs, the following steps are generally followed. 

(1) Obtain the predicted temperature of the future time step, which is denoted as {𝑇𝑝
𝑛+1}. 

The approach can be the techniques such as explicit method, the predictor-corrector 

method, etc.; 

(2) Obtain element liquid fraction Υ𝑙 or element solid fraction Υ𝑠 using equations (3—

49);
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(3) Evaluate each term appearing in equations (3—36) with the temperature {𝑇𝑛} , 

{𝑇𝑝
𝑛+1} and element solid fraction Υ𝑠 via equations (3—38) (3—41), (3—46), and 

(3—53); 

(4) Evaluate the non-physical capacitance 𝑐̂ and source 𝑞̂ through equations (3—39) and 

(3—41), evaluate the conductivity 𝑘𝑛 through equation (3—53); 

(5) Construct coefficient matrices and loading vectors via equations (4—15), (4—16) 

and (4—17); 

(6) Solve the system of equations and obtain {𝑇𝑛+1}, 

(7) If {𝑇𝑛+1} satisfies the error criteria, go to the next time step, i.e. {𝑇𝑛+1} → {𝑇𝑛}, if 

not {𝑇𝑛+1} → {𝑇𝑝
𝑛+1}, go through (1) to (7) again at the current time step. 

4.4 Solution methods 

Equation (4—11) can in principle be solved with a computational method. The determination 

of the non-physical capacitance and non-physical source (if discontinuity removal applied) 

however requires information from both the present time step and future time step; in other 

words, no explicit method is able to solve the equations. Thus, good iterative and convergent 

methods are required for the determination of accurate solutions. Previous studies made use 

of the bisection method along with the Successive-Over-relaxation method to solve the 

problem [62-63]. This approach is relatively straightforward and was able to provide good 

results. However, it failed to converge in certain case arising because the bisection method 

requires that the exact solution is in between of the predicted solution and the computed 

solution. Considered here are three alternative methods, which are the Predictor-Corrector 

method, the Secant method and the Homotopy method. It can be seen in equation (4—11) 

that the coefficient matrices are dependent on the unknown field variables. This makes the 

system of equations nonlinear, which means that the system of equations may have more 

than one solution, and the solution obtained may not be the desired solution [125]. For that 

reason, an iterative method is required. The Predictor-Corrector method is believed to be an 

accurate and time-efficient method which was firstly developed by Gresho et. al. [119], who 

originally applied it to the Navier-Stokes equations [109]. The predictor-corrector method is 

used to solve typical parabolic PDE (see Jacques [115]) and high order parabolic PDEs (see 

Houwen et al. [116]). Methods for improved stability are shown by Van et al. in reference 

[117] and Codina and Folch in reference [118]. The secant method is an extension of the 

Newton-Raphson Method. It inherits the advantage of Newton-Raphson method, which is 
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considered as a rapid convergence method, and it has been applied to the non-linear problems 

in solid-mechanics [126]. A potential disadvantage with the secant method is that it requires 

an effective guess at the initial value to start the procedure. The homotopy method developed 

by Liao [120] is believed to be a good way of finding a starting value. Practical applications 

of homotopy method can be found in [113, 121]. In this project, the predictor-corrector 

method is frequently adopted. The performance of it is generally acceptable, despite that 

oscillations may occur at the boundary where Robin boundary conditions are applied. The 

instability could be solved by using large number of iteration step (100); using a refined 

mesh; and setting the initial temperature of the boundary node slightly below the solidus 

temperature such as 399.99 ℃ if the solidus temperature is 400 ℃. The performance of 

secant method is limited by the matrix inversion routine from NAG Fortran library [127]. 

Only a maximum of 66 × 66 matrix can be inverted which limits the maximum element 

number to 65. The homotopy method is the slowest solver in the programme and it is also 

limited at 65. It can be utilised when the secant method fails to converge. 

Details of the three solution methods are described below. 

4.4.1 The predictor-corrector method 

Equation (4—11) can be rewritten in the form 

([𝐶̂(𝑇𝑛+1, 𝑇𝑛)] + 𝜃∆𝑡[𝐾(𝑇𝑛+1, 𝑇𝑛)]){𝑇𝑛+1} = ([𝐶̂(𝑇𝑛+1, 𝑇𝑛)] − (1 −

𝜃)∆𝑡[𝐾(𝑇𝑛+1, 𝑇𝑛)]){𝑇𝑛} + ∆𝑡(𝜃{𝑄𝑛+1} + (1 − 𝜃){𝑄𝑛}) + ∆𝑡(𝜃{𝑞𝑛+1} + (1 −

𝜃){𝑞𝑛}) + ∆𝑡(𝜃{𝑞̂𝑛+1} + (1 − 𝜃){𝑞̂𝑛})                                                                       (4—18) 

which highlights which parameters are dependent on the present time-step temperature and 

the future time step temperature. The difficulty with equation (4—18) is the implicit nature 

of the problem with the future temperature 𝑇𝑛+1  unknown. In the Predictor-Corrector 

method, the predictor computes a temperature field noted as 𝑇𝑝
𝑛+1 . Then, the predicted 

matrices [𝐶̂] and [𝐾] are computed according to the temperature field 𝑇𝑝
𝑛+1. In the next step, 

the new 𝑇𝑛+1 is calculated by solving a linear system of equations. The relative error in 

𝑇𝑛+1 is determined and compared with 𝜖 by 

|𝑇𝑘
𝑛+1 − 𝑇𝑘−1

𝑛+1| ≤ 𝜖                                                                                                 (4—19) 

where the subscript 𝑘 refers to the 𝑘th iteration, and the tolerance 𝜖 is prescribed, i.e. 𝜖 =

1.0 × 10−8. 
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If the temperature of future time step 𝑇𝑛+1 satisfies equation (4—19), the program proceeds 

to the next time step, and if the error is not small enough, the new 𝑇𝑛+1 will be regards as 

the 𝑇𝑝
𝑛+1 for the next iteration. In this study, a predictor which is outlined in reference [119], 

and it is commonly used for the solution of Navier-Stokes equations, is applied and is of the 

form 

{𝑇𝑝
𝑛+1} = {𝑇𝑛} +

∆𝑡𝑛

2
((2 +

∆𝑡𝑛

∆𝑡𝑛−1
) {𝑇̇𝑛} − (

∆𝑡𝑛

∆𝑡𝑛−1
) {𝑇̇𝑛−1})                                        (4—20) 

From equation (4—20), it can be see that, in order to compute the predicted future time-step 

temperature 𝑇𝑝
𝑛+1, values of the temperature is required at least three time-steps prior to the 

future time-step 𝑡𝑛+1. At the initial two steps, there is insufficient data for the prediction to 

be performed, thus, it is reasonable to use alternative crude approximations. The initialisation 

procedure is as follow: 

 In the first time step, the initial temperature is set above the solidus temperature, the material 

is in liquid phase, and the material properties are constant in this step. So, the explicit method 

(𝜃 = 0) is used; 

In the second time step, the explicit method is used as a predictor. The result from the explicit 

method will be used to update the material properties, and then the implicit method is used 

to get the ‘true’ values of the next time-step temperature; 

For other time steps, the 3-time-step temperature is ready and can be substituted into the 

predictor (4—20). 

Because the initial two steps use the explicit method, it is important that the time steps should 

be chosen conservatively. And they should satisfy the restriction as presented in equation 

(4—9). Equation (4—20) allows for variable time interval. To make the problem simpler, a 

constant time interval is used here, and equation (5—20) reduces to 

{𝑇𝑝
𝑛+1} = {𝑇𝑛} +

∆𝑡𝑛

2
(3{𝑇̇𝑛} − {𝑇̇𝑛−1})                                                                       (4—21) 

and similarly to equation (5—18), the corrector is given as 
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([𝐶̂(𝑇𝑝
𝑛+1, 𝑇𝑛)] + 𝜃∆𝑡[𝐾(𝑇𝑝

𝑛+1, 𝑇𝑛)]){𝑇𝑛+1} = ([𝐶̂(𝑇𝑝
𝑛+1, 𝑇𝑛)] − (1 −

𝜃)∆𝑡[𝐾(𝑇𝑝
𝑛+1, 𝑇𝑛)]){𝑇𝑛} + ∆𝑡(𝜃{𝑄𝑛+1} + (1 − 𝜃){𝑄𝑛}) + ∆𝑡(𝜃{𝑞𝑝

𝑛+1} + (1 −

𝜃){𝑞𝑛}) + ∆𝑡(𝜃{𝑞̂𝑝
𝑛+1} + (1 − 𝜃){𝑞̂𝑛})                                                                       (4—22) 

where the presence of 𝑇𝑝
𝑛+1 is found.  

Equation (4—22) provides a linear system of equations, and methods, such as the Successive 

Over-Relaxation method, the Gauss-Jordan method and the Lower-Upper (LU) 

decomposition method, can be used to solve it and thus provide a solution to equation (4—

11). 

4.4.2 The secant method 

The secant method is an extension of the Newton-Raphson Method. The development of the 

methods starts from the Taylor-series expansion of a function 𝑓(𝑥), i.e., 

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0) +

𝑓′′(𝑥0)

2!
(𝑥 − 𝑥0)

2 +⋯                                            (4—23) 

which on letting 𝑓(𝑥) = 0, the following approximation can be obtained: 

𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0) ≈ 0                                                                                        (4—24) 

An iterative procedure can be gained by rearranging equation (4—24) 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
                                                                                                         (4—25) 

Since the solution 𝑥𝑘+1  is not the exact solution, the iteration should stop when 𝑥𝑘+1 

satisfies the desired tolerance, for example |𝑓(𝑥𝑘+1)| ≤ 𝜖, where the subscript 𝑘 refers to 

the 𝑘th iteration.  

The Newton-Raphson Method described by equation (4—25) can be applied to equation 

(4—11) by letting 

{𝐹(𝑇𝑛+1)} = ([𝐶̂(𝑇𝑛+1, 𝑇𝑛)] + 𝜃∆𝑡[𝐾(𝑇𝑛+1, 𝑇𝑛)]){𝑇𝑛+1} − ([𝐶̂(𝑇𝑛+1, 𝑇𝑛)] − (1 −

𝜃)∆𝑡[𝐾(𝑇𝑛+1, 𝑇𝑛)]){𝑇𝑛} − ∆𝑡(𝜃{𝑄𝑛+1} + (1 − 𝜃){𝑄𝑛}) − ∆𝑡(𝜃{𝑞𝑛+1} + (1 −

𝜃){𝑞𝑛}) − ∆𝑡(𝜃{𝑞̂𝑛+1} + (1 − 𝜃){𝑞̂𝑛})                                                                      (4—26) 

and seeking the 𝑇𝑛+1 that satisfies 
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𝐹(𝑇𝑛+1) = 0                                                                                                                  (4—27) 

The generalized iterative equation should be 

{𝑇𝑘+1
𝑛+1} = {𝑇𝑘

𝑛+1} − [𝐽]−1{𝐹(𝑇𝑘
𝑛+1)}                                                                             (4—28) 

where 

[𝐽𝑖𝑗] = [
𝜕𝐹𝑖

𝜕𝑇𝑗
]                                                                                                                   (4—29)  

is the Jacobian matrix, which is a 𝑛 × 𝑛 matrix. Where 𝑖 = 1, 2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝑛 

It is relatively easy to find the value of 𝐹(𝑇𝑘
𝑛+1), but the evaluation of 𝐹′(𝑇𝑘

𝑛+1) is the main 

barrier. As a consequence, the secant method is introduced. In the secant method, the 

derivative is approximated as 

𝜕𝐹𝑖

𝜕𝑇𝑗
(𝑇𝑘

𝑛+1) ≈
𝐹𝑖(𝑇𝑘

𝑛+1)−𝐹𝑖(𝑇𝑘−1
𝑛+1)

𝑇𝑗𝑘
𝑛+1−𝑇𝑗𝑘−1

𝑛+1                                                                                        (4—30) 

where the subscript 𝑖 denotes the 𝑖 th equation, and the subscript 𝑗 denotes the 𝑗th nodal 

temperature. 

Substituting equation (4—30) into equation (4—28) gives the generalized iterative equation 

of the secant method 

𝑇𝑗𝑘+1
𝑛+1 = 𝑇𝑗𝑘

𝑛+1 −
𝑇𝑗𝑘
𝑛+1

𝐹𝑖(𝑇𝑘
𝑛+1)−𝐹𝑖(𝑇𝑘−1

𝑛+1)
(𝑇𝑗𝑘

𝑛+1 − 𝑇𝑗𝑘−1
𝑛+1)                                                      (4—31) 

The secant method avoids the evaluation of the derivative 𝜕𝐹𝑖(𝑇𝑘
𝑛+1) 𝜕𝑇𝑗⁄ , it however 

demands one additional initial value. 

Rather than a single equation, in the finite element method, it usually contains a system with 

n equations that are required to be solved, where n is the total number of nodes. Consequently, 

in order to solve the system of non-linear equations, the Jacobian matrix of the system should 

be generated in the first place. Each element of Jacobian matrix can be approximated as 

𝜕𝐹𝑖

𝜕𝑇𝑗
≈

𝐹𝑖(𝑇1,𝑘
𝑛+1,𝑇2,𝑘

𝑛+1,…,𝑇𝑗,𝑘
𝑛+1+∆𝑇,…,𝑇𝑛,𝑘

𝑛+1)−𝐹𝑖(𝑇1,𝑘
𝑛+1,𝑇2,𝑘

𝑛+1,…,𝑇𝑗,𝑘
𝑛+1,…,𝑇𝑛,𝑘

𝑛+1)

∆𝑇
                                    (4—32) 

where the first  number in the subscript of 𝑇𝑛+1 denotes the nodal numbers, and the 

increment ∆𝑇 is user-defined. 
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4.4.3 The homotopy method 

The linear homotopy equation for equation (4—26) is 

H(T𝑛+1, 𝜆) = 𝜆𝐹(T𝑛+1) + (1 − 𝜆)𝐺(T𝑛+1)                                                                (4—33) 

where the auxiliary function 𝐺(T𝑛+1) is user-defined, which can lead to two well-known 

homotopy methods which are the fixed point homotopy method (FPH) [112, 121, 123] 

𝐺(T𝑛+1) = 𝑇𝑛+1 − T0
𝑛+1                                                                                             (4—34a) 

 and the Newton Homotopy method (NH) [122-123] 

𝐺(T𝑛+1) = 𝐹(T𝑛+1) − 𝐹(T0
𝑛+1)                                                                                 (4—34b) 

where T0
𝑛+1 is the is the initial assumption of T𝑛+1. 

 Substitution of equations (4—34a) and (4—34b) into equation (4—33) gives homotopy 

equations for each method as 

H(T𝑛+1, 𝜆) = 𝜆𝐹(T𝑛+1) + (1 − 𝜆)(𝑇𝑛+1 − 𝑇0) = 0                                                   (4—35) 

and 

H(T𝑛+1, 𝜆) = 𝐹(T𝑛+1) + (𝜆 − 1)𝐹(T0
𝑛+1) = 0                                                           (4—36) 

Respectively, where 𝜆 ∈ [0, 1]. For equation (4—35), when 𝜆 = 0, the function has a unique 

solution 𝑇𝑛+1 = T0
𝑛+1, and when 𝜆 = 1, H(T𝑛+1, 1) = 𝐹(T𝑛+1). While equation (4—36) is 

slightly more complex than equation (4—35), but it widely used because it does not change 

the Jacobian matrix. The FPH failed to converge in the program of this subject, consequently, 

the NH is applied. 

In order to solve the homotopy equation as shown in equation (4—36) the parameter 𝜆 

should be discretised, such as 0 = 𝜆0 < 𝜆1 < ⋯ < 𝜆𝑚 = 1. Practically, the larger the m is, 

the more possibility the homotopy equation converges. The relationship of the homotopy 

method and secant method is depicted in Figure 4.3. For the secant method, if the initial  
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Figure 4.3: The homotopy method and the secant method 

assumption of Tp
𝑛+1 does not fall into the red circled area, the solution may not be found. 

The homotopy method is able to create a path for the predicted value Tp
𝑛+1(𝜆), and the path 

will lead the solutions to the exact solution. 

For every value of 𝜆𝑚 , the secant method can be used. For example, when 𝑚 = 1, the 

homotopy equation is 

H(T𝑛+1, 𝜆1) = 𝐹(T𝑛+1) + (𝜆1 − 1)𝐹(T0
𝑛+1)                                                               (4—37) 

And its related Jacobian is 

𝐽𝑖𝑗 =
𝜕𝐻𝑖

𝜕𝑇𝑗
≈

𝐻𝑖(𝑇1,𝑘
𝑛+1,𝑇2,𝑘

𝑛+1,…,𝑇𝑗,𝑘
𝑛+1+∆𝑇,…,𝑇𝑛,𝑘

𝑛+1,𝜆1)−𝐻𝑖(𝑇1,𝑘
𝑛+1,𝑇2,𝑘

𝑛+1,…,𝑇𝑗,𝑘
𝑛+1,…,𝑇𝑛,𝑘

𝑛+1,𝜆1)

∆𝑇
                   (4—38) 

So, the solution can be approximated as 

{𝑇𝑘+1
𝑛+1} = {𝑇𝑘

𝑛+1} − [𝐽]−1{𝐻(𝑇𝑘
𝑛+1, 𝜆𝑘)}                                                                       (4—39) 

Once the value of {𝑇𝑘+1
𝑛+1} is calculated, it should be substituted back to the H(T𝑛+1, 𝜆), and 

if 

|𝐻(T𝑘+1
𝑛+1, 𝜆)| ≤ 𝜖                                                                                                           (4—40)
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then set T0
𝑛+1 = T𝑘+1

𝑛+1  and 𝜆 = 𝜆𝑘+1 , Proceed in this manner until 𝜆 = 1 , and a good 

numerical solution of 𝐹(T𝑛+1) is obtained. 

The accuracy and the computational time for each method is presented in Table 4.1. The 

data is obtained on the basis of 50-element mesh, and the total number of times steps is 800. 

The percentage error is calculated on the basis of node 41 (𝑥 = 0.02𝑚). It can be seen in the 

table that, the predictor-corrector method provides the fastest computation. However, during 

the experiments, this method sometimes suffers numerical oscillations. The secant method 

uses only 9 seconds longer than the predictor-corrector method, but due to the limitation of 

routine programmed, it only applies to the mesh with less than 66 nodes. The homotopy 

method takes the longest time for computation, but this method promises the highest 

possibility for convergence. 

Solver 

x=0.02 m 

CPU time 

(sec) 

Max. error 

(%) 

Predictor-

Corrector 
141.26 2.71 

Secant 150.01 3.89 

Homotopy 22953.49 1.65 

Table 4.1: Comparison of time efficiency and accuracy between solvers 

4.5 The numerical experiments – stationary 

4.5.1 Problem description 

4.5.1.1 The experiment set-up 

A one-dimensional material region is drawn in Figure 4.4. The material is pure zinc and its 

material properties are shown in the Table 4.2. The temperature of the material is initially 

uniform and above the liquidus temperature, which is 𝑇𝑖𝑛𝑖𝑡 = 405℃ . The boundary 

conditions are set to make the numerical tests match the analytical solution of Stefan problem 
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discussed in Chapter 2. The Robin boundary condition is applied to the left end of the 

material region, which is 𝑘𝑠(𝜕𝑇 𝜕𝑥⁄ )|𝑥=0 = ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏) , where ℎ𝑐  is the forced 

convective coefficient and 𝑇𝑎𝑚𝑏 = 25℃ refers to the ambient temperature. On the other end, 

the boundary condition 𝑘𝑠(𝜕𝑇 𝜕𝑥⁄ )|𝑥=0.1 = 0 is applied. For the rest of the material region, 

the boundary is insulated. The material will cool down from the left end, when the 

temperature drops below the liquidus temperature, the phase transformation begins, and the 

solid/liquid phase interface propagates from the left to the right. If the hot liquid material 

flows into the region from the right end, and colder material leaves the region from the left 

end, then the material velocity ‖𝑣‖ ≠ 0, and the problem becomes a transient advection-

diffusion problem, which will be discussed later. Firstly, the material velocity is set to 0. 

 

Figure 4.4: One dimensional solidification problem 

Material Name Pure Zinc 

Thermal conductivity of solid (𝑘𝑠) 100𝑊/𝑚℃ 

Thermal conductivity of liquid (𝑘𝑙) 50𝑊/𝑚℃ 

Heat capacitance of solid (𝑐𝑠) 400𝐽/𝑘𝑔℃ 

Heat capacitance of liquid (𝑐𝑙) 500𝐽/𝑘𝑔℃ 

Density of solid (𝜌𝑠) 6900𝑘𝑔/𝑚3 

Density of liquid (𝜌𝑙) 6600𝑘𝑔/𝑚3 

Latent Heat (𝑙) 130000𝐽/𝑘𝑔 

Solidus temperature (𝑇𝑠𝑜𝑙) 400℃ 

Liquidus temperature (𝑇𝑙𝑖𝑞) 400℃ 

Table 4.2: The material properties 
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4.5.1.2The mesh 

The model as shown in Figure 4.5 is meshed with one-dimensional linear rod elements. It is 

commonly known that increasing the density of mesh will get more accurate results. In this 

group of test, 100, 200 and 400 elements are used to mesh the model. By testing with 

different mesh density, the influence of mesh size on the non-physical variable method can 

be identified. To make the results comparable between meshes, the nodes placed at 𝑥 =

0.02 𝑚 and 𝑥 = 0.03 𝑚 are picked. Because of different mesh sizes, the node numbers are 

different, for example, when the total element number (NELS) is 100, the example nodes are 

numbered 21 and 31; when the NELS is 200, the example nodes are numbered 41 and 61; 

and when the NELS is 400, the example nodes are numbered 81 and 121. 

 

Figure 4.5: The one-dimensional mesh by FEM 

The material is cooled over a period of 40 seconds. To examine the influence of time step 

size ∆𝑡, it is set as ∆𝑡 = 0.05 𝑠𝑒𝑐 or ∆𝑡 = 0.5 𝑠𝑒𝑐 respectively. Accordingly, there are 800 

time steps or 80 time steps. 

4.5.2 Results returned from non-physical capacitance method 

The numerical results presented here are returned through programs written in Fortran 95 

programming language. It has been indicated previously that the mesh density affects the 

performance of capacitance methods. With a crude mesh, the capacitance method suffers 

inaccuracy, wrong phase transformation time and oscillations in temperature after phase 

change [7, 28, 128]. In addition, it is illustrated previously that, when the material velocity 

𝑣 = 0 and the discontinuity removal procedure does not apply, the non-physical enthalpy 

method returns to the non-physical capacitance method. The evaluation of the non-physical 
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capacitance or the control volume capacitance is provided by equation (3—55). The non-

physical capacitance method is then categorised as a capacitance method. The following 

experiments test the performance of non-physical capacitance method with different time 

step sizes and mesh sizes. 

Figure 4.6 and Figure 4.7 show the history of temperature at  𝑥 = 0.02 𝑚 and 𝑥 = 0.03 𝑚, 

respectively. The comparisons are conducted between the meshes: NELS=100, NELS=200 

and NELS=400, which are shown in Figure 4.5. The results from different meshes are 

distinguished by different colours, and they are compared with the exact solution given in 

Chapter 2. The exact solution is plotted in black. It can be seen that, with a greater number 

of elements, such as 400, the method can provide more accurate results. However, somewhat 

surprisingly a mesh consisting of 100 elements provides greater accuracy than 200 elements. 

 

Figure 4.6: History of temperature at 𝑥 = 0.02 𝑚, the non-physical capacitance method 
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Figure 4.7: History of temperature at 𝑥 = 0.03 𝑚, the non-physical capacitance method 

Total number 

of  elements 

             x = 0.02m_______              x = 0.03m_______ 

CPU time 

(sec) 

Max. 

difference 

(°C) 

Max. error 

(%) 

Max. 

difference 

(°C) 

Max. error 

(%) 

100 22.52 8.33 15.58 4.98 347.85 

200 21.37 8.93 17.23 5.47 1247.73 

400 11.21 4.53 4.58 1.16 4980.05 

Table 4.3: Error of the non-physical capacitance method with different mesh sizes 

Table 4.3 presents the maximum difference and maximum percentage error of the non-

physical capacitance method. When applying the Robin boundary conditions, the nodes 

close to the boundary provide greater error, i.e. the error of node 41 in a 200-element mesh 

is 8.93%. Increasing the mesh density will improve the accuracy, the mesh density is 

increased from 200 elements to 400 elements, the error is reduced from 8.93 % to 4.53 %, 

but with a cost of more time, i.e., it requires 4980.05 CPU time to run a 400-element methods, 

which is about 4 times longer than the 200-element mesh (only 1247.73 seconds required). 
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Figure 4.8: Numerical solutions with different time step sizes 

Time step 

size Δt 

              x=0.03 m_______ 

CPU time 

(sec) 

Max. 

difference 

(°C) 

Max. error 

(%) 

0.05 17.23 5.47 1247.73 

0.50 22.31 7.13 123.43 

Table 4.4: Error of the non-physical capacitance method with different time step sizes 

The Figure 4.8 gives the plot of nodal temperature. The nodal temperatures are obtained by 

setting the time step size ∆𝑡 to 0.5 s and 0.05 s, respectively. Reducing the time step size will 

increase the cost of CPU time, if the time step size is increased from 0.05 sec to 0.5 sec, the 

cost of CPU time drops from 1247.74 sec to just 123.43 sec,. However, the change of time 

step does not improve the accuracy that significantly, the error grows 1.66 % from 5.47 %. 
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Figure 4.9: The format of matrix and the approximation of time derivative 

Figure 4.9 shows how the combination of the matrix format and the approximation of time 

derivative can affect the numerical results. The phase transformation time is delayed in the 

simulated conducted with a consistent capacitance matrix, since very small oscillations are 

presented in the numerical solution. The Crank-Nicolson method is able to gain second order 

accuracy [109, 125]. The experiments show that it is more accurate than the implicit method 

which only provides first order accuracy [125]. This figure indicates that the Lumped 

capacitance matrix combined with the Crank-Nicolson time approximation provides the 

most accurate results, however there exists a small undulation in the result calculated with 

the lumped capacitance matrix just after the phase change. In Table 4.5, the Lumped matrix 

and the Crank-Nicolson method reduces the maximum percentage error to only 1.6199 %. 

However, the improvement does not require extra computational time. 
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Matrix format 

and temporal 

approximation 

x=0.03 m 

CPU time 

(sec) 

Max. 

difference 

(°C) 

Max. error 

(%) 

Lumped and 

implicit 
17.23 5.47 1247.73 

Lumped and 

Crank-

Nicolson 

6.19 1.62 1259.55 

Consistent and 

implicit 
30.33 9.03 1259.85 

Consistent and 

Crank-

Nicolson 

20.35 5.69 1263.98 

Table 4.5: Error of the non-physical capacitance method with combination 

The numerical experiments so far present the performance of non-physical capacitance 

method in one-dimensional simulation. In the non-physical capacitance method, the 

evaluation of non-physical capacitance as achieved by equation (3—55). It shows that the 

lumped capacitance matrix performs well with the non-physical capacitance method. And 

with the Crank-Nicolson method, the accuracy with maximum error equal to 1.62% can be 

achieved. The non-physical capacitance method works well with different meshes, it is 

accurate and the wrong phase transformation time of classical capacitance method does not 

affect the non-physical capacitance method. 

4.5.3 Results returned from non-physical discontinuity annihilation 

method 

In the subsequent numerical experiments, the non-physical source method is the focus of the 

study. In Section 3.5.2, the removal of discontinuity from the non-physical capacitance is 

presented. The non-physical capacitance becomes linear, and the change in it is small in its 

magnitude. However, the discontinuity returns as a source. The following numerical results 

show the performance of non-physical source method. 
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A temperature history at  𝑥 = 0.02 𝑚 and 𝑥 = 0.03 𝑚 calculated by the non-physical source 

method, are shown in Figures 4.10 and 4.11, respectively. The comparisons are conducted 

between the meshes: NELS=100, NELS=200 and NELS=400, which are shown in Figure 

4.5. The results from different meshes are distinguished by different colours, and they are 

compared with the exact solution given in Chapter 2. The exact solution is plotted in black. 

The maximum error and the percentage error are presented in Table 4.6. To prevent the 

temperature overflow and inaccurate phase transformation time for non-physical source 

method, a blending parameter can be applied to the nodal temperatures between two iteration 

steps, i.e.: 

{𝑇𝑛+1}𝑝 = 𝜗{𝑇𝑘−1
𝑛+1} + (1 − 𝜗){𝑇𝑘

𝑛+1}                                                                          (4—41) 

where the blending parameter 𝜗 ∈ [0,1] and in this project 𝜗 = 0.7. Since the effect of latent 

heat may not be present in the predictor step, the predicted nodal value (i.e. temperature) 

may be lower than the true value. This blending technique artificially bringing the predicted 

value back to be closer to the true value. When the parameter 𝜗 = 0 , the predicted 

temperature is the result of present iteration. When the parameter 𝜗 = 1, the predicted 

temperature is the result of previous iteration. The subscript 𝑘 is the number of iteration step. 

 

Figure 4.10: History of temperature at 𝑥 = 0.02 𝑚, the non-physical source method  
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Comparison between Table 4.3 and Table 4.6, it can be seen that the non-physical source 

method is generally more accurate than the non-physical capacitance method. It is because 

most terms of equation (4—1) are now continuous. It means that continuous approximation 

of finite element method can be applied. The discontinuity is isolated in the non-physical 

source, and it can be treated analytically. For example, when the mesh is 100-element and at 

𝑥 = 0.03𝑚 , the maximum percentage error for the non-physical capacitance method is 

4.98%, but the maximum percentage error is only 2.18% for non-physical source method. 

However, the non-physical source method requires 27.44% extra time for execution. 

 

Figure 4.11: History of temperature at 𝑥 = 0.03 𝑚, the non-physical source method  

Total number 

of  elements 

             x = 0.02m_______              x = 0.03m_______ 

CPU time 

(sec) 

Max. 

difference 

(°C) 

Max. error 

(%) 

Max. 

difference 

(°C) 

Max. error 

(%) 

100 9.47 3.42 8.17 2.18 436.66 

200 2.95 1.17 13.08 3.35 1533.91 

400 3.59 1.10 14.16 3.56 6665.41 

Table 4.6: Error of the non-physical source method with different mesh sizes 
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Figure 4.12 shows the non-physical capacitance calculated by equation (3—55), in which 

the discontinuity is embodied. The example elements are element 21 and element 31 from a 

100-element mesh. It can be seen that the peak is generated due to phase change and the 

release of latent heat just like it is from the analysis by exact solution in Section 2.1. The 

application of non-physical source term method annihilates the discontinuity in the non-

physical capacitance, and it can be seen in Figure 4.13. 

 

Figure 4.12: Non-physical capacitance embodies the discontinuity 
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Figure 4.13: Non-physical capacitance, the discontinuity removed 

In the previous tests, the discontinuity is not completed annihilated from the linkage equation 

(3—36). However, with the smoothed solid/liquid volume fraction and right combination of 

the capacitance matrix and the time derivative approximation, the percentage error can be 

controlled under 2%. As it can be seen in the Figure 4.9, the numerical solution and the 

analytical solution agree well with lumped capacitance matrix and the Crank-Nicolson time 

approximation. If applying the discontinuity annihilation method to the non-physical method, 

the discontinuity is removed from the linkage equation as shown in equation (3—36), and 

the aftermath is that a new source term embodies the discontinuity is generated from the new 

governing equation (3—37). In the numerical simulation, if the non-physical capacitance 

captures the discontinuity, the non-physical capacitance is evaluated through the mean-value 

approach. This approach arises the enthalpy of current time step and future time step together, 

and further it makes sure that the further time-step temperature is always smaller than the 

present time-step temperature in the solidification simulation. However, for the numerical 

simulations with the non-physical source method, it is essential to satisfy that the 

numerically approximated non-physical source must be smaller than the enthalpy loss of the 

elements during each time step of the simulation. If this criteria is not satisfied, the ‘cooling 

process’ is reversed to the ‘heating process’ and the solidification simulation fails. 

Theoretically, this criteria is ignorable, but in practical numerical simulations, unstable 

methods and crude approximations can make the numerical methods fail to satisfy the 
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criteria. In the numerical simulation, the approximation of solid/liquid volume fraction 

significantly influences the value of non-physical source. Moreover, for Stefan problems 

such as the solidification problem, the latent heat (large in magnitude for some materials, 

e.g. zinc) intensifies the effect of solid/liquid volume fraction. For example, through position 

approximation of solid faction in equation (3—50), the changing rate of liquid fraction with 

time is almost constant. This makes the release of the latent heat smooth, and the risk of 

temperature overflow is relatively small. However, if the temperature approximation is as 

shown in equation (3—49), the cumulative changing rate of solid volume fraction generates 

a peak in the non-physical source, which makes the temperature very possible to overflow. 

This phenomenon is common in the source based method, and updating of liquid fraction is 

essential for source based method [46, 105, 129]. For that reason, this project uses a blending 

parameter to the nodal variables (temperature) between iteration steps as shown in equation 

(4—41). 

The non-physical source method has a strict requirement on the update procedure of liquid fraction. 

But for the material with low latent heat, the update procedure can be as simple as the non-physical 

capacitance method. To show this, consider a material of a pure Lead which has a low latent 

heat of fusion. The other material properties of Lead are shown in Table 4.7.  

Material Name Pure Lead 

Thermal conductivity of solid (𝑘𝑠) 35𝑊/𝑚℃ 

Thermal conductivity of liquid (𝑘𝑙) 16𝑊/𝑚℃ 

Heat capacitance of solid (𝑐𝑠) 160𝐽/𝑘𝑔℃ 

Heat capacitance of liquid (𝑐𝑙) 180𝐽/𝑘𝑔℃ 

Density of solid (𝜌𝑠) 11340𝑘𝑔/𝑚3 

Density of liquid (𝜌𝑙) 10660𝑘𝑔/𝑚3 

Latent Heat (𝑙) 23000𝐽/𝑘𝑔 

Solidus temperature (𝑇𝑠𝑜𝑙) 327℃ 

Liquidus temperature (𝑇𝑙𝑖𝑞) 327℃ 

Table 4.7: The thermal-physical material properties of Lead
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The boundary conditions should be the same as the solidification of Zinc, such as the forced 

convective coefficient ℎ𝑐 = 12000 𝑊 𝑚2℃⁄ , and the ambient temperature 𝑇𝑎𝑚𝑏 = 25℃. 

But, the initial temperature is reduced to 340℃. 

Plots of temperature histories at the point 𝑥 = 0.02𝑚 are shown in the Figure 4.14. They are 

calculated by the analytical method (Black), the non-physical capacitance method (Red) and 

the non-physical source term method (Blue), respectively. In a 50-element numerical model, 

the figure indicates that, once the criteria of low latent heat is satisfied, the non-physical 

source term method gives better accuracy than the non-physical capacitance method, 

moreover it does not require update techniques for liquid fraction such as the relaxation 

technique [46, 105, 129] and the blending technique, i.e. 𝜗 = 0. In this case, the maximum 

percentage error is reduced from 15.79% to 2.61%. This is at a low costs of 127.89 seconds 

of CPU time to achieve this accuracy. 

 

Figure 4.14: The non-physical source method vs. the non-physical capacitance method. 

4.6 The numerical experiments – advection-diffusion 

In the following tests, the material velocity is set to be −0.0001 𝑚/𝑠 , −0.0005 𝑚/𝑠 , 

−0.001 𝑚/𝑠 and −0.005 𝑚/𝑠, repectively. Thus solidifying material is transported. The 

negative sign “−“ presents the direction of flow. The unknown field variables such as the 

temperature and the enthalpy are transported with the material flow. Moreover, for 

solidification problems, the latent heat of fusion, which is released at the phase interface, is 

transferred not only by the conduction but also by advection. 
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The advective effect of material flow can still be reflected by a change of non-physical 

capacitance. The influence of advection on non-physical capacitance is achieved by the term 

∫ 𝜌ℎ(𝑋𝑛+1 − 𝑋𝑛) ∙ 𝑛
Γe

𝑑Γ in equation (3—38). Further evaluation of this term can be found 

in Appendix I—(d). The non-physical capacitance method promises that no extra advective 

term is generated. This helps the simulation to be immune to the numerical instability as 

described in reference [71-74], which is caused by complex eigenvalue arising from large 

elemental Peclèt numbers [84-86]. Peclèt number is a ratio of the diffusion and advection 

which can be computed as 

𝑃𝑒 =
𝐿𝑒𝑣

2𝛼
                                                                                                                         (4—42) 

where 𝐿𝑒 is the characteristic length of an element, 𝑣 is the velocity of flow and 𝛼 is the 

thermal diffusivity. Usually, when 𝑃𝑒 > 1, instability will happen. 

The temperature profiles depicted in the Figure 4.15 are the simulations of solidification with 

different material velocities. When the velocity field is negative, the material is moving from 

the right to the left. The greater the material velocity is, the more energy that will be 

transported into the system by advection. So, the cooling rate will be reduced. When the 

material velocity is −0.001 𝑚/𝑠, the material flows into the system so fast that it is little 

time for the melt to cool down, so the temperature is maintained above 400℃. When the 

material velocity is −0.0001 𝑚/𝑠 or −0.0005 𝑚/𝑠, enough time is available to cool the 

material and the weak discontinuity in the temperature profiles as phase change occur is 

present in the figure. 
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Figure 4.15: The temperature profiles when the velocities are negative 

In a solidification simulation, the unknown field variables (enthalpy and the temperature) of 

the future time step must be smaller than the field variables of the present time step. This 

makes both ∫ 𝜌𝑛+1hn+1𝑑𝑉
Ωe

− ∫ 𝜌𝑛hn𝑑𝑉
Ωe

 and ∫ Tn+1𝑑𝑉
Ωe

− ∫ Tn𝑑𝑉
Ωe

 return negative 

values, and further give the non-physical capacitance 𝑐̂ a positive value at each time step. 

When the material velocity is negative, ∫ 𝜌ℎ(𝑋𝑛+1 − 𝑋𝑛) ∙ 𝑛
Γe

𝑑Γ returns negative values as 

well, which may intensify the peak of non-physical capacitance but it still keeps the 

numerical solution stable. However, when the velocity is positive (the material is flowing 

from the left to the right), the positive non-physical capacitance 𝑐̂ cannot be guaranteed. 

Figure 4.16 shows the temperature profiles computed by non-physical capacitance method 

when the material velocities are positive. When the material velocity is very small, the 

method can still output the solution. In Figure 4.16 (for 𝑣 = 0.0001 𝑚/𝑠), the program runs 

normally until the 32 second, but when the material velocity is greater, disorder arises in the 

simulations. Experiment shows that a great many negative non-physical capacitances are 

generated by the method at different time. Figure 4.17 is the plot of non-physical capacitance 

vs. time when the material velocity is 0.0001 𝑚/𝑠. It can be seen that, once the non-physical 

capacitance is decreased at a certain level, it brings instability into the numerical simulations, 

and the following behaviour of the non-physical capacitance is in chaos.  
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Figure 4.16: Numerical solution of non-physical capacitance method 

However, the exclusion of the advective term of advection-diffusion problem is the major 

advantage of the non-physical capacitance term. This advantage helps to resolve the 

instability problem in the numerical methods when the velocity is too large.  

 

 

Figure 4.17: The instability of non-physical capacitance 
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In the numerical test, when the material velocity 𝑣 = −0.001 𝑚/𝑠 , the cooling rate is 

significantly decelerated. The temperature is almost stable, but the element Peclèt number is 

only 0.338 for a 200-element mesh. However, it is still necessary to show the capability of 

non-physical capacitance when 𝑃𝑒 > 1. The results for this are compared against the central 

difference approximation in Figure 4.18 and Figure 4.19. The numerical model is now 

meshed with 10 elements to obtain large elemental Peclèt Number. Both figures show the 

nodal temperatures of every node on the third time step (0.15 seconds). But 𝑃𝑒 = 16.875 is 

for the first figure and 𝑃𝑒 = 168.75 is for the second. It can be found that when the 𝑃𝑒 is as 

high as 168.75, the non-physical capacitance method is still stable, but the standard Galerkin 

method ( which gives central difference approximation) is unstable. 

 

Figure 4.18: The non-physical capacitance method vs. the Galerkin method, 𝑃𝑒 = 16.875
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Figure 4.19: The non-physical capacitance method vs. the Galerkin method, 𝑃𝑒 = 168.75 

4.7 Summary 

In this chapter, a detailed discussion of non-physical variable methods is given. The concept 

of non-physical variable method is introduced at the beginning of the chapter. A non-

physical source ℎ′̂ is obtained through the definition of non-physical enthalpy. Previous 

studies were conducted based on the zero material velocity, and the methods for convergence 

and solving the linear system of equations are bisection method and the SOR method, 

respectively. This chapter attempts three other solution techniques, which are: 

 the predictor-corrector method; 

 the secant method; 

 and the homotopy method. 

This chapter also declares that the numerical approximation of solid/liquid fraction plays a 

very important role for the non-physical variable method, because it shapes the behaviour of 

the non-physical capacitance. The discussion of solid/liquid fraction is followed by the 

numerical tests, which include both stationary (𝑣 = 0 𝑚/𝑠) and advection (𝑣 ≠ 0 𝑚/𝑠). The 

stationary tests shows that, in order to obtain high accuracy and stability, the non-physical 

capacitance method requires: 

(1) sufficiently small mesh size and time step size; 
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(2)  correct discretization of temporal derivatives; 

(3) accurate numerical approximation of solid/liquid fractions; 

(4) the secant method is more effective than the predictor-corrector method, and the 

homotopy method can be an alternative method if it is hard to find a prediction 

of future time step temperature (see Table 4.1). 

In the advection-diffusion tests, the advective term is included into the calculation of non-

physical capacitance. The results are stable and physically make sense. It also avoids the 

instability when the element Peclèt number is greater than 1. However, it only works when 

the ∫ 𝜌ℎ(𝑋𝑛+1 − 𝑋𝑛) ∙ 𝑛
Γe

𝑑Γ returns negative values. 

 



Chapter 5: 5.1 General     110 
 

Chapter 5 A New Definition for Non-

physical Enthalpy for Isothermal 

Solidification Problems 

5.1 General  

Chapter 3 discussed the non-physical enthalpy method, which includes both the non-

physical-capacitance method and the non-physical source-based method. Through a group 

of numerical experiments in chapter 4, their advantages were identified. Greater accuracy 

and stability can be obtained by the right combination of temporal and spatial discretization, 

the element-based approximation of solid/liquid volume fraction and the methods for solving 

the system of equations. Demonstrated is the ability of dealing with the solidification 

problems with material transportation. However, the non-physical capacitance method 

suffers instability when the material velocity makes the non-physical capacitance negative. 

The non-physical source-term method has better accuracy and greater efficiency, but it has 

restrictions on the range of material properties and it requires accurate approximation and 

precise update of the approximation of the solid/liquid volume fraction. 

Advection/Convection in solidification is a great challenge for numerical methods, but they 

also play an important role in the phenomena of solidification, such as macrosegregation, 

phase-interface stability, dendrite growth, etc. [82]. In some manufacturing technologies 

such as continuous casting, advection becomes significantly important as the liquid material 

and the solid material are all moving through a continuous casting machine. In this chapter, 

a new definition of non-physical enthalpy is established. This new definition is an extension 

of the control volume capacitance method [66] and the non-physical enthalpy method [62-

63]. It is defined through a weak form of the enthalpy transport equation [62-63]. The new 

definition attempts to exclude the advection term from the non-physical capacitance method, 

and finally, to avoid the possible generation of negative capacitances. The details are 

discussed as follows. 
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5.2 The definition of non-physical enthalpy in weak form 

Through the energy transport equation, the new non-physical enthalpy is defined as 

𝐷∗

𝐷∗𝑡
∫ ℎ̂𝑑𝑉
Ω

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

=
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ𝑑𝑉
Ω

+ ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛
Γ

𝑑Γ +

∫ 𝜌𝑄
Ω

𝑑𝑉                                                                                                                        (5—1) 

where  ℎ̂ is the non-physical enthalpy, ℎ is the physical specific enthalpy, 𝑣 is the material 

velocity field,  𝑣∗ is the mesh velocity field,  𝜌 is the density, and 𝑛 is the outward pointing 

unit normal to the control surface (CS) Γ of the control volume (CV) Ω. Contrasting with the 

definition in chapter 3, the inclusion of the artificial advective term ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

 is designed 

to isolate the non-physical capacitance from the effect of physical advection ∫ 𝜌ℎ(𝑣 −
Γ

𝑣∗) ∙ 𝑛𝑑Γ . As will be shown, negative non-physical capacitance will not be generated 

through the new definition. 

Two important temporal derivatives, which are derived in the material reference system 

(MRS) 𝑿 and the computational reference system (CRS) 𝝌∗, respectively are: 

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑣 ∙ ∇                                                                                                                 (5—2) 

and 

𝐷∗

𝐷∗𝑡
=

𝜕

𝜕𝑡
|
𝑥
+ 𝑣∗ ∙ ∇                                                                                                           (5—3) 

where ∇(∎) = {𝜕 𝜕𝑥⁄ 𝜕 𝜕𝑦⁄ 𝜕 𝜕𝑧⁄ }, which is the gradient. 

It is always permitted that, on setting 𝑣∗ = 0, the Eulerian description of transport equation 

can be obtained as 

𝜕

𝜕𝑡
∫ ℎ̂𝑑𝑉
Ω

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

=
𝜕

𝜕𝑡
∫ 𝜌ℎ𝑑𝑉
Ω

+ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛
Γ

𝑑Γ + ∫ 𝜌𝑄
Ω

𝑑𝑉  

                                                                                                                                         (5—4) 

If the material velocity 𝑣  is discontinuous in different phases due to material property 

difference, then the relation 𝑣∗ = 𝑣 cannot be set, because the domain velocity 𝑣∗ is always 

considered as continuous. The setting 𝑣∗ = 0 is always permitted because 0 is continuous 

and the problem becomes a fixed grid problem. 
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Application of the Reynold-type transport theorem and the Divergence theorem to each term 

in equation (5—1), gives 

∫ (
𝐷∗ℎ̂

𝐷∗𝑡
+ ℎ̂∇ ∙ 𝑣∗) 𝑑𝑉

Ω
+ ∫ ∇ ∙ (ℎ̂𝑣)𝑑𝑉

Ω
= ∫ (

𝐷∗𝜌ℎ

𝐷∗𝑡
+ 𝜌ℎ∇ ∙ 𝑣∗) 𝑑𝑉

Ω
+ ∫ ∇ ∙ (𝜌ℎ(𝑣 −

Ω

𝑣∗)) 𝑑𝑉 = −∫ ∇ ∙ (𝑞)𝑑𝑉
Ω

+ ∫ 𝜌𝑄
Ω

𝑑𝑉                                                                      (5—5) 

where ∇ ∙ (∎) = 𝜕 𝜕𝑥⁄ + 𝜕 𝜕𝑦⁄ + 𝜕 𝜕𝑧⁄  is the divergence. 

In equation (5—1), the non-physical enthalpy is defined in a weak formulation. And through 

equation (5—5), the definition of non-physical enthalpy ℎ̂ in the strong form can be found 

as 

𝐷∗ℎ̂

𝐷∗𝑡
+ ℎ̂∇ ∙ 𝑣∗ + ∇ ∙ (ℎ̂𝑣) = 𝜌

𝐷∗ℎ

𝐷∗𝑡
+ 𝜌(𝑣 − 𝑣∗) ∙ ∇ℎ = −∇ ∙ (𝑞) + 𝜌𝑄                         (5—6) 

Comparing both definitions as shown in equations (5—1) and (5—6), it can be recognised 

that the non-physical enthalpy is not unique. Equation (5—1) indicates that, for fixed grid 

method, i.e. 𝑣∗ = 0, one possible formulation can be conducted by setting the non-physical 

enthalpy ℎ̂ = 𝜌ℎ . In this formulation, however the non-physical enthalpy contains a 

discontinuity. The formulation is identical to the CVCM. Alternatively the non-physical 

enthalpy can be forced continuous on the phase interface, that is to say, ]ℎ̂𝑛[ = 0, so that it 

generates an extra source term. It should be noted that no matter which evaluation is under 

consideration, the non-physical advective term ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

 remains. This is not like the 

recent definition in references [62-63], which eliminates the advective term for finite element 

discretization. It is recognised however that the inclusion of the term ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

 gives rise 

to a jump term of the form ]ℎ̂𝑣 ∙ 𝑛[ at Γ𝑖 . A possible approach to account for this is the 

incorporation of an additional non-physical term (a source term 𝑄̂) in equation (5—1), 

discussed in the section that follows. 
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5.3 The non-physical source term 𝑸̂ 

In order to find the relationships between the non-physical enthalpy, the non-physical source 

and the discontinuity front, it is necessary to consider a new CV, the motion of which is 

governed by the velocity field 𝑣+ . The velocity field 𝑣+  matches the velocity of a 

discontinuity Γ𝑖 passing through the domain Ω. Therefore, the governing equation for this 

CV (denoted as 𝛺+) can be written as 

𝐷+

𝐷+𝑡
∫ ℎ̂𝑑𝑉
𝛺+

+ ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
𝛤+

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
𝛤+

+ ∫ 𝑄̂
𝛺+

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ𝑑𝑉 +
𝛺+

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
𝛤+

= −∫ 𝑞 ∙ 𝑛𝑑Γ
𝛤+

+ ∫ 𝜌𝑄𝑑𝑉
𝛺+

                                                     (5—7) 

where 𝑄̂ is a non-physical source term, which has similar characteristic as the non-physical 

enthalpy, i.e. it is user-defined for the convenience of the solution. 

In equation (5—7), a new non-physical source 𝑄̂ is introduced. It transpires and is shown 

below that 𝑄̂ is necessary in order to remove the discontinuity that arises with the newly 

introduced non-physical advection term ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

. Once the new non-physical source 𝑄̂ 

is defined, the non-physical ℎ̂ is required to change also to ensure energy conservation. 

It can be seen that the non-physical enthalpy ℎ̂ is independent of the velocity 𝑣+. Application 

of equation (5—7) to a CV Ω𝑖, which encloses the discontinuity front Γ𝑖, gives 

𝐷+

𝐷+𝑡
∫ ℎ̂𝑑𝑉 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑𝛤

𝛤𝑖
𝑡−𝛤𝑖

𝑙−𝛤𝑖
𝑠 + ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛𝑙)𝑑𝛤𝛤𝑖

𝑙 +
𝛺𝑖

∫ ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛𝑠)𝑑𝛤𝛤𝑖
𝑠 + ∫ ℎ̂𝑣 ∙ 𝑛𝑑𝛤

𝛤𝑖
𝑡−𝛤𝑖

𝑙−𝛤𝑖
𝑠 + ∫ ℎ̂𝑣 ∙ (−𝑛𝑙)𝑑𝛤𝛤𝑖

𝑙 + ∫ ℎ̂𝑣 ∙
𝛤𝑖
𝑠

(−𝑛𝑠)𝑑𝛤 + ∫ 𝑄̂
𝛺𝑖

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ𝑑𝑉
𝛺𝑖

+ ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑𝛤
𝛤𝑖
𝑡−𝛤𝑖

𝑙−𝛤𝑖
𝑠 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙

𝛤𝑖
𝑙

(−𝑛𝑙)𝑑𝛤 + ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛𝑠)𝑑𝛤𝛤𝑖
𝑠 = −∫ 𝑞 ∙ 𝑛𝑑𝛤

𝛤𝑖
𝑡−𝛤𝑖

𝑙−𝛤𝑖
𝑠 − ∫ 𝑞 ∙ (−𝑛𝑙)𝑑𝛤𝛤𝑖

𝑙 −

∫ 𝑞 ∙ (−𝑛𝑠)𝑑𝛤𝛤𝑖
𝑠 + ∫ 𝜌𝑄𝑑𝑉

𝛺𝑖
                                                                                         (5—8) 

where Ω+ = Ω𝑖 ∪ Ω𝑠 ∪ Ω𝑙 ,  𝜕Ω𝑠 = Γs ∪ Γ𝑖
𝑠 ,  𝜕Ω𝑙 = Γ𝑙 ∪ Γ𝑖

𝑙 . The subscript 𝑖  denotes the 

phase interface, and the subscript/superscript 𝑙  and 𝑠  refer to the liquid and solid. The 

relationship of the CVs and the CSs can be seen in Figure 5.1. 
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Figure 5.1: The control volume with phase change 

By letting 𝑣𝑜𝑙(Ω𝑖) → 0 with Γ𝑖 ⊂ Ω𝑖, and Γ𝑖
𝑙, Γ𝑖

𝑠 → Γi, Equation (5—8) gives 

𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑𝛤 + ∫ ℎ̂

′
(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴 − ∫ ]ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛[𝑑𝛤

𝛤𝑖
+

𝛴𝑖𝛤𝑖
∫ ℎ̂′𝑣 ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

−

∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑𝛤
𝛤𝑖

+ ∫ 𝑄̂′𝑑𝛤
𝛤𝑖

= −∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ ]𝑞 ∙ 𝑛[ 𝑑𝛤
𝛤𝑖

                   (5—9) 

where the bracket ]∎[ signifies a jump term,  Σi is the boundary of Γ𝑖, and 𝑡𝑛 is the outward 

pointing unit normal on 𝛴𝑖 in the tangent plane of Γ𝑖.  The term ∫ ℎ̂′𝑣 ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

 is included in 

equation (5—9) for convenience but requires special consideration since 𝑣 is not defined on 

𝛴𝑖 . A sketch showing the orientation of 𝑡𝑛 is provided in the Figure 3.2. The vector 𝑡𝑛 

appears in equation (5—9) to account for the fact that the phase interface Γi may shrink or 

expand in the direction of 𝑡𝑛 to accommodate the shape of the external boundary Γ. The 

jumps ]ℎ̂𝑣 ∙ 𝑛[ = −ℎ̂𝑠𝑣𝑠 ∙ 𝑛𝑙 + ℎ̂𝑙𝑣𝑙 ∙ 𝑛𝑙 , ]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[ = −𝜌𝑠ℎ𝑠(𝑣𝑠 − 𝑣
+) ∙ 𝑛𝑙 +

𝜌𝑙ℎ𝑙(𝑣𝑙 − 𝑣
+) ∙ 𝑛𝑙 , and ]𝑞 ∙ 𝑛[ = −𝑞𝑠 ∙ 𝑛𝑙 + 𝑞𝑙 ∙ 𝑛𝑙 . The velocities 𝑣∗  and 𝑣+  are 

continuous on the interface 𝛤𝑖 , with the identity ]ℎ̂𝑛[ = 0 . Note that the jump term 

containing ℎ̂, 𝑣∗ and 𝑣+ on the LHS of equation (5—9) disappears because 

∫ ]ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ ]ℎ̂𝑛[ ∙ (𝑣∗ − 𝑣+)𝑑𝛤
𝛤𝑖

= 0                                               (5—10) 
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Observe that the source terms ℎ̂′ and 𝑄̂′ only exist on the CS Γ𝑖. The motion of 𝛤𝑖 is described 

by the velocity field 𝑣+ and the source ℎ̂′ is assumed to vary spatially on 𝛤𝑖 to reflect the 

physical behaviour of the physical jump conditions at 𝛤𝑖. Consequently, the value of ℎ̂′ on 𝛴𝑖 

should not depend on the material velocity field 𝑣 at 𝛴𝑖. Moreover, it can be assumed that 

the velocity 𝑣 = 0 outside the domain Ω𝑠 ∪ Ω𝑙. For these reasons, the term ∫ ℎ̂′𝑣 ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

, 

which is poorly defined (since 𝑣 is not defined on 𝛴𝑖) can be set to zero. Thus, equation (5—

9) becomes 

𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑𝛤 + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖
−

𝛤𝑖
∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑𝛤
𝛤𝑖

+ ∫ 𝑄̂′𝑑𝛤
𝛤𝑖

= −∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙
𝛤𝑖

𝑛[𝑑𝛤 = ∫ ]𝑞 ∙ 𝑛[ 𝑑𝛤
𝛤𝑖

                                                                                                  (5—11) 

Equation (5—11) indicates that if the non-physical enthalpy ℎ̂ is considered to be continuous 

at the phase interface Γi, then ℎ̂′ is a source whose strength does not now depend solely on 

the jump in 𝜌ℎ at Γi. 

The corresponding partial differential equation of equation (5—11) is 

𝐷+ℎ̂′

𝐷+𝑡
+ ℎ̂′𝛻𝛤𝑖 ∙ 𝑣

+ + 𝛻𝛤𝑖 ∙ (ℎ̂′(𝑣
∗ − 𝑣+)

𝑇
) − ]ℎ̂𝑣 ∙ 𝑛[ + 𝑄̂′ = −]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[ =  ]𝑞 ∙ 𝑛[  

                                                                                                                                      (5—12) 

where the subscript 𝑇 denotes the tangential component of velocities 𝑣∗ and 𝑣+, the operator 

𝛻𝛤𝑖 is the gradient operator intrinsic to the surface Γi.  

Detailed derivation of equation (5—12) from equation (5—11) can be found in Appendix 

I—(g).  Both the strong and the weak definitions for ℎ̂′ indicate that for ℎ̂  to have the 

desirable property ]ℎ̂𝑛[ = 0  at 𝛤𝑖 , and for  ℎ̂′  to depend solely on the jump in 𝜌ℎ  at 𝛤𝑖 

requires that 𝑄̂′  should be non-zero. Note that for ]ℎ̂𝑛[ = 0 , then ]ℎ̂𝑣 ∙ 𝑛[ ≠ 0 , as a 

consequence of the difference between solid and liquid densities at 𝛤𝑖. This is apparent on 

consideration of  

∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ ]ℎ̂(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ ℎ̂ ]
1

𝜌
𝜌𝑣 ∙ 𝑛[ 𝑑𝛤

𝛤𝑖
= ∫ ℎ̂𝑚̇(

1

𝜌𝑠
−

1

𝜌𝑙
)𝑑𝛤

𝛤𝑖
  

                                                                                                                                       (5—13) 
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where 𝑚̇ is the solid mass flux rate, the term ∫ ]ℎ̂𝑣+ ∙ 𝑛[𝑑𝛤
𝛤𝑖

 in equation (5—13) is zero 

because 𝑣+ is continuous along with ℎ̂. 

It is of interest to observe from equations (5—11) and (5—12) that a possible choice for 𝑄̂′ 

is that 𝑄̂′ = ]ℎ̂𝑣 ∙ 𝑛[, which has the effect of reducing these equations to 

𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑𝛤 + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖𝛤𝑖
= −∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤

𝛤𝑖
= ∫ ]𝑞 ∙ 𝑛[ 𝑑𝛤

𝛤𝑖
  

                                                                                                                                     (5—14) 

and 

𝐷+ℎ̂′

𝐷+𝑡
+ ℎ̂′𝛻𝛤𝑖 ∙ 𝑣

+ + 𝛻𝛤𝑖 ∙ (ℎ̂′(𝑣
∗ − 𝑣+)

𝑇
) = −]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[ =  ]𝑞 ∙ 𝑛[               (5—15) 

thus ensuring that the source ℎ̂′ depends only on a physical jump condition. 

In principle this choice would ensure that any physical discontinuity would be solely 

accounted for by the magnitude of non-physical jump ℎ̂′. This source term facilitates the 

removal of any discontinuity from the LHS of equation (5—1), as required. Recall that for 

the non-physical variable method, the CV Ω refers to the computational reference system. 

The CV Ω+ is identically equal to Ω when viewed as a collection of points but was created 

to analyze the discontinuity on the phase interface. The difference between the two domains 

is that the transport of Ω is governed by the velocity field 𝑣∗  yet the transport of Ω+  is 

governed by the velocity field 𝑣+. Note however the overall movement of the two domains 

is matched provided 𝑣∗ ∙ 𝑛 = 𝑣+ ∙ 𝑛 on 𝛤, i.e. on the common boundary for Ω and Ω+. The 

two approaches can be related in transport form by the identity 

𝐷∗

𝐷∗𝑡
∫ ℎ̂𝑑𝑉
Ω

− ∫ ℎ̂𝑣∗ ∙ 𝑛𝑑𝛤
Γ

=
𝐷+

𝐷+𝑡
∫ ℎ̂𝑑𝑉
Ω+

− ∫ ℎ̂𝑣+ ∙ 𝑛𝑑𝛤
Γ

                                       (5—16) 

This identity also provides 
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𝐷∗

𝐷∗𝑡
∫ ℎ̂𝑑𝑉
Ω

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑𝛤
Γ

=
𝐷+

𝐷+𝑡
∫ ℎ̂𝑑𝑉
Ω+

+ ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑𝛤
Γ

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑𝛤
Γ

   (5—17) 

This equation provides a mean to remove the source from equation (5—17), i.e. 

𝐷∗

𝐷∗𝑡
∫ ℎ̂𝑑𝑉
Ω\Γi

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑𝛤
Γ\𝛴𝑖

+ ∫ 𝑄̂
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ𝑑𝑉
Ω

+ ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑𝛤
Γ

−

(
𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑𝛤 + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖𝛤𝑖
)                                                                       (5—18) 

where it is understood that 𝑄̂ is so defined so that 𝑄̂′ = ]ℎ̂𝑣 ∙ 𝑛[ to ensure that cancellation 

on the left hand side of equation (5—18) which ensures the RHS is absent of any 

discontinuity. The CV Ω\Γi and CS Γ\𝛴𝑖 indicate that sources have been excluded from LHS 

of equation (5—18). The term −]ℎ̂𝑣 ∙ 𝑛[ in equation (5—11) is not a source of course yet 

has been removed with the inclusion of the non-physical source 𝑄̂.  

5.4 The finite element discretization 

5.4.1 The new weighted non-physical governing equation 

Application of weighted-residual method to the governing equation (5—1) gives 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

− ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ 𝑊𝑄̂𝑑𝑉
Ω

=
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ𝑑𝑉
Ω

+

𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+ ∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

= −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ +

∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉                                                                                        (5—19) 

where 𝑊 is a weighting function and it is assumed smooth and is transported invariantly 

with Ω, i.e. 𝐷∗𝑊 𝐷∗𝑡⁄ = 0. 

If the weighing function 𝑊 transported with the CV Ω varies with time then, the derivatives 

∫ (𝐷∗𝑊 𝐷∗𝑡⁄ )ℎ̂𝑑𝑉
Ω

 and ∫ (𝐷∗𝑊 𝐷∗𝑡⁄ )𝜌ℎ𝑑𝑉
Ω

 are required to be subtracted from the 

weighted equation, i.e. 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

− ∫
𝐷∗𝑊

𝐷∗𝑡
ℎ̂𝑑𝑉

Ω
+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ

Γ
− ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉

Ω
+ ∫ 𝑊𝑄̂𝑑𝑉

Ω
=

𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

− ∫
𝐷∗𝑊

𝐷∗𝑡
𝜌ℎ𝑑𝑉

Ω
+ ∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ

Γ
− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉

Ω
=

−∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉                                                        (5—20) 
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It is necessary to conduct the volume analysis, which is applied for the equation (5—1), to 

the weighted governing equation (5—20). Consider then a control volume Ω+, which is 

transported with the velocity field 𝑣+. The weighted equation in the CV Ω+ is 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
𝛺+

− ∫
𝐷+𝑊

𝐷+𝑡
ℎ̂𝑑𝑉

Ω+
+ ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ

𝛤+
− ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ ∇𝑊𝑑𝑉

Ω+
+

∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ
𝛤+

− ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω+

+ ∫ 𝑊𝑄̂
𝛺+

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω+

− ∫
𝐷+𝑊

𝐷+𝑡
𝜌ℎ𝑑𝑉

Ω+
+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

− ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ ∇𝑊𝑑𝑉
Ω+

= −∫ 𝑊𝑞 ∙ 𝑛
Γ+

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Γ+

+

∫ 𝑊𝜌𝑄
Ω+

𝑑𝑉                                                                                                                  (5—21) 

On setting 𝐷∗𝑊 𝐷∗𝑡⁄ = 0, the two derivatives of the weighing function 𝑊 can be related 

by the identity 

𝐷+𝑊

𝐷+𝑡
=

𝐷∗𝑊

𝐷∗𝑡
+ (𝑣+ − 𝑣∗) ∙ ∇𝑊 = (𝑣+ − 𝑣∗) ∙ ∇𝑊                                                     (5—22) 

Substitution of equation (5—21) into equation (5—20) gives 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
𝛺+

− ∫ ℎ̂(𝑣+ − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω+

+ ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
𝛤+

− ∫ ℎ̂(𝑣∗ − 𝑣+) ∙
Ω+

∇𝑊𝑑𝑉 + ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ
𝛤+

− ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω+

+ ∫ 𝑊𝑄̂
𝛺+

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω+

−

∫ 𝜌ℎ(𝑣+ − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω+

+ ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

− ∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ ∇𝑊𝑑𝑉
Ω+

=

−∫ 𝑊𝑞 ∙ 𝑛
Γ+

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Γ+

+ ∫ 𝑊𝜌𝑄
Ω+

𝑑𝑉                                                       (5—23) 

Simplification of equation (5—23) gives 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
𝛺+

+ ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
𝛤+

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ
𝛤+

− ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω+

+

∫ 𝑊𝑄̂
𝛺+

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω+

+ ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
Γ+

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω+

=

−∫ 𝑊𝑞 ∙ 𝑛
Γ+

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Γ+

+ ∫ 𝑊𝜌𝑄
Ω+

𝑑𝑉                                                       (5—24) 

Consider again, applying the weighted transport equation (5—24) to a CV Ωi which encloses 

to the phase interface Γi, it gives 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω𝑖

+ ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 + ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 +

∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑙 + ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ

Γ−Γ𝑖
𝑠−Γ𝑖

𝑙 + ∫ 𝑊ℎ̂𝑣 ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑠 + ∫ 𝑊ℎ̂𝑣 ∙

Γ𝑖
𝑙
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(−𝑛)𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω𝑖

+ ∫ 𝑊𝑄̂
Ω𝑖

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω𝑖

+
𝐷+

𝐷+𝑡
∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙

𝑛𝑑Γ + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ
Γ𝑖
𝑠 + ∫ 𝑊𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑙 − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙

Ω𝑖

∇𝑊𝑑𝑉 = −∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ−Γ𝑖

𝑠−Γ𝑖
𝑙 − ∫ 𝑊𝑞 ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑠 − ∫ 𝑊𝑞 ∙ (−𝑛)𝑑Γ

Γ𝑖
𝑙 + ∫ 𝑞 ∙

Ω𝑖

∇𝑊𝑑𝑉 + ∫ 𝑊𝜌𝑄
Ω𝑖

𝑑𝑉                                                                                                 (5—25) 

On limiting 𝑣𝑜𝑙(Ω𝑖) → 0 with Γ𝑖 ⊂ Ω𝑖, equation (5—25) returns to 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′
Γ𝑖

𝑑Γ + ∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

= ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

−

lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω𝑖

𝑑𝑉 = −∫ 𝑊 ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

+ lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉  

                                                                                                                                       (5—26) 

The terms −∫ 𝑊]ℎ̂𝑣 ∙ 𝑛[𝑑Γ
𝛤𝑖

 and ∫ 𝑊𝑄̂′𝑑Γ
𝛤𝑖

 are not present in equation because of the 

setting 𝑄̂′ = ]ℎ̂𝑣 ∙ 𝑛[. The term lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ ℎ̂𝑣 ∙ ∇𝑊
Ω𝑖

𝑑𝑉 = 0, which is similar to the term 

∫ ℎ̂′𝑣 ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

= 0. Detailed discussion about the terms lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω𝑖

𝑑𝑉 and 

lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉 is provided in Appendix I—(h) [130]. 

An alternative procedure to arrive at an equation similar to equation (5—26) is the direct weighting 

of equation (5—11), i.e. 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′𝑑𝛤 − ∫ (

𝐷+𝑊

𝐷+𝑡
) ℎ̂′𝑑𝛤

𝛤𝑖
+

𝛤𝑖
∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

− ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑇
∙

𝛤𝑖

∇𝛤𝑖 
+𝑊𝑑𝛤 − ∫ 𝑊]ℎ̂𝑣 ∙ 𝑛[𝑑𝛤

𝛤𝑖
+ ∫ 𝑊𝑄̂′𝑑𝛤

𝛤𝑖
= −∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤

𝛤𝑖
= ∫ 𝑊 ]𝑞 ∙

𝛤𝑖

𝑛[ 𝑑𝛤                                                                                                                           (5—27) 

where the subscript 𝑇 denotes the tangential component of the velocities 𝑣∗ and 𝑣+, which 

appearance is due to Stoke Theorem and the tangential outward pointing normal 𝑡𝑛 from the 

boundary curve 𝛴𝑖
+. 

In equation (5—27), If the weighing function 𝑊 is transported with the CS 𝛤𝑖
+, the derivatives 

∫ (𝐷+𝑊 𝐷+𝑡⁄ )ℎ̂′𝑑𝛤
𝛤𝑖
+ , is required to be subtracted off. Substitution of the identity (5—22) 

into equation (5—27) gives 
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𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′𝑑𝛤 − ∫ ℎ̂′(𝑣+ − 𝑣∗) ∙ ∇𝑊𝑑𝛤

𝛤𝑖
+

𝛤𝑖
∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

− ∫ ℎ̂′(𝑣∗ −
𝛤𝑖

𝑣+)
𝑇
∙ ∇𝛤𝑖 

+𝑊𝑑𝛤 − ∫ 𝑊]ℎ̂𝑣 ∙ 𝑛[𝑑𝛤
𝛤𝑖

+ ∫ 𝑊𝑄̂′𝑑𝛤
𝛤𝑖

= −∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

=

∫ 𝑊 ]𝑞 ∙ 𝑛[ 𝑑𝛤
𝛤𝑖

                                                                                                            (5—28) 

Observing the terms on the LHS of equation (5—28), cancellation can be made so that 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′𝑑𝛤 − ∫ ℎ̂′(𝑣+ − 𝑣∗)

𝑁
∙ ∇𝑊𝑑𝛤

𝛤𝑖
+

𝛤𝑖
∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

− ∫ 𝑊]ℎ̂𝑣 ∙
𝛤𝑖

𝑛[𝑑𝛤 + ∫ 𝑊𝑄̂′𝑑𝛤
𝛤𝑖

= −∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ 𝑊 ]𝑞 ∙ 𝑛[ 𝑑𝛤
𝛤𝑖

                    (5—29) 

where 𝑁 denotes normal component at 𝛤𝑖. 

In section 5.3, the non-physical jump is defined as 𝑄̂′ = ]ℎ̂𝑣 ∙ 𝑛[. With this identity, it is 

obvious that equation (5—25) reduces to 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′𝑑𝛤 − ∫ ℎ̂′(𝑣+ − 𝑣∗)

𝑁
∙ ∇𝑊𝑑𝛤

𝛤𝑖
+

𝛤𝑖
∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴
𝛴𝑖

=

−∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ 𝑊 ]𝑞 ∙ 𝑛[ 𝑑𝛤
𝛤𝑖

                                                        (5—30) 

Comparison between equations (5—26) and (5—30) provides 

∫ ℎ̂′(𝑣+ − 𝑣∗)
𝑁
∙ ∇𝑊𝑑𝛤

𝛤𝑖
= − lim

𝑣𝑜𝑙(𝛺𝑖)→0
∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
𝛺𝑖

= lim
𝑣𝑜𝑙(𝛺𝑖)→0

∫ 𝑞 ∙ ∇𝑊𝑑𝑉
𝛺𝑖

  

                                                                                                                                      (5—31) 

which confirms the existence of the limits. 

Equation (5—30) is the definition of non-physical jump ℎ̂′ via the weighted governing 

equation, which facilitate the removal of the discontinuity. Discontinuity removal requires 

the matching of two CVs 𝛺  and 𝛺+  for the weighted transported equation. The overall 

movement of the CV 𝛺 and the CV 𝛺+ is matched provided 𝑣∗ ∙ 𝑛 = 𝑣+ ∙ 𝑛 on 𝛤. The two 

approaches can be related in transport form by the identity  

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

− ∫ (
𝐷∗𝑊

𝐷∗𝑡
) ℎ̂𝑑𝑉

Ω
− ∫ 𝑊ℎ̂𝑣∗ ∙ 𝑛

Γ
𝑑𝛤 + ∫ 𝑊ℎ̂𝑣∗ ∙ ∇𝑊𝑑𝑉

Ω
=

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω+

—∫ (
𝐷+𝑊

𝐷+𝑡
) ℎ̂𝑑𝑉

Ω+
− ∫ 𝑊ℎ̂𝑣+ ∙ 𝑛

Γ+
𝑑𝛤 + ∫ 𝑊ℎ̂𝑣+ ∙ ∇𝑊𝑑𝑉

Ω+
             (5—32) 
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The matching with weighted equation is slightly different to the unweighted equation and 

the derivation of equation (5—32) is shown in Appendix I—(i). 

According to the identity as shown in equation (5—22), equation (5—32) reduces to 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

− ∫ 𝑊ℎ̂𝑣∗ ∙ 𝑛
Γ

𝑑𝛤 + ∫ 𝑊ℎ̂𝑣∗ ∙ ∇𝑊𝑑𝑉
Ω

=
𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω+

− ∫ ℎ̂(𝑣+ −
Ω+

𝑣∗) ∙ ∇𝑊𝑑𝑉 − ∫ 𝑊ℎ̂𝑣+ ∙ 𝑛
Γ+

𝑑𝛤 + ∫ 𝑊ℎ̂𝑣+ ∙ ∇𝑊𝑑𝑉
Ω+

                                                (5—33) 

Re-arrangement of equation (5—33) gives 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

=
𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

− ∫ ℎ̂(𝑣+ − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛
Γ

𝑑𝛤 +

∫ 𝑊ℎ̂(𝑣+ − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

                                                                                             (5—34) 

Cancellation can now be made so that 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

=
𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

+ ∫ 𝑊ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛
Γ

𝑑𝛤                                         (5—35) 

The identity derived from equation (5—32) to equation (5—35) allows the discontinuity to 

be removed from the LHS of equation (5—19) by subtracting (𝐷+ 𝐷+𝑡⁄ ) ∫ 𝑊ℎ̂′
Γ𝑖

𝑑𝛤 +

∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

, i.e. 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

=
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

− (
𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′
Γ𝑖

𝑑Γ + ∫ 𝑊ℎ̂′(𝑣∗ −
Σi

𝑣+) ∙ 𝑡𝑛𝑑Σ) = −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉 − (
𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂′
Γ𝑖

𝑑Γ +

∫ 𝑊ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑Σ
Σi

)                                                                                            (5—36) 

Substitution of equation (5—26) into equation (5—36) provides 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

=
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

−

(− lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω𝑖

𝑑𝑉) = −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

− (−∫ 𝑊 ]𝑞 ∙
Γ𝑖

(−𝑛)[ 𝑑Γ) + ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉 − lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉                                                  (5—37) 
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On substitution the identity provided in equation (5—31), equation (5—37) becomes 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

=
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

−

∫ ℎ̂′(𝑣+ − 𝑣∗)
𝑁
∙ ∇𝑊𝑑Γ

𝛤𝑖
= −∫ 𝑊𝑞 ∙ 𝑛

Γ
𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉

Ω
− (−∫ 𝑊 ]𝑞 ∙

Γ𝑖

(−𝑛)[ 𝑑Γ) + ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉 − ∫ ℎ̂′(𝑣+ − 𝑣∗)
𝑁
∙ ∇𝑊𝑑Γ

𝛤𝑖
                                             (5—38) 

Similar to what has been done in chapter 3, equation (5—38) can be split into two equations, 

which are 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

=
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ (−𝑛)[𝑑Γ
Γ𝑖

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

−

∫ ℎ̂′(𝑣+ − 𝑣∗)
𝑁
∙ ∇𝑊𝑑Γ

𝛤𝑖
                                                                                             (5—39) 

and 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

= −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ +

∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

− (−∫ 𝑊 ]𝑞 ∙ (−𝑛)[ 𝑑Γ
Γ𝑖

) + ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉 − ∫ ℎ̂′(𝑣+ − 𝑣∗)
𝑁
∙ ∇𝑊𝑑Γ

𝛤𝑖
  

                                                                                                                                       (5—40) 

Equation (5—39) is the linkage equation which relates the non-physical enthalpy and the 

physical enthalpy, equation (5—40) is the weighted non-physical governing equation which 

requires to be solved by numerical methods. In equations (5—39) and (5—40), the terms 

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊
Ω

𝑑𝑉  and ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

 also contain sources. According to equation 

(5—31), Sources contained in both terms cancel with the term ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

. 

5.4.2 Implementation of non-physical enthalpy method in the FEM 

The analysis in section 5.4.1 provides three equations, which are 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

=
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− (−∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑Γ
Γ𝑖

) − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω\Γi
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                                                                                                                                       (5—41) 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

= −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ +

∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω\Γi

− (∫ 𝑊 ]𝑞 ∙ 𝑛[ 𝑑Γ
Γ𝑖

) + ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉                                                  (5—42) 

and 

∫ 𝑊𝑄̂′𝑑𝐴
Γ𝑖

= ∫ 𝑊]ℎ̂𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖

                                                                                    (5—43) 

According to equation (5—31), the discontinuity contained in the weighted terms 

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

 and ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

 is cancelled with the term ∫ ℎ̂′(𝑣∗ − 𝑣+)
𝑁
 ∙

Γ𝑖

∇Γ𝑖𝑊𝑑Γ. The notation Ω\Γ𝑖 means that the boundary Γ𝑖 is excluded from Ω. Though the non-

physical jump ℎ̂′ is non-zero in the analysis, it is absent from both the linkage equation and 

the weighted governing equation, however, several jump terms remain which require 

evaluation, which are −∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑Γ
Γ𝑖

, ∫ 𝑊 ]𝑞 ∙ 𝑛[ 𝑑Γ
Γ𝑖

 and ∫ 𝑊]ℎ̂𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖

. 

The weighted governing equation (5—42) can be solved by the numerical method, such as 

the FEM. In the Galerkin finite element approach, the weighting functions are also the shape 

functions, thus the weighed governing equation of (5—42) becomes 

𝐷∗

𝐷∗𝑡
∫ 𝑁𝜗ℎ̃𝑑𝑉Ωe\Γi

e + ∫ 𝑁𝜗ℎ̃𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̃𝑣 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e + ∫ 𝑁𝜗𝑄̂𝑑𝑉ΩeΓe\Σi

e = −∫ 𝑁𝑖𝑞 ∙Γe

𝑛 𝑑Γ + ∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e − (−∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣

× ) ∙ 𝑛[𝑑Γ
Γ𝑖

) + ∫ 𝑁𝜗𝜌𝑄Ωe
𝑑𝑉            (5—44) 

where 𝑁𝜗 denote the shape functions, ℎ̃ is the trial solution, the subscript 𝜗 refers to the 𝑖th 

simultaneous algebraic equation of an element and the subscript 𝑒 denotes that this is in an 

elemental domain. The semi-discretized governing equation (5—44) is defined in an element 

domain. The velocity 𝑣× is defined in a similar fashion as the velocity 𝑣+, the superscript × 

signifies the velocity 𝑣× is for an element domain, i.e. 𝑣× ∙ 𝑛 = 𝑣𝑖 ∙ 𝑛 at interface Γ𝑖
𝑒. The 

term ∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e  is without source and arises as a consequence of the cancellation of 

the source contained in the term ∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe
 with ∫ ℎ̂′(𝑣∗ − 𝑣+)

𝑁
 ∙ ∇Γ𝑖𝑊𝑑ΓΓ𝑖

 according 

to the identity as shown in equation (5—31). 
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For standard Galerkin method, the trial solution with respect to non-physical enthalpy can 

be defined as 

ℎ̃ ≈ ∑ 𝑁𝜍ℎ̂𝜍
𝑁𝑁
𝜍=1                                                                                                                (5—45) 

where 𝜍 is the local nodal number an element, 𝑁𝑁 is the total number of nodes of the element, 

and ℎ̂𝜍 is the nodal field variable of node 𝜍. 

The solution of equation (5—44) requires that, the linkage equation (5—39) can be solved 

analytically, which on setting the weighting function 𝑊 = 1 gives 

𝐷∗

𝐷∗𝑡
∫ ℎ̂𝑑𝑉
Ωe\Γi

e + ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γe\Σi

e + ∫ 𝑄̂𝑑𝑉
Ωe

=
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ𝑑𝑉
Ωe

+ ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γe

−

(−∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ 𝑛[𝑑Γ
Γ𝑖
e )                                                                                         (5—46) 

where the subscript 𝑒  and the velocity 𝑣×  indicates that equation (5—44) is solved 

analytically within an element CV. 

The simplest setting that makes the problem easier to be solved by the FEM is to let the mesh 

be fixed, i.e. 𝑣∗ = 0 . Also assuming that no additional heat is applied externally, say 

∫ 𝑁𝜗𝜌𝑄Ωe
𝑑𝑉 = 0, as a consequence, equation (5—44) returns to 

𝜕

𝜕𝑡
∫ 𝑁𝜗ℎ̃𝑑𝑉Ωe\Γi

e + ∫ 𝑁𝜗ℎ̃𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̃𝑣 ∙ ∇𝑁𝜗𝑑𝑉 +Ωe\Γi
e ∫ 𝑁𝜗𝑄̂𝑑𝑉ΩeΓe\Σi

e = −∫ 𝑁𝜗𝑞 ∙Γe

𝑛 𝑑Γ + ∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e − (−∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣

× ) ∙ 𝑛[𝑑Γ
Γ𝑖

)                                      (5—47) 

Similarly, for the linkage equation, it gives 

𝜕

𝜕𝑡
∫ ℎ̂𝑑𝑉
Ωe\Γi

e + ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γe\Σi

e + ∫ 𝑄̂𝑑𝑉
Ωe

=
𝜕

𝜕𝑡
∫ 𝜌ℎ𝑑𝑉
Ωe

+ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

−

(−∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ 𝑛[𝑑Γ
Γ𝑖
e )                                                                                         (5—48) 

Recall the identity that ℎ̂ = 𝑐̂𝑇 when 𝑇 ≠ 0, where 𝑐̂ is non-physical capacitance and 𝑇 is 

temperature, equation (5—48) becomes 

𝜕

𝜕𝑡
∫ 𝑐̂𝑇𝑑𝑉
Ωe\Γi

e + ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ
Γe\Σi

e + ∫ 𝑄̂𝑑𝑉
Ωe

=
𝜕

𝜕𝑡
∫ 𝜌ℎ𝑑𝑉
Ωe

+ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

−

(−∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ 𝑛[𝑑Γ
Γ𝑖
e )                                                                                         (5—49) 
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The non-physical source 𝑄̂ is user-defined, which can be written as 

∫ 𝑄̂𝑑𝑉
Ωe

= ∫ 𝑄̂𝑑𝑉
Ωe\Γi

𝑒 + ∫ 𝑄̂′𝑑Γ
Γi
𝑒                                                                                (5—50) 

In equation (5—50), the term ∫ 𝑄̂′𝑑Γ
Γi
𝑒  is defined as ∫ 𝑄̂′𝑑Γ

Γi
𝑒 = ∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑Γ

Γi
𝑒 , which is 

introduced for the convenience of the development of non-physical theory. It can be seen 

that the non-physical source 𝑄̂ in the element domain Ωe\Γi
𝑒 is still undefined. This helps 

the evaluation of non-physical capacitance 𝑐̂ through equation (5—50).  On setting that 

∫ 𝑄̂𝑑𝑉
Ωe\Γi

𝑒 = ∫ ∇ ∙ (𝜌ℎ𝑣)𝑑𝑉
Ωe\Γi

𝑒 − ∫ ∇ ∙ (𝑐̂𝑇𝑣)𝑑𝑉
Ωe\Γi

𝑒                                              (5—51) 

and noting identities 

∫ ∇ ∙ (𝜌ℎ𝑣)𝑑𝑉
Ωe\Γi

𝑒 = ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

− (−∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e )                                       (5—52) 

and 

∫ ∇ ∙ (𝑐̂𝑇𝑣)𝑑𝑉
Ωe\Γi

𝑒 = ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ
Γe

− (−∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑Γ
Γi
𝑒 )                                          (5—53) 

Substitution of equations (5—52) and (5—53) into equation (5—51), and application of 

divergence theorem gives 

∫ 𝑄̂𝑑𝑉
Ωe\Γi

𝑒 = ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

+ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e − ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ

Γe
− ∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑Γ

Γi
𝑒       (5—54) 

Further, substitution of equation (5—54) into equation (5—50) gives 

∫ 𝑄̂𝑑𝑉
Ωe

= ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

+ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e − ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ

Γe
− ∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑Γ

Γi
𝑒 + ∫ ]ℎ̂𝑣 ∙

Γi
𝑒

𝑛[𝑑Γ = ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

+ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e − ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ

Γe
                                           (5—55) 

Substitution of equation (5—55) into equation (5—49) provides the equation for the 

evaluation of non-physical capacitance 𝑐̂, which is 

∫ (𝑐̂𝑇𝑛+1 − 𝑐̂𝑇𝑛)𝑑𝑉
Ωe\Γi

e = ∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

− ∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

− ∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
  

                                                                                                                                       (5—56) 
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With the mean-value theorem applied to the integration, the mean non-physical capacitance 

for the time period 𝑡𝑛 to 𝑡𝑛+1 can be placed outside of the integration. Equation (5—56) can 

be re-arranged as 

𝑐̂ =
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉Ωe

−∫ 𝜌𝑛ℎ𝑛𝑑𝑉Ωe
−∫ ∫ ]𝜌ℎ𝑣×∙𝑛[𝑑𝐴Γ𝑖

e 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

∫ 𝑇𝑛+1𝑑𝑉Ωe\Γi
e −∫ 𝑇𝑛𝑑𝑉Ωe\Γi

e

                                                     (5—57) 

The non-physical source term 𝑄̂  is now fully defined in the element CV Ωe , and the 

evaluation of non-physical capacitance 𝑐̂ is developed corresponding to the definition of 𝑄̂. 

The non-physical source term 𝑄̂ is defined as the difference of the physical enthalpy change 

due to advection and the non-physical enthalpy change due to numerical advection. Equation 

(5—55) is established with two benefits: firstly, it shows that the introduction of 𝑄̂′ =

]ℎ̂𝑣 ∙ 𝑛[  in the theory is justified; secondly, it establishes the purpose of non-physical 

variable 𝑄̂, that is, no matter how the non-physical enthalpy ℎ̂ is defined, the non-physical 

source 𝑄̂ will adjust itself through the theory, to satisfy the conservation equation. 

In equation (5—55), it can be seen that the evaluation of non-physical source ∫ 𝑄̂𝑑𝑉
Ωe

 is 

dependent on the non-physical capacitance 𝑐̂, consequently, the non-physical capacitance 𝑐̂ 

is required to be determined by equation (5—57) first. The evaluation and approximation of 

each term on the RHS of equation (5—57) are conducted as follows. 

5.5 The evaluation of non-physical variables 

The specific enthalpy for solid and liquid follow the identities, which are 

ℎ𝑠 = ℎ𝑠𝑜𝑙 + ∫ 𝑐𝑠(𝑇′)
𝑇

𝑇𝑠𝑜𝑙
𝑑𝑇′                                                                                         (5—58a)  

ℎ𝑙 = ℎ𝑙𝑖𝑞 + ∫ 𝑐𝑙(𝑇
′)

𝑇

𝑇𝑙𝑖𝑞
𝑑𝑇′                                                                                          (5—58b) 

where ℎ𝑠𝑜𝑙 = 𝑐𝑠𝑇𝑠𝑜𝑙  and ℎ𝑙𝑖𝑞 = ℎ𝑠𝑜𝑙 + 𝐿 are the phase change enthalpy, and 𝐿 is the latent 

heat of fusion. 𝑇𝑠𝑜𝑙 is the solidus temperature and 𝑇𝑙𝑖𝑞 is the liquidus temperature [39, 41, 

62-63, 66]. For isothermal solidification, the identity 𝑇𝑠𝑜𝑙 = 𝑇𝑙𝑖𝑞 applies. So, the enthalpy 

𝜌ℎ can be represented by  

𝜌ℎ = Υ𝑠𝜌𝑠ℎ𝑠 + Υ𝑙𝜌𝑙ℎ𝑙                                                                                                   (5—59) 
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where Υ𝑠  and Υ𝑙  are element-based solid fraction and element-based liquid fraction, 

respectively. The identityΥ𝑠 + Υ𝑙 = 1 applys to the isothermal solidification and eutectic 

solidification. If the solidification is mushy zone solidification, such as alloy solidification, 

the solidus temperature 𝑇𝑠𝑜𝑙  and liquidus temperature 𝑇𝑙𝑖𝑞  are not equal. The fraction of 

mushy zone Υ𝑚 should satisfy the identityΥ𝑠 + Υ𝑚 + Υ𝑙 = 1.  

For fixed grid simulation of isothermal solidification, assuming that the element liquid 

fraction for time 𝑡𝑛+1  is Υ𝑛+1  and the liquid fraction for time 𝑡𝑛  is Υn . The volumetric 

enthalpy for both steps can be approximated as 

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

= ∫ Υ𝑠
𝑛+1𝜌𝑛+1 (ℎ𝑠𝑜𝑙 + ∫ 𝑐𝑠(𝑇

′)𝑑𝑇′
𝑇𝑛+1

𝑇𝑠𝑜𝑙
) + Υ𝑙

𝑛+1𝜌𝑛+1 (ℎ𝑙𝑖𝑞 +Ωe

∫ 𝑐𝑙(𝑇
′)𝑑𝑇′

𝑇𝑛+1

𝑇𝑙𝑖𝑞
)                                                                                                           (5—60) 

Also, assuming that the material properties of each phase are constant, consequently, 

equation (5—60) returns to 

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

= ∫ Υ𝑠
𝑛+1𝜌𝑠(ℎ𝑠𝑜𝑙 + 𝑐𝑠(𝑇

𝑛+1 − 𝑇𝑠𝑜𝑙)) + Υ𝑙
𝑛+1𝜌𝑙 (ℎ𝑙𝑖𝑞 + 𝑐𝑙(𝑇

𝑛+1 −
Ωe

𝑇𝑠𝑜𝑙)) 𝑑𝑉                                                                                                                        (5—61) 

Since ℎ𝑙𝑖𝑞 = ℎ𝑠𝑜𝑙 + 𝐿, ℎ𝑠𝑜𝑙 = 𝑐𝑠𝑇𝑠𝑜𝑙  and 𝑇𝑙𝑖𝑞 = 𝑇𝑠𝑜𝑙 for isothermal solidification, equation 

(5—61) reduces to 

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

= ∫ (Υ𝑠
𝑛+1𝜌𝑠𝑐𝑠𝑇

𝑛+1 + Υ𝑙
𝑛+1𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙 + Υ𝑙

𝑛+1𝜌𝑙𝐿 +Ωe

Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙𝑇

𝑛+1)𝑑𝑉                                                                                                         (5—62) 

Assuming that the all the parameters are spatially invariant at time 𝑡𝑛+1 and the integral 

∫ 𝑑𝑉
Ωe

= 𝑉𝑒, where 𝑉𝑒 is the element volume, thus, equation (5—62) returns to 

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

= Υ𝑠
𝑛+1𝜌𝑠𝑐𝑠𝑇

𝑛+1𝑉𝑒 + Υ𝑙
𝑛+1𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙𝑉𝑒 + Υ𝑙

𝑛+1𝜌𝑙𝐿𝑉𝑒 +

Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙𝑇

𝑛+1𝑉𝑒                                                                                                            (5—63) 

Observing equation (5—63), the RHS of equation (5—63) can be divided into three parts, 

the summation Υ𝑠
𝑛+1𝜌𝑠𝑐𝑠𝑇

𝑛+1𝑉𝑒 + Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙𝑇

𝑛+1𝑉𝑒 = (Υ𝑠
𝑛+1𝜌𝑠𝑐𝑠 + Υ𝑙

𝑛+1𝜌𝑙𝑐𝑙)𝑇
𝑛+1𝑉𝑒  is 

the sensible enthalpy at time 𝑡𝑛+1, where it can be seen that terms in the bracket is the 
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mixture physical material properties. The term Υ𝑙
𝑛+1𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙𝑉𝑒 is the discontinuity 

which relates to the material property difference, and the term Υ𝑙
𝑛+1𝜌𝑙𝐿𝑉𝑒  is the 

discontinuity which relates to the release of latent heat. 

Similar to equation (5—63), the enthalpy at time 𝑡𝑛 can be evaluated as 

∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

= Υ𝑠
𝑛𝜌𝑠𝑐𝑠𝑇

𝑛𝑉𝑒 + Υ𝑙
𝑛𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙𝑉𝑒 + Υ𝑙

𝑛𝜌𝑙𝐿𝑉𝑒 + Υ𝑙
𝑛𝜌𝑙𝑐𝑙𝑇

𝑛𝑉𝑒         (5—64) 

Subtraction of equation (5—64) from equation (5—63) gives 

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

− ∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

= (Υ𝑠
𝑛+1𝜌𝑠𝑐𝑠𝑇

𝑛+1𝑉𝑒 + Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙𝑇

𝑛+1𝑉𝑒) −

(Υ𝑠
𝑛𝜌𝑠𝑐𝑠𝑇

𝑛𝑉𝑒 + Υ𝑙
𝑛𝜌𝑙𝑐𝑙𝑇

𝑛𝑉𝑒) + (Υ𝑙
𝑛+1 − Υ𝑙

𝑛)(𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙 + 𝜌𝑙𝐿)𝑉𝑒                  (5—65) 

Moreover, the evaluation of the jump term ∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
 can be conducted as 

∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
= ∫ ((𝜌𝑙ℎ𝑙 − 𝜌𝑠ℎ𝑠) ∫ 𝑣× ∙ 𝑛

𝑡𝑛+1

𝑡𝑛
)𝑑Γ

Γ𝑖
e                                (5—66) 

With the identity(𝜌𝑙ℎ𝑙 − 𝜌𝑠ℎ𝑠) = (𝜌𝑙 − 𝜌𝑠)ℎ𝑠𝑜𝑙 + 𝜌𝑙𝐿, and the assumption that ∫ 𝑣× ∙
𝑡𝑛+1

𝑡𝑛

𝑛 ≈ (Υ𝑙
𝑛+1 − Υ𝑙

𝑛)𝑉𝑒, equation (5—66) becomes 

∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡 = (Υ𝑙

𝑛+1 − Υ𝑙
𝑛)((𝜌𝑙 − 𝜌𝑠)ℎ𝑠𝑜𝑙 + 𝜌𝑙𝐿)𝑉𝑒                                    (5—67) 

By comparing equation (5—67) and equation (5—65), it can be seen that the approximation 

of non-physical capacitance using equation (5—57) should remove most of the discontinuity 

from the capacitance, however, a discontinuity remains which is much lower due to material 

property difference, because 

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

− ∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

+ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡 = (Υ𝑠

𝑛+1𝜌𝑠𝑐𝑠𝑇
𝑛+1𝑉𝑒 +

Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙𝑇

𝑛+1𝑉𝑒) − (Υ𝑠
𝑛𝜌𝑠𝑐𝑠𝑇

𝑛𝑉𝑒 + Υ𝑙
𝑛𝜌𝑙𝑐𝑙𝑇

𝑛𝑉𝑒) + (Υ𝑙
𝑛+1 − Υ𝑙

𝑛)(𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙 +

𝜌𝑙𝐿)𝑉𝑒 − (Υ𝑙
𝑛+1 − Υ𝑙

𝑛)((𝜌𝑙 − 𝜌𝑠)ℎ𝑠𝑜𝑙 + 𝜌𝑙𝐿)𝑉𝑒                                                          (5—68) 

If the densities 𝜌𝑙 ≈ 𝜌𝑠 and the specific capacities 𝑐𝑙 ≈ 𝑐𝑠 or the capacitance 𝜌𝑙𝑐𝑙 ≈ 𝜌𝑠𝑐𝑠 can 

both make the last two terms on the RHS of equation (5—68) be zero, i.e. 
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(Υ𝑙
𝑛+1 − Υ𝑙

𝑛)(𝜌𝑙(𝑐𝑠 − 𝑐𝑙)𝑇𝑠𝑜𝑙 + 𝜌𝑙𝐿)𝑉𝑒 − (Υ𝑙
𝑛+1 − Υ𝑙

𝑛)((𝜌𝑙 − 𝜌𝑠)ℎ𝑠𝑜𝑙 + 𝜌𝑙𝐿)𝑉𝑒 ≈ 0  

                                                                                                                                       (5—69) 

Thus equation (5—69) reduces to  

∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

− ∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

− ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡 ≈ (Υ𝑠

𝑛+1𝜌𝑠𝑐𝑠𝑇
𝑛+1𝑉𝑒 +

Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙𝑇

𝑛+1𝑉𝑒) − (Υ𝑠
𝑛𝜌𝑠𝑐𝑠𝑇

𝑛𝑉𝑒 + Υ𝑙
𝑛𝜌𝑙𝑐𝑙𝑇

𝑛𝑉𝑒)                                                     (5—70) 

which is obviously the difference of sensible enthalpy. 

Thus the approximation of equation (5—57) returns the non-physical capacitance as the 

mixture physical capacitance, e.g. 

𝑐̂ =
(Υ𝑠

𝑛+1𝜌𝑠𝑐𝑠+Υ𝑙
𝑛+1𝜌𝑙𝑐𝑙)𝑇

𝑛+1−(Υ𝑠
𝑛𝜌𝑠𝑐𝑠+Υ𝑙

𝑛𝜌𝑙𝑐𝑙)𝑇
𝑛

𝑇𝑛+1−𝑇𝑛
                                                           (5—71) 

Once the non-physical capacitance 𝑐̂ is known for a time increment, the non-physical source 

𝑄̂ can be evaluated. In equation (5—54), the non-physical 𝑄̂ is a volumetric term, and the 

terms on the LHS of equation are boundary terms. The term ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑𝐴
Γe

 can be evaluated 

numerically as 

∫ ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑𝐴
Γe

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
≈ 𝜃[𝐾𝑣

𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑣
𝑛]{𝑇𝑛} =

𝜃Δ𝑡 ∫ {𝑁}𝑐̂𝑣 {
𝜕𝑁

𝜕𝑥
} {𝑇𝑛+1}𝑑𝑉

Ω𝑒
+ (1 − 𝜃)Δ𝑡 ∫ {𝑁}𝑐̂𝑣 {

𝜕𝑁

𝜕𝑥
} {𝑇𝑛}𝑑𝑉

Ω𝑒
                             (5—72) 

where 𝜃 is a blending factor of theta method for time discretization, [𝐾𝑣] is the element 

advective coefficient matrix. 

The term 

∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γ𝑒

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
≈ ∫ 𝜌ℎ (∫ 𝑣 ∙ 𝑛

𝑡𝑛+1

𝑡𝑛
𝑑𝑡) 𝑑Γ

Γ𝑒
≈ ∫ 𝜌ℎ𝑑𝑉

Ωf
𝑒                               (5—73) 

where Ωf
𝑒  is the virtual CV swept by element boundary with velocity 𝑣 , say 𝑣𝑜𝑙(Ωf

𝑒) ≈

𝐴𝑒(𝑣 ∙ 𝑛)(𝑡
𝑛+1 − 𝑡𝑛). This technique has been used in reference [66], it is also used in 

chapter 4, which detailed procedure can be seen in Appendix I—(d).  

The jump term ∫ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
 should be evaluated separately as 
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∫ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
= ∫ ∫ (𝜌𝑙ℎ𝑙𝑣𝑙 − 𝜌𝑠ℎ𝑠𝑣𝑠) ∙ 𝑛𝑑ΓΓ𝑖

e 𝑑𝑡
𝑡𝑛+1

𝑡𝑛
                                (5—74) 

The mass of liquid swept by the interface Γ𝑖
e is equal to the mass of solid swept by the 

interface in a period of time, thus an identity can be established as 

𝜌𝑙𝑣𝑙𝐴𝑖∆𝑡 = 𝜌𝑠𝑣𝑠𝐴𝑖∆𝑡                                                                                                    (5—75) 

where 𝐴𝑖 is the area of interface Γ𝑖
e. 

Substitution of equation (5—75) into equation (5—74) gives 

∫ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
= ∫ ∫ (𝜌𝑠ℎ𝑙𝑣𝑠 − 𝜌𝑠ℎ𝑠𝑣𝑠) ∙ 𝑛𝑑ΓΓ𝑖

e 𝑑𝑡
𝑡𝑛+1

𝑡𝑛
= 𝜌𝑠 ∫ ∫ (ℎ𝑙 −Γ𝑖

e

𝑡𝑛+1

𝑡𝑛

ℎ𝑠)𝑣𝑠 ∙ 𝑛𝑑Γ 𝑑𝑡                                                                                                               (5—76) 

Assuming that ∫ 𝑣𝑠 ∙ 𝑛𝑑𝑡
𝑡𝑛+1

𝑡𝑛
= (𝑣𝑠 ∙ 𝑛)(𝑡

𝑛+1 − 𝑡𝑛) = (𝑋𝑠
𝑛+1 − 𝑋𝑠

𝑛)𝑖 , consequently, on 

recalling the identity that (ℎ𝑙 − ℎ𝑠) = ℎ𝑠𝑜𝑙 + 𝐿 − ℎ𝑠𝑜𝑙 = 𝐿, equation (5—73) becomes 

∫ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
= (𝑋𝑠

𝑛+1 − 𝑋𝑠
𝑛)𝑖𝜌𝑠𝐿𝐴𝑖                                                          (5—77) 

Subtraction of equations (5—72) and (5—73) provides a quantity, which can be applied to 

the numerical system as the non-physical source 𝑄̂. 

In order to examine the feasibility of all evaluations described above, two situations of nodal 

temperatures for a one-dimensional two-node linear element is prescribed in Table 5.1. The 

material properties are shown in Table 4.2. The nodal temperature of situation 1 ensures that 

the simple element is always liquid during the period 𝑡𝑛 to 𝑡𝑛+1; and the nodal temperature 

of simulation 2 ensures that the simple element is completely liquid at time 𝑡𝑛, and then, the 

discontinuity is present because the temperature drops below the solidus temperature. 

Assuming that the element length is 1 × 10−3𝑚 , the material velocity is pre-set as 

−0.05 𝑚/𝑠, a sketch of the two situations is shown in Figure 5.2. 
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Situation Time step Node 1 Node 2 

Situation 1 

𝑛 405 ℃ 405 ℃ 

𝑛 + 1 401 ℃ 404 ℃ 

Situation 2 

𝑛 401 ℃ 404 ℃ 

𝑛 + 1 394 ℃ 402 ℃ 

Table 5.1: Prescribed nodal temperatures of a simple 1D finite element 

 

Figure 5.2: Sketch of prescribed situations 

In Table 5.2, the values for all terms are evaluated on the basis of nodal temperature of 

situation 1, these values show that the approximations and evaluations are established 

properly. As a discontinuity is not present in situation 1, the jump term is zero, the non-

physical capacitance is identical to the physical capacitance of liquid material (𝜌𝑙𝑐𝑙 = 3.3 ×

106 𝐽/𝑚3℃). Moreover, the magnitude of physical advection and numerical advection are 

equal to each other, which proves that the analytical strategy is correct. 
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Situation 1 

Definition Term Evaluation Value 

Element-based solid 

volume fraction at 

time 𝑡𝑛+1 

Υ𝑠
𝑛+1 

Element based 

temperature 

approximation 

0 

Element-based solid 

volume fraction at 

time 𝑡𝑛 

Υ𝑠
𝑛 

Element based 

temperature 

approximation 

0 

Element volumetric 

enthalpy at time 𝑡𝑛+1 
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

 (5—63) 1.922 × 106 𝐽 

Element volumetric 

enthalpy at time 𝑡𝑛 
∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

 (5—63) 1.931 × 106 𝐽 

Discontinuity ∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 (5—67) 0 

Non-physical 

capacitance 
𝑐̂ (5—57) 3.3 × 106 𝐽/𝑚3℃ 

Mixture physical 

capacitance 
𝑐 (5—68) 3.3 × 106 𝐽/𝑚3℃ 

Numerical advection ∫ ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ
Γe

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 (5—72) −1.238 × 104 𝐽 

Physical advection ∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γi
𝑒

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 (5—73) 1.238 × 104 𝐽 

Non-physical source ∫ 𝑄̂𝑑𝑉
Ωe

 (5—55) 0 𝐽 

Table 5.2: Value of each term on the basis of situation 1 

Next, the nodal temperatures of situation 2 are substituted into the evaluations, which values 

are provided in Table 5.3. 



Chapter 5: 5.5 The evaluation of non-physical variables     133 
 

Situation 2 

Definition Term Evaluation Value 

Element-based solid 

volume fraction at 

time 𝑡𝑛+1 

Υ𝑠
𝑛+1 

Element based 

temperature 

approximation 

0 

Element-based solid 

volume fraction at 

time 𝑡𝑛 

Υ𝑠
𝑛 

Element based 

temperature 

approximation 

0.75 

Element volumetric 

enthalpy at time 𝑡𝑛+1 
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉
Ωe

 (5—63) 1.301 × 106 𝐽 

Element volumetric 

enthalpy at time 𝑡𝑛 
∫ 𝜌𝑛ℎ𝑛𝑑𝑉
Ωe

 (5—63) 1.922 × 106 𝐽 

Discontinuity ∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 (5—67) −6.075 × 105 𝐽 

Non-physical 

capacitance 
𝑐̂ (5—57) 3.03 × 106 𝐽/𝑚3℃ 

Mixture physical 

capacitance 
𝑐 (5—68) 

3.098

× 106 𝐽/𝑚3℃ 

Numerical advection ∫ ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ
Γe

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 (5—72) −4.166 × 104 𝐽 

Physical advection ∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γi
𝑒

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 (5—73) 1.779 × 106 𝐽 

Non-physical source ∫ 𝑄̂𝑑𝑉
Ωe

 (5—55) 1.737 × 106 𝐽 

Table 5.3: Value of each term on the basis of situation 2 

Phase transformation is occurring in the simple element now because of situation 2. It can 

be seen in Table 5.3 that, the element volume solid fraction at 𝑡𝑛+1 is no longer zero because 
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the solid and liquid co-exist in the simple element. The jump term is not zero as a result of 

latent heat release. The non-physical capacitance 𝑐̂ and the mixture physical capacitance 𝑐 

are approximately equal to each other when the blending factor 𝜃 = 0.5 . It has to be 

mentioned that the mixture physical capacitance 𝑐 is actually between 2.895 × 106 𝐽/𝑚3℃ 

to 3.3 × 106 𝐽/𝑚3℃ depending on how the factor 𝜃 is set for the 𝜃-method. In situation 2, 

the discontinuity transports into the element through the element boundary, which results a 

difference in the physical advection and the continuous numerical advection, this difference 

is accounted for by the non-physical source, thus the conservation equation is satisfied.  

5.6 Summary 

This chapter aims to solve the instability of the non-physical enthalpy method when 

involving advection-diffusion. A new definition of the non-physical enthalpy has been given 

by the transport equation (5—1). Through this definition, the physical advection is isolated 

from the non-physical temporal term. As a consequence, no negative non-physical 

capacitance will be obtained. However, with this definition remains an advective term which 

includes the non-physical term. Through the derivation of the new non-physical theory, it 

give rise to a new non-physical term which is the non-physical source 𝑄̂. The non-physical 

source 𝑄̂  is fully defined in the development of the theory and the establishment of 

evaluation strategies. In section 5.5, the evaluations and approximations are provided in 

detail, their feasibility and correctness are proved by the prescribed situations of a simple 

element. 

Comparison between the classical non-physical enthalpy formulation and the new non-

physical enthalpy formulation shows that, the new non-physical enthalpy formulation has an 

advective term and a non-physical source term. In chapters 2 and 3, it had been mentioned 

that when the advective term is involved in the numerical solution, numerical oscillation is 

a feature because of complex eigenvalue from the large elemental Peclèt number, 

consequently stabilization techniques are required. In the following chapter 6, the new non-

physical enthalpy method will be implemented into the one-dimensional FEM. It will 

describe how the advection and the non-physical source are treated. 

In order to deal with the new advective term, three concepts are described. In the first concept, 

the non-physical capacitance is used to construct the matrix of advection. The advection term 

in FEM is a known issue for numerical instability. As a matter of fact, the upwind method, 



Chapter 5: 5.6 Summary     135 
 

such as the Petrov-Galerkin method, is applied with this concept. Nevertheless, numerical 

experiments show that there is incompatibility between the non-physical capacitance and the 

upwind scheme, as disorder can be found in the computation of capacitances. Thus, the 

second concept was introduced. In the second concept, the discontinuity is forced to be 

removed from the advection, and a new source term is introduced to account for the 

discontinuity and to maintain the consistency of energy. It was demonstrated by the 

numerical experiments that the stability had been dramatically enhanced. In the last concept, 

the advective term is completely replaced by a source term. This is in preparation for the 

multi-dimensional FEM, in which discontinuous weighing functions may be hard to 

construct. Moreover, at the very end of chapter 7, the potential capability of the non-physical 

variable method, which can solve the strong discontinuity, is demonstrated by the plots of 

enthalpy. 
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Chapter 6 Numerical Trials on the 

New Non-physical Enthalpy Method 

for 1D Isothermal Solidification 

Problems 

6.1 General  

In chapter 5, a new numerical methodology for solidification problems is established. It 

involved a new definition of non-physical enthalpy via energy transport equation, which is 

equation (5—1). With this definition, the negative non-physical capacitance is avoided, 

however it give raise to a new non-physical source 𝑄̂ which can be related to advection. 

Moreover, with advection now involved any numerical solution procedure is required to be 

stable particularly when the element Peclèt Number is greater than 1. This chapter aims to 

describe how the new non-physical enthalpy method is implemented with FEM method; one-

dimensional (1D) case studies are examined. Aspects considered in this chapter include: 

firstly, a full discretization of the governing equation; secondly, the construction of finite 

element coefficient matrices and loading vectors; thirdly, the evaluation of each term and 

their updating procedure; fourthly, the stabilization of advection and the solvers utilised. 

6.2 The full discretization 

In chapter 5, a semi-discretized finite element equation was established as 

𝜕

𝜕𝑡
∫ 𝑁𝜗ℎ̃𝑑𝑉Ωe\Γi

e + ∫ 𝑁𝜗ℎ̃𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̃𝑣 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
eΓe\Σi

e = −∫ 𝑁𝜗𝑞 ∙ 𝑛Γe
𝑑Γ + ∫ 𝑞 ∙

Ωe\Γi
e

∇𝑁𝜗𝑑𝑉 − (∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣
× ) ∙ (−𝑛)[𝑑Γ

Γ𝑖
) − ∫ 𝑁𝜗𝑄̂𝑑𝑉Ωe

                                        (6—1) 
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Since the problem is time dependent, the forward Euler method and the 𝜃 method are applied, 

so equation (6—1) becomes 

∫ 𝑁𝜗ℎ̂
𝑛+1𝑑𝑉Ωe\Γi

−∫ 𝑁𝜗ℎ̂
𝑛𝑑𝑉Ωe\Γi

∆𝑡
+ 𝜃 ∫ 𝑁𝜗ℎ̂

𝑛+1𝑣 ∙ 𝑛𝑑Γ
Γe\𝛴𝑖

+ (1 − 𝜃) ∫ 𝑁𝜗ℎ̂
𝑛𝑣 ∙ 𝑛𝑑Γ

Γe\𝛴𝑖
−

𝜃 ∫ ℎ̂𝑛+1 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
− (1 − 𝜃) ∫ ℎ̂𝑛 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi

= −𝜃 ∫ 𝑁𝜗𝑞
𝑛+1 ∙ 𝑛

Γe
𝑑Γ − (1 −

𝜃) ∫ 𝑁𝜗𝑞
𝑛 ∙ 𝑛

Γe
𝑑Γ + 𝜃 ∫ 𝑞𝑛+1 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi

e + (1 − 𝜃) ∫ 𝑞𝑛 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e −

∫ (∫ 𝑁𝜗]𝜌ℎ𝑣
×  ∙ 𝑛[𝑑Γ

Γ𝑖
+ ∫ 𝑁𝜗𝑄̂Ωe

𝑑𝑉)𝑑𝑡
𝑡𝑛+1

𝑡𝑛
                                                              (6—2) 

where the superscript 𝑛 is the number of time steps, and  ∆𝑡 is the time increment between 

two adjacent time steps. It is known that by setting 𝜃 from 0 to 1, the explicit scheme, the 

Crank-Nicolson scheme or the implicit method is obtained [109, 125]. The numerical 

experiments in chapter 4 show that the Crank-Nicolson scheme provides accurate results. 

Also in this study, the Crank-Nicolson scheme is preferred since is able to achieve second 

order accuracy [109, 125]. 

Prior to solving equation (6—2), it is prudent to establish a direct mathematical relationship 

between the non-physical enthalpy ℎ̂ and the temperature 𝑇. The simplest approach is to set 

ℎ̂ = 𝑐̂𝑇. The trial solution for temperature is given as 

𝑇𝑒 ≈ ∑ 𝑁𝜍𝑇𝜍
𝑁𝑁
𝜍=1                                                                                                               (6—3) 

where 𝑇𝑒 is the trial solution and 𝑇𝜍 is the nodal temperature of node 𝜍. 

Thus, equation (6—2) can be written as a system of equations of the form 

[𝐶̂𝑛+1]{𝑇𝑛+1}−[𝐶̂𝑛]{𝑇𝑛}

∆𝑡
+ (𝜃[𝐾𝑣

𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑣
𝑛]{𝑇𝑛}) = −(𝜃[𝐾𝑛+1]{𝑇𝑛+1} +

(1 − 𝜃)[𝐾𝑛]{𝑇𝑛}) − 𝜃{𝑄̃𝑛+1} − (1 − 𝜃){𝑄̃𝑛} + 𝜃{𝑞𝑛+1} + (1 − 𝜃){𝑞𝑛}                   (6—4) 

where the loading vector {𝑄̃} with a tilde is generated as a consequence of the last term in 

equation (6—2). 

Reorganization of equation (6—4) gives 
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([𝐶̂𝑛+1] + 𝜃∆𝑡[𝐾𝑣
𝑛+1] + 𝜃∆𝑡[𝐾𝑛+1]){𝑇𝑛+1} = ([𝐶̂𝑛] − (1 − 𝜃)∆𝑡[𝐾𝑣

𝑛] − (1 −

𝜃)∆𝑡[𝐾𝑛]){𝑇𝑛} + 𝜃∆𝑡{𝑄̃𝑛+1} − (1 − 𝜃)∆𝑡{𝑄̃𝑛} + ∆𝑡(𝜃{𝑞𝑛+1} + (1 − 𝜃){𝑞𝑛})        (6—5) 

where [𝐶̂] is the capacitance matrix, [𝐾𝑣] is the advective matrix, [𝐾] is the conductive 

matrix, and  {𝑞} is the heat flux. The superscript 𝑛 and 𝑛 + 1 refer to time steps. 

An alternative way of getting second order accuracy can be achieved by the application of 

Taylor-Galerkin method, which is developed in [125]. It can be seen in Appendix I—(j).  

6.3 Solidification in 1D 

In order to understand the capability and feasibility of the non-physical variable method, the 

method is implemented into the 1D linear element. The 1D finite element is sketched in 

Figure 6.1 Its shape functions are 

𝑁1 =
1−𝜉

2
                                                                                                                        (6—6a) 

𝑁2 =
1+𝜉

2
                                                                                                                        (6—6b) 

where 𝜉 is a local co-ordinate in a natural co-ordinate space. 

The two nodes of the element are located at 𝜉 = −1, and 𝜉 = 1. And the point 𝜉 = 0 is the 

centre of the element. 

 

Figure 6.1: Mapping of the physical domain and the computational domain 

Assuming that the volume of solid exists in the elemental CV (as depicted in Figure 6.2), at 

time 𝑡𝑛, the volume of solid V𝑠 = Υ𝑠
𝑛𝑉𝑒, where 𝑉𝑒 is the volume of the element. The solid 

volume fraction Υ𝑠
𝑛

 is evaluated through the element-based temperature approximation. For 

the isothermal solidification, it is 
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Υ𝑠
𝑛 =

𝑇𝑠𝑜𝑙−𝑇1
𝑛

𝑇2
𝑛−𝑇1

𝑛                                                                                                                   (6—7) 

 

Figure 6.2: Isothermal solidification in 1D element (left) and mushy zone solidification in 1D 

element (right) 

In one-dimensional modelling, the evaluation of equation (5—61) is 

∫ 𝜌𝑛ℎ𝑛
Ω𝑒

𝑑𝑉 ≈ 𝑀𝑒
𝑛
ℎ𝑠𝑜𝑙 + 𝜌𝑠𝑐𝑠

𝐴𝑒𝐿𝑒
2
Υ𝑠

𝑛
[2𝑇1

𝑛 − 2𝑇𝑠𝑜𝑙 +Υ𝑠
𝑛
(𝑇2

𝑛 − 𝑇1
𝑛
)]+𝑀𝑙

𝑛𝐿 +

𝜌𝑙𝑐𝑙
𝐴𝑒𝐿𝑒
2
(1 − Υ𝑠

𝑛)[𝑇1
𝑛 + 𝑇2

𝑛 − 2𝑇𝑠𝑜𝑙 + Υ𝑠
𝑛
(𝑇2

𝑛 − 𝑇1
𝑛
)]                                             (6—8) 

where 𝑀𝑒 is the total mass of material in the element, 𝑀𝑙 is the total mass of liquid in the 

element, 𝐴𝑒  is the cross-sectional area of element, 𝐿𝑒  is the length of element. The 

superscript 𝑛 refers to the time step. It is identical to the approach adopted for equation (3—

51) in chapter 3, which can be seen in Appendix I—(e). 

6.3.1 The rod capacitance and conductivity matrix 

With the shape functions (6—6a) and (6—6b), the trial solution 𝑇𝑒 is given by the Galerkin 

weighted residual method in the form 

𝑇𝑒 = ⌊𝑁1 𝑁2⌋ {
𝑇1
𝑇2
} = 𝑁1𝑇1 + 𝑁2𝑇2                                                                               (6—9) 

where the subscript e denotes the element and the subscripts 1 and 2 denote the local node 

numbers of the element. The bracket ⌊∎⌋ signifies a row vector and the bracket {∎} signifies 

a column vector. 

The space 𝑥 is also discretized by the FEM as 

𝑥𝑒 = ⌊𝑁1 𝑁2⌋ {
𝑥1
𝑥2
} = 𝑁1𝑥1 + 𝑁2𝑥2                                                                            (6—10) 

where 𝑥1 and 𝑥2 are the coordinates of the element nodes, respectively.  
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In the discretization, the cross-sectional area of the element 𝐴𝑒 is assumed to be constant for 

1D modelling. The volume of the element can be approximate as 

∫ 𝑑𝑉 = ∫ ∫ 𝑑Γ𝑑𝑥 = 𝐴𝑒 ∫ 𝑑𝑥 = 𝐴𝑒 ∫
1

2

1

−1𝑥Γ𝑒𝑥Ω𝑒
(𝑥1 − 𝑥2)𝑑𝜉 = 𝐴𝑒𝐿𝑒                          (6—11) 

According to the chain rule, 𝑑𝑥 = (𝑑(𝑁1𝑥1 + 𝑁2𝑥2) 𝑑𝜉⁄ )𝑑𝜉 = (𝑥2 − 𝑥1)𝑑𝜉 2⁄ = 𝐿𝑒𝑑𝜉 2⁄ , 

and the length 𝐿𝑒 = 𝑥2 − 𝑥1 is the length of element. 

Since the mean-value approach to the integration is applied, the non-physical capacitance 𝑐̂ 

is invariant in each time step, thus its relative matrix can be constructed as 

[𝐶̂]
𝑒
=

𝑐̂𝐿𝑒

2
𝐴𝑒 ∫ [

𝑁1𝑁1 𝑁1𝑁2
𝑁2𝑁1 𝑁2𝑁2

] 𝑑𝜉 =
1

−1

𝑐̂𝐴𝑒𝐿𝑒

2
[

2

3

1

3
1

3

2

3

]                                                     (6—12) 

where [𝐶̂]
𝑒
 is a consistent element capacitance matrix. 

As to conductivity, since the source term lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑁𝜗Ω𝑖
𝑑𝑉 is excluded in the term 

∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e  by the analysis in section 5.4.1, thus the conductivity matrix can be 

constructed as 

[𝐾]𝑒 =
𝑘̂𝐿𝑒

2
𝐴𝑒 ∫ (

⌊
𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

⌋

1

2
𝐿𝑒

) ∙
1

1

2
𝐿𝑒𝑑𝜉

{

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

}𝑑𝜉 =
1

−1

𝑘̂𝐴𝑒

𝐿𝑒
[
1 −1
−1 1

]                                (6—13) 

where [𝐾]𝑒 is the element conductivity matrix, and 𝑘̂ is the mixture conductivity, i.e. 𝑘̂ =

Υ𝑠
𝑛𝑘𝑠 + Υ𝑙

𝑛𝑘𝑙. 

The vectors {𝑞𝑛+1}𝑒 and {𝑞𝑛}𝑒 are related to the boundary conditions. For example, when 

the Robin boundary condition is considered only, the load vector of an element can be 

expressed as 

{𝑞𝑛}𝑒 = {
𝐴𝑒𝑞1
𝐴𝑒𝑞2

} = {
𝐴𝑒ℎ𝑐(𝑇𝑎𝑚𝑏 − 𝑇1

𝑛)

𝐴𝑒ℎ𝑐(𝑇𝑎𝑚𝑏 − 𝑇2
𝑛)
}                                                                       (6—14) 

6.3.2 The advection-diffusion in 1D 

In the new definition of the non-physical method, the advective term is not accounted for in 

the change of non-physical enthalpy. This helps to prevent negative capacitances, and further 
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to enhance the stability of the method. Its evaluation is part of the non-physical approach. 

But when implementing it into the finite element method, it is required to be treated 

independently, and further stability action needs to be taken. This is because it is known that 

for the elemental Peclèt number 𝑃𝑒 > 1 , complex eigenvalues are generated in the 

difference equations which result in numerical oscillations [84-86]. In this section, two 

schemes are adopted for the advection-diffusion terms. The first one is a classical upwind 

method, called the Petrov-Galerkin method. This method is well-known, and can be easily 

applied with the standard Galerkin method, as it only replaces the standard weighting 

functions by modified weighting functions. However difficulties can be foreseen in that 

Petrov-Galerkin weighting functions are hard to obtain for higher dimensional elements. An 

alternative method is to treat the advective term analytically, which can be adopted for the 

evaluation of equation (5—70) as mentioned in section 5.5. 

6.3.2.1 The Petrov-Galerkin method 

In the fixed grid FEM, the application of standard Galerkin method to advection-diffusion 

terms in equation (6—5), it gives 

[𝐾]𝑒{𝑇}𝑒 + [𝐾𝑣]𝑒{𝑇}𝑒 ≈
𝑘𝐴𝑒

Δ𝑥
∫

{
 

 
𝑑
1−𝜉

2

𝑑𝜉

𝑑
1+𝜉

2

𝑑𝜉 }
 

 
⌊
𝑑
1−𝜉

2

𝑑𝜉

𝑑
1+𝜉

2

𝑑𝜉
⌋

1

−1
𝑑𝜉 {

𝑇1
𝑇2
} +

𝑐̂𝑣𝐴𝑒 ∫ {

1−𝜉

2
1+𝜉

2

} ⌊
𝑑
1−𝜉

2

𝑑𝜉

𝑑
1+𝜉

2

𝑑𝜉
⌋

1

−1
𝑑𝜉 {

𝑇1
𝑇2
}                                                                           (6—15) 

After integration, equation (6—15) becomes 

[𝐾]𝑒{𝑇}𝑒 + [𝐾𝑣]𝑒{𝑇}𝑒 ≈
𝑘𝐴𝑒

Δ𝑥
[
1 −1
−1 1

] {
𝑇1
𝑇2
} +

𝑐̂𝑣𝐴𝑒

2
[
−1 1
−1 1

] {
𝑇1
𝑇2
}                              (6—16) 

where Δ𝑥 = 𝐿𝑒 is the length between two nodes of a 1D element. 

Assuming that the conductivity 𝑘  and the velocity 𝑣  are constant, the assembled 

conductivity matrix [𝐾] and the assembled advective matrix [𝐾𝑣] are 

[𝐾] ≈
𝑘𝐴𝑒

Δ𝑥
[
1 −1 0
−1 2 −1
0 −1 1

]                                                                                            (6—17) 

and 



Chapter 6: 6.3 Solidification in 1D     142 
 

[𝐾𝑣] ≈
𝑐̂𝑣𝐴𝑒

2
[
−1 1 0
−1 0 1
0 −1 1

]                                                                                            (6—18) 

According to equations (6—17) and (6—18) the advection-diffusion in the 𝑗th system of 

equation is given as 

[𝐾]2,𝜍{𝑇} + [𝐾𝑣]2,𝜍{𝑇} ≈
𝑘𝐴𝑒

Δ𝑥
⌊−1 2 −1⌋{

𝑇𝜍−1
𝑇𝜍
𝑇𝜍+1

} +
𝑐̂𝑣𝐴𝑒

2
⌊−1 0 1⌋ {

𝑇𝜍−1
𝑇𝜍
𝑇𝜍+1

}      (6—19) 

or, equation (6—18) can be written in another form, which is 

[𝐾]2,𝜍{𝑇} + [𝐾𝑣]2,𝜍{𝑇} ≈ 𝑘𝐴𝑒
−𝑇𝜍−1+2𝑇𝜍−𝑇𝜍+1

Δ𝑥
+ 𝑐̂𝑣𝐴𝑒

𝑇𝜍+1−𝑇𝜍−1

2
                                     (6—20) 

It can be seen in equation (6—20) that the discretization of advection term by the 1D linear 

shape functions is identical to the central difference scheme of the finite difference method. 

Figure 6.3 shows the typical discretization of the finite difference method. Its 

approximations of the differentiations are  

𝑑𝑇

𝑑𝑥
≈

𝑇𝜍+1−𝑇𝜍−1

2Δ𝑥
                                                                                                                 (6—21) 

and 

𝑑2𝑇

𝑑𝑥2
≈

𝑇𝜍+1−2𝑇𝜍+𝑇𝜍−1

Δ𝑥2
                                                                                                         (6—22) 

 

Figure 6.3: Central difference scheme 

To formulate the Petrov-Galerkin shape functions, equation (6—22) is rewritten as 

[𝐾]2,𝜍{𝑇} + [𝐾𝑣]2,𝜍{𝑇} ≈ (1 + 𝑃𝑒)𝑇𝜍−1 − 2𝑇𝜍 + (1 − 𝑃𝑒)𝑇𝜍+1                                    (6—23) 

where 𝑃𝑒  is defined as the element Peclèt number，i.e. 𝑃𝑒 = 𝑣𝐿𝑒 (2𝛼)⁄ , where 𝑣  is the 

advective parameter (velocity), 𝐿𝑒  is the length of an element, and 𝛼  is the diffusive 
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coefficient.  If the Peclèt number 𝑃𝑒 > 1, the central difference technique becomes unstable, 

e.g. when 𝑃𝑒 = 2.5 in Figure 6.4 [125, 131]. 

 

Figure 6.4: Central difference scheme for 2nd order ODE, 𝑃𝑒 = 2.5 

One way of resolving the oscillation problem is to use the upwind difference scheme instead 

of central difference scheme. In the finite difference method, the upwind approximation is  

𝑑𝑇

𝑑𝑥
≈

𝑇𝜍−𝑇𝜍−1

Δ𝑥
                                                                                                                    (6—24) 

The RHS term of equation (6—24) can be extended as 

𝑇𝜍−𝑇𝜍−1

Δ𝑥
=

𝑇𝜍+1−𝑇𝜍−1

2Δ𝑥
− (

Δ𝑥

2
)
𝑇𝜍+1−2𝑇𝜍+𝑇𝜍−1

Δ𝑥2
                                                                         (6—25) 

From equation (5—83), it generates an artificial conductivity which is 𝑘𝑢𝑝 = 𝑣Δ𝑥 2⁄ . With 

this term,  it is possible to switch between the central difference scheme and the upwind 

scheme. Therefore, it can be rewritten as 

𝑣
𝑑𝑇

𝑑𝑥
− 𝑘𝑢𝑝

𝑑2𝑇

𝑑𝑥2
≈ 𝑣

𝑇𝜍−𝑇𝜍−1

Δ𝑥
− 𝑣

𝑇𝜍+1−2𝑇𝜍+𝑇𝜍−1

Δ𝑥2
                                                                 (6—26) 

where the term 𝑑𝑇 𝑑𝑥⁄  is upwinded because the artificial conductivity is introduced. 

Figure 6.5 shows that the fully upwinded finite element method can eliminate the oscillations, 

however the result is a little under diffused [125, 131]. 
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Figure 6.5: Upwind difference scheme for second order ODE, 𝑃𝑒 = 2.5 

In order to correct the under diffusion as appeared in Figure 6.5, a blending factor 𝛽 is used 

to control the degree of upwind, so the advective-diffusive terms can be written as 

𝑐̂𝑣
𝑑𝑇𝜍

𝑑𝑥
− (𝑘 + 𝛽𝑘𝑢𝑝)

𝑑2𝑇𝜍

𝑑𝑥2
≈ (1 + (𝛽 − 1)𝑃𝑒)𝑇𝜍+1 − 2(1 + 𝛽)𝑇𝜍 + (1 − (1 + 𝛽)𝑃𝑒)𝑇𝜍−1  

                                                                                                                                       (6—27) 

where the blending factor 𝛽 = coth(𝑃𝑒) − 1 𝑃𝑒⁄  [125].  

It transpires that equation (6—27) can be obtained by applying the 1D Petrov-Galerkin 

weighing functions to the finite element method. The weighting functions are shown below. 

𝑊1′(𝜉) =
1−𝜉

2
−
3

4
𝛽(1 − 𝜉2)                                                                                        (6—28a) 

𝑊2′(𝜉) =
1+𝜉

2
+
3

4
𝛽(1 − 𝜉2)                                                                                        (6—28b) 

It is also known as the Petrov-Galerkin method [91-92, 125]. The plot of Petrov-Galerkin 

weighting function is shown in Figure 6.6. 
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Figure 6.6: Upwind Petrov-Galerkin weighting function [125] 

Application of Petrov-Galerkin weighting functions to the advective term gives 

∫ {𝑊′}𝑐̂𝑣 ⌊
𝜕𝑁

𝜕𝑥
⌋ {𝑇}𝑑𝑉

Ω𝑒
= 𝐴𝑒𝑐̂𝑣 ∫ {

1−𝜉

2
−
3

4
𝛽(1 − 𝜉2)

1+𝜉

2
+
3

4
𝛽(1 − 𝜉2)

}
1

−1

1
𝐿𝑒
2

⌊
𝑑
1−𝜉

2

𝑑𝜉

𝑑
1+𝜉

2

𝑑𝜉
⌋
𝐿𝑒

2
𝑑𝜉 {

𝑇1
𝑇2
} =

𝐴𝑒𝑐̂𝑣

2
[
−1 + 𝛽 1 − 𝛽
−1 − 𝛽 1 + 𝛽

] {
𝑇1
𝑇2
}                                                                                          (6—29) 

It can be observed from equation (6—29) that, if the blending factor 𝛽 = 0, the advective 

term returns to central difference technique, if the blending factor 𝛽 = coth(𝑃𝑒) − 1 𝑃𝑒⁄ , the 

Petrov-Galerkin method is applied and if the blending factor 𝛽 = 1, the full upwind method 

applies. The relationship between 𝛽 and 𝑃𝑒 is shown in Figure 6.7. 
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Figure 6.7: The relationship between 𝛽 and 𝑃𝑒 

If assembling the Petrov-Galerkin upwind advective term for a two-element system, the 

relationship is obtained as below. 

[𝐾𝑣] ≈
𝐴𝑒𝑐̂𝑣

2
[

−1 + 𝛽 1 − 𝛽 0
−1 − 𝛽 2𝛽 1 − 𝛽
0 −1 − 𝛽 1 + 𝛽

]{

𝑇𝜍−1
𝑇𝜍
𝑇𝜍+1

}                                                         (6—30) 

If the blending factor 𝛽 = 0, equation (6—30) is the same as that of central difference 

technique, i.e. 

[𝐾𝑣] ≈
𝐴𝑒𝑐̂𝑣

2
[
−1 1 0
−1 0 1
0 −1 1

] {

𝑇𝜍−1
𝑇𝜍
𝑇𝜍+1

}                                                                               (6—31) 

and if the blending factor 𝛽 = 1, equation (6—31) is the same as that of the full upwind 

difference technique, i.e. 

[𝐾𝑣] ≈
𝐴𝑒𝑐̂𝑣

2
[
0 0 0
−2 2 0
0 −2 2

] {

𝑇𝜍−1
𝑇𝜍
𝑇𝜍+1

}                                                                               (6—32) 
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6.3.2.2: The analytical scheme 

It is mentioned in section 5.5 that an artificial region is generated by the swept of elemental 

boundary with the relative velocity in a time interval, which is denoted as 𝛺𝑓. The evaluation 

of the volume of 𝛺𝑓 is conducted as 

𝑉𝑓 = 𝐴𝑒 ∫ 𝑣 ∙ 𝑛𝑑𝑡
𝑡𝑛+1 

𝑡𝑛
                                                                                                               (6—33) 

The swept volume 𝛺𝑓 can be regarded as a 1D elemental domain (though it is not an element), 

and the two corresponding nodal temperatures are 𝑇1
𝑛 and 𝑇1

𝑛+1, where the number 1 denotes 

this is for the boundary 1 of the real element (not the swept volume). Thus a similar 

relationship as equation (6—8), can be used to calculate the amount of enthalpy transported 

by advection through the associated elemental boundary. 

∫ ℎ̂𝑑𝑉
Ω𝑓

≈ ∫ Υ𝑠
𝑓𝜌𝑛 (ℎ𝑠𝑜𝑙 + ∫ 𝑐𝑠(𝑇

′)𝑑𝑇′
𝑇

𝑇𝑠𝑜𝑙
) + Υ𝑙

𝑛𝜌𝑛 (ℎ𝑙𝑖𝑞 + ∫ 𝑐𝑙(𝑇
′)𝑑𝑇′

𝑇

𝑇𝑙𝑖𝑞
)

Ω𝑓
𝑑𝑉 =

𝑀𝑒
𝑓
ℎ𝑠𝑜𝑙 +𝑀𝑙

𝑓𝑙 + 𝜌𝑠𝑐𝑠
𝑉𝑓

2
𝑔𝑠
𝑓
(2𝑇1

𝑛+1 − 2𝑇𝑠𝑜𝑙 + Υ𝑠
𝑓(𝑇1

𝑛 − 𝑇1
𝑛+1)) + 𝜌𝑙𝑐𝑙

𝑉𝑓

2
Υ𝑠
𝑓) (𝑇1

𝑛 +

𝑇1
𝑛+1 − 2𝑇𝑙𝑖𝑞 + Υ𝑠

𝑓(𝑇1
𝑛 − 𝑇1

𝑛+1))                                                                             (6—34) 

where Υ𝑠
𝑓

 is the element-based temperature approximation for solid volume fraction of 

swept volume, if the discontinuity front is passing through the boundary in the period 𝑡𝑛 to 

𝑡𝑛+1. 𝑀𝑒
𝑓
= Υ𝑠

𝑓𝜌𝑠V1
𝑓
+ (1 − Υ𝑠

𝑓)𝜌𝑙𝑉𝑓 is the mass in the Ω𝑓, and  𝑀𝑙
𝑓 = (1 − Υ𝑠

𝑓)𝜌𝑙𝑉𝑓 is 

the mass of liquid through the boundary 1. 

6.3.3 The loading vector {𝑸̃} 

The 2 × 1 loading vector {𝑄̃} is essential to the non-physical source method, since the jump 

and source which relate to the discontinuities are now accounted for in this loading vector. 

In equation (6—1), the term ∫ 𝑁𝜗𝑄̂𝑑𝑉Ωe
 on the LHS of the equation and the term 

(−∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣
× ) ∙ 𝑛[𝑑Γ

Γ𝑖
𝑒 ) on the RHS of the equation require further consideration for 

finite elements. 

According to the definition of non-physical source 𝑄̂ via equation (5—54), a relationship 

can be established as 
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∫ 𝑁𝜗𝑄̂𝑑𝑉Ωe
− ∫ 𝑁𝜗]𝜌ℎ𝑣 ∙ 𝑛[𝑑ΓΓ𝑖

𝑒 = ∫ 𝑁𝜗𝜌ℎ𝑣 ∙ 𝑛𝑑ΓΓe
+ ∫ 𝑁𝜗]𝜌ℎ𝑣 ∙ 𝑛[𝑑ΓΓ𝑖

e − ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙Γe

𝑛𝑑Γ − ∫ 𝑁𝜗]𝜌ℎ𝑣 ∙ 𝑛[𝑑ΓΓ𝑖
𝑒 = ∫ 𝑁𝜗𝜌ℎ𝑣 ∙ 𝑛𝑑ΓΓe

− ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙ 𝑛𝑑ΓΓe
                          (6—35) 

Equation (6—35) can be loaded to a finite element system by a 2 × 1 column vector {𝑄̃}
𝑒
. 

It is known that the term ∫ 𝑁𝜗𝜌ℎ𝑣 ∙ 𝑛𝑑ΓΓe
 can be evaluated analytically regarded as a 2 × 1 

vector {𝑄𝑓}𝑒
, and a numerical evaluation can be conducted for ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙ 𝑛𝑑ΓΓe

 once the 

non-physical 𝑐̂ is provided by equation (5—56), and the matrices for this term are given by 

equation (6—30). Change of the non-physical enthalpy due to ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙ 𝑛𝑑ΓΓe
 is then 

numerically evaluated as 

{𝑄𝑛𝑢𝑚}𝑒 = (𝜃[𝐾𝑣
𝑛+1]

𝑒
{𝑇𝑝

𝑛+1}
𝑒
+ (1 − 𝜃)[𝐾𝑣

𝑛]𝑒{𝑇
𝑛}𝑒)                                           (6—36) 

Where {𝑄𝑛𝑢𝑚}𝑒 is a 2 × 1 column vector, and {𝑇𝑝
𝑛+1}

𝑒
 are the predicted further time step 

temperature, which are directly returned from updating techniques such as predictor-

corrector method. 

With equation (6—35), equation (6—1) now only remains one term which is the jump 

(∫ 𝑁𝜗]𝜌ℎ𝑣
×  ∙ 𝑛[𝑑Γ

Γ𝑖
𝑒 ). This term is tricky for fixed grid FEM. In Tables 5.2 and 5.3, it can 

be known that this term returns a single value, which is related to the phase interface. 

However, in the fixed grid FEM, no information about the phase interface can be provided 

from the grid, all values are given to the nodes, simple equal division and application to 

every node of an element is rough, and may cause temperature overflow. However, how this 

single value is distributed to the nodes is hard to establish. One strategy which can avoid the 

establishment of the distribution and the possible temperature overflow is to introduce 

another capacitance as 

𝑐𝑖 =
∫ ∫ ]𝜌ℎ𝑣×∙𝑛[𝑑ΓΓ𝑖

e 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

∫ 𝑇𝑛+1𝑑𝑉Ωe
−∫ 𝑇𝑛𝑑𝑉Ωe

                                                                                               (6—37) 

Then a matrix is constructed in a similar manner as equation (5—56), which is denoted as 

[𝐶𝑖]𝑒, consequently, the jump ∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
 is treated as 

{𝑄𝑖}𝑒 = [𝐶𝑖]𝑒 ({𝑇𝑝
𝑛+1}

𝑒
− {𝑇𝑛}𝑒)                                                                                 (6—38)
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Finally, the loading vector {𝑄̃} can be evaluated as 

{𝑄̃}
𝑒
= {𝑄𝑓}𝑒

+ {𝑄𝑛𝑢𝑚}𝑒 + {𝑄𝑖}𝑒                                                                                 (6—39)  

As mentioned, the predicted temperature vector {𝑇𝑝
𝑛+1}

𝑒
 is obtained by the methods such as 

the predictor-corrector method. In a time step, the predictor-corrector method has several 

loops to generate the predicted temperature for future time step. At each loop, the system of 

equations are considered as linear system of equations, and the cooling rate is potentially 

faster than it should be. Because, it is known that the cooling rate for phase change 

solidification is slower than the cooling rate of single phase material if the boundary 

conditions are the same, because of latent heat release when the phase changes. Thus, it is 

artificially slowed as below. 

{𝑇𝑝
𝑛+1}

𝑒
= 𝑅{𝑇𝜏−1

𝑛+1}𝑒 + (1 − 𝑅){𝑇𝜏
𝑛+1}𝑒                                                                    (6—40) 

where 𝜏 denotes the 𝜏th loop, and the factor 𝑅 ∈ [0, 1], which adjust the dependence of 

predicted temperature {𝑇𝑝
𝑛+1}

𝑒
 on the temperatures returned from two adjacent loops. A 

parametric study on the factor 𝑅 can be seen in Appendix IV. 

6.4 Solver and solution procedure 

6.4.1 The solver 

(1) The Successive Over-Relaxation method (SOR) 

This is the method used in the previous studies of CVCM [39, 31] and non-physical enthalpy 

method [62-63]. For a set of linear equations as shown below, 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑢
𝑎21
⋮

𝑎22
⋮

⋯ 𝑎2𝑢
⋱ ⋮

𝑎𝑣1 𝑎𝑣2 ⋯ 𝑎𝑣𝑢

] {

𝑥1
𝑥2
⋮
𝑥𝑛𝑢

} = {

𝑏1
𝑏2
⋮
𝑏𝑢

}                                                                         (6—41) 

the solution of this method can be written as, 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 − 𝜔 [
∑ 𝑎𝑖𝑗𝑥𝑗

𝑛+1+∑ 𝑎𝑖𝑗𝑥𝑗
𝑛+𝑏𝑗

𝑗=𝑢
𝑗=𝑖

𝑗=𝑖−1
𝑗=1

𝑎𝑖𝑖
]                                                            (6—42) 
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where 𝜔 ∈ (0,2)  is the relaxation factor, and the selecting of 𝜔  can be via 𝜔 =

4 (2 + √4 + (cos (
𝜋

𝑛
) + cos (

𝜋

𝑛
))

2

)⁄  for a 𝑛 × 𝑛 matrix. The advantage of this method is 

that, it is easily implemented with any program. The convergence of this method requires 

that the relaxation factor  𝜔 ∈ (0,2) and the matrix has to be positive definite [132-133]. In 

the program, it does not converge with some settings of mesh. 

(2)  The Gauss- Jordan elimination method (GJM) 

The GJM requires the system of equations become an augmented matrix. Then row 

operations are taken to make the augmented matrix solved [134]. For example, in order to 

resolve equation (6—41), the augmented matrix is built as, 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑢
𝑎21
⋮

𝑎22
⋮

⋯ 𝑎2𝑢
⋱ ⋮

𝑎𝑣1 𝑎𝑣2 ⋯ 𝑎𝑣𝑢

|

𝑏1
𝑏2
⋮
𝑏𝑢

]                                                                                           (6—43) 

Row and column operations will be conducted on the above matrix, until the left part of the 

matrix becomes a unit matrix, then the right part will be the solution of equation (5—36). 

[

1 0 ⋯ 0
0
⋮

1
⋮

⋯ 0
⋱ ⋮

0 0 ⋯ 1

|

𝑥1
𝑥2
⋮
𝑥𝑛𝑢

]                                                                                                    (6—44) 

The advantage of this method is that, it is very stable and able to deal with most of the linear 

equations. However, in the experiment, it is observed that, row and column operations 

require a lot of time for computation. 

(3) Routine from NAG Fortran Library (NAG) 

This method is from a commercial Fortran library. The name of the routine is F07AAF 

(DGESV) [77]. This method is based on the LU decomposition with partial pivoting. Here 

L denotes the lower triangular matrix and U denotes the upper triangular matrix. A 

coefficient matrix can be manipulated as, 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑢
𝑎21
⋮

𝑎22
⋮

⋯ 𝑎2𝑢
⋱ ⋮

𝑎𝑣1 𝑎𝑣2 ⋯ 𝑎𝑣𝑢

] = [

𝑙11 0 ⋯ 0
𝑙21
⋮

𝑙22
⋮

⋯ 0
⋱ ⋮

𝑙𝑣1 𝑙𝑣2 ⋯ 𝑙𝑣𝑢

] [

𝑢11 𝑢12 ⋯ 𝑢1𝑢
0
⋮

𝑢22
⋮

⋯ 𝑢2𝑢
⋱ ⋮

0 0 ⋯ 𝑢𝑣𝑢

]                      (6—45) 
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Both the matrices [𝐿] and [𝑈] are arbitrary and unknown. A usual way of finding unique LU 

composition is to set the diagonal elements of [𝐿] as one. 

Thus, the coefficient matrix can be divided into two equations, 

[

𝑙11 0 ⋯ 0
𝑙21
⋮

𝑙22
⋮

⋯ 0
⋱ ⋮

𝑙𝑣1 𝑙𝑣2 ⋯ 𝑙𝑣𝑢

] {

𝑦1
𝑦2
⋮
𝑦𝑢

} = [

1 0 ⋯ 0
0
⋮

1
⋮

⋯ 0
⋱ ⋮

0 0 ⋯ 1

]{

𝑏1
𝑏2
⋮
𝑏𝑢

}                                                 (6—46a) 

and 

[

𝑢11 𝑢12 ⋯ 𝑢1𝑢
0
⋮

𝑢22
⋮

⋯ 𝑢2𝑢
⋱ ⋮

0 0 ⋯ 𝑢𝑣𝑢

] {

𝑥1
𝑥2
⋮
𝑥𝑛𝑢

} = {

𝑦1
𝑦2
⋮
𝑦𝑢

}                                                                      (6—46b) 

The forward and backward substitution can be directly applied to equations (6—46a) and 

(6—46b), and the set of linear equations is resolved. 

The update methods applied here are those described in the chapter 4. They are the predictor-

corrector method, the secant method and the homotopy method. This method itself is not 

able to check the convergence and consistency. And it prevents the infinite loop. All the 

three methods have their own criterion to judge whether the results is converged at each time 

step. For the predictor-corrector method, the relative error in 𝑇𝑛+1  is determined and 

compared with the relative error 𝜖 by 

|𝑇𝑘
𝑛+1 − 𝑇𝑘−1

𝑛+1| ≤ 𝜖                                                                                                (6—47) 

where the subscript 𝑘 refers to the 𝑘th iteration, and the tolerance 𝜖 is prescribed, i.e. 𝜖 =

1.0 × 10−8. 

For the secant method presented in chapter 5, the system of equations were constructed as 

{𝐹(𝑇𝑛+1)} = ([𝐶̂(𝑇𝑛+1, 𝑇𝑛)] + 𝜃∆𝑡[𝐾(𝑇𝑛+1, 𝑇𝑛)]){𝑇𝑛+1} − ([𝐶̂(𝑇𝑛+1, 𝑇𝑛)] − (1 −

𝜃)∆𝑡[𝐾(𝑇𝑛+1, 𝑇𝑛)]){𝑇𝑛} − ∆𝑡(𝜃{𝑄𝑛+1} + (1 − 𝜃){𝑄𝑛}) − ∆𝑡(𝜃{𝑞𝑛+1} + (1 −

𝜃){𝑞𝑛}) − ∆𝑡(𝜃{𝑞̂𝑛+1} + (1 − 𝜃){𝑞̂𝑛})                                                                      (6—48) 

For each nodal unknown (temperatures) obtained in a loop, it will be substituted back to 

equation (6—48) to check whether it satisfies 
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|𝐹𝑗(𝑇𝑗
𝑛+1)| ≤ 𝜖                                                                                                              (6—49) 

where |∎| is the absolute value, and 𝜖 is the tolerance, for instance, 𝜖 = 1.0 × 10−8. 

Similarly, for the homotopy method, a similar equation is established as 

H(T𝑛+1, 𝜆1) = 𝐹(T𝑛+1) + (𝜆1 − 1)𝐹(T0
𝑛+1)                                                               (6—50) 

As a matter of fact, at each loop, the results must satisfy 

|H𝑗(Tj
𝑛+1, 𝜆𝑚)| ≤ 𝜖                                                                                                       (6—51) 

where 𝑚 is the 𝑚th partition for the factor 𝜆. 

6.4.2 The solution procedure 

A flow chart of the program is shown in Figure 6.8, which presents the general procedure of 

the non-physical variable method. In every time step, the non-physical variables are 

calculated according to the temperature distributions gained from the present time step and 

the future time step. The calculation of solid fraction is achieved via the element-based 

temperature approximation in equation (6—7). The evaluation of each non-physical 

variables are described in section 5.5. The construction of matrices for 1D tests are illustrated 

in the section 6.4.1 and section 6.4.2. And the optional methods for solving the system of 

equations are shown in this previous section. The temperature distribution of the future time 

step can be computed by the Predictor-Corrector method, the secant method or the homotopy 

method as discussed in chapter 4. Then the non-physical variables are substituted into the 

classic finite element equation to compute the temperature distribution for the next 

convergence loop. 
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Figure 6.8: Programming flow chart 
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6.5 Numerical results 

6.5.1 General set-up 

The model is a 1D tube, which is shown in Figure 6.9. The length of the slab is 0.1𝑚. The 

numerical experiments are designed to investigate the non-physical variable methods. The 

material is pure zinc. The forced convective coefficient ℎ𝑐 = 12000 𝑊/𝑚2℃  and the 

ambient temperature 𝑇𝑎𝑚𝑏 = 25℃. They are used in the boundary conditions to instigate a 

cooling process. And the boundary conditions are given as 

−𝑘𝑠
𝜕𝑇

𝜕𝑥
|
𝑥=0

= ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏)                                                                                       (6—52a) 

and 

𝑘𝑠
𝜕𝑇

𝜕𝑥
|
𝑥=0.01

= 0                                                                                                           (6—52b) 

The model is partitioned into 200 elements, which also can be seen in Figure 6.9. In this 

project, the solid produced in the tube is also moving because the incoming liquid pushes it 

out. This phenomenon can commonly be related to the continuous casting and squeezing 

casting. For that reason, the terminology “advection” is used rather than “convection”. 

 

 

Figure 6.9: Experimental model 

In the numerical simulations, the cooling and solidification starts from the left end of the 

zinc slab. The material velocity are set to be 0/−0.0001/−0.0005/−0.001/−0.005 𝑚/𝑠, the 

liquid zinc flows into the tube from one end and flow out from the other. The rate of cooling 

and the direction of the flow are dependent on the material velocities and their “+/−” signs. 
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When the material velocity ‖𝑣‖ ≥ 0.001 𝑚/𝑠, and the direction of it is negative (with the 

“−”), the cooling rate of the model becomes very slow, and the phase change is not initiated. 

But experiments with high material velocity help the examination of numerical stability. 

The model set up above can be solved numerically by three methods which belong to the 

family of non-physical theory. The three methods are the control volume capacitance method, 

classic the non-physical enthalpy method and the new non-physical variable method. Their 

concepts can be seen in Figure 6.10. 

 

Figure 6.10: The concepts of non-physical methods 

The CVCM can be regarded as the non-physical capacitance method, because in the classic 

definition of non-physical enthalpy, the jump ℎ̂′ = 0 so it will not facilitate the removal of 

discontinuity, and consequently, the discontinuity is accounted for by the change of 

capacitance alone. In graph (a) of Figure 6.10, the capacitance of the element with 

discontinuity is different from its two adjacent elements. The control volume capacitance 

can be evaluated as 

𝑐̂ =
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉𝛺𝑒

−∫ 𝜌𝑛ℎ𝑛𝑑𝑉𝛺𝑒

∫ 𝑇𝑛+1𝑑𝑉𝛺𝑒
−∫ 𝑇𝑛𝑑𝑉𝛺𝑒

                                                                                        (6—53) 

After the evolution of 𝑐̂ via equation (6—53), it can be substituted into the temporal term. 

As to the advective term, it can be solved numerically by substitution of 𝑐̂ into discretised 

advective term; or it can be solved analytically via the strategy described in section 6.3.2.2. 

Graph (b) in Figure 6.10 is a schematic sketch for the classic non-physical enthalpy method. 

Through the definition (3—4) in chapter 3, the non-physical jump ℎ̂′  is non-zero and is 

defined by equation (3—12). Equation (3—12) facilities the removal of most of the 
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discontinuity from the LSH of equation (3—4), it leaves a much smaller discontinuity which 

still results in a difference between the capacitances of the element in phase change and its 

neighbouring elements, the difference however is much reduced if it is compared with the 

control volume capacitance. This has been shown in section 3.5.3. 

The classic non-physical enthalpy method has a problem with advection, which can be seen 

in the numerical experiment in chapter 4, consequently, a new definition has been given as 

equation (5—1) in chapter 5. Schematic sketch for the new definition is shown in Graph (c) 

in Figure 6.10. Through the development of the new methodology, the non-physical ℎ̂′ still 

facilities the removal of discontinuity from governing equation (5—1), and a new non-

physical source 𝑄̂ is established through the derivation to treat the advection. Since it is 

considered that discontinuity can be transported into the element by advection, the source 𝑄̂ 

should appears at the boundary of an element. 

In the following numerical experiments, the non-physical capacitance method with 

numerical advection, the non-physical capacitance method with analytical advection and the 

new non-physical variable method are applied. Also, the material velocities with different 

directions are examined. The influence of the directions is dependent on the boundary 

conditions applied. For example, in the presented experimental set-up, the Newton’s law of 

cooling is applied on the left end of the tube. As a matter of fact, if the material is flowing 

into the tube from the left end, it will raise the energy level within the tube and slow the 

cooling rate. As it is defined, a positive direction (the material velocity is signed with “+”) 

is from left to the right, the example described above should be a negative value being input 

into the computer program. The velocity with positive sign means that the material is flowing 

in through the cooling end. Although this does not physically make sense, results are still 

provided to show the capability of the method and the program. 

6.5.2 Numerical results 

Figure 6.11 is the temperature history of the node 41 at 𝑥 = 0.02 𝑚. The non-physical 

capacitance method corresponds to the concept (a) in Figure 6.10. It can be seen that the rise 

in the quantity of the material velocity makes the cooling rate reduced. When the material 

velocity ‖𝑣‖ = 0.001 𝑚/𝑠, the temperature of material refuses to drop because the hot 

material is flowing in so fast that there is no time to cool down. In this graph, some defects 

can be spotted. For instance, when the velocity ‖𝑣‖ = 0.0001 𝑚/𝑠, the temperature is lower 
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than the stationary solidification just after the phase change. This could be an error. 

Furthermore, when the velocity ‖𝑣‖ = 0.0005 𝑚/𝑠 , an undulated behaviour in the 

temperature profile indicates that there is instability. 

 

Figure 6.11: Temperature histories at 𝑥 = 0.02 𝑚, with non-physical capacitance method and 

numerical advection 

In the chapter 4, concept (a) was demonstrated by numerical examples to work well for 

solidification problems with stationary material on a fixed mesh. Also, the Petrov-Galerkin 

upwind scheme is shown to be able to deal with advection-diffusion problems in the 

continuous simulations (i.e. single material properties, no phase change and no discontinuity) 

[135]. As a matter of fact, it is possible that the problem is embodied in the advective term 

with the variable non-physical capacitance. Figure 6.12 shows the non-physical capacitance 

directly computed and output from the program. There are three spikes, and the black one is 

the capacitance of the stationary case. The phase transformation time is around 8 seconds. 

The red one and the blue one are the capacitances on setting that the material velocity ‖𝑣‖ =

0.0001 𝑚/𝑠  and ‖𝑣‖ = 0.0005 𝑚/𝑠 , respectively. This graphs shows that the phase 

transformation time for ‖𝑣‖ = 0.0005 𝑚/𝑠  is earlier and even greater than the phase 

transformation time for ‖𝑣‖ = 0.0001 𝑚/𝑠. Accordingly, it is possible that incompatibility 

is contained between rapid changing non-physical capacitance and the upwind technique. 
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Figure 6.12: The change of non-physical capacitance, with non-physical capacitance method and 

numerical advection 

In the following numerical experiments, the new non-physical variable method is applied. 

In the new method, the non-physical capacitance is computed via equation (5—56). It is then 

substituted into the capacitance matrix. Also, the capacitance is substituted into equation 

(6—30), which is already an upwind advection matrix by Petro-Galerkin method. 

Meanwhile, the non-physical source 𝑄̂ captures the discontinuity, which is the difference 

between the physical advection and the numerical advection. The physical advection is 

evaluated via the approach illustrated in Appendix I—(d). The implementation of this idea 

gives temperature history as shown in Figure 6.13. It can be seen that the behaviour of the 

temperature profiles is better than it appeared in Figure 6.11. Moreover, the non-physical 

capacitance as shown in Figure 6.14 shows that the discontinuity has been removed. 

Nevertheless, the removal of discontinuity from capacitance give rise to the non-physical 

source which is shown in Figure 6.15. Figure 6.16 shows the comparison between the 

temperature profile of node 61 (𝑥 = 0.03 𝑚) obtained by non-physical capacitance method 

and the new non-physical variable method. The material velocity ‖𝑣‖ = 0.0005 𝑚/𝑠, and 

it shows new non-physical variable method improves the numerical stability and solves the 

incompatibility issue. 
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Figure 6.13: Temperature histories at 𝑥 = 0.02 𝑚, with new non-physical variable method 

 

Figure 6.14: The change of non-physical capacitance, with new non-physical variable method 
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Figure 6.15: The change of non-physical source, with new non-physical variable method  

 

Figure 6.16: Non-physical capacitance method vs. new non-physical variable method with ]ℎ̂𝑛[ =

0 on Γ𝑖 

It is obvious that the advection term can be evaluated completely through analytical approach 

in Appendix I—(d). This treatment eliminates the advective terms in the assembled 

equations. Instead, analytical evaluation of the advection is applied to the system of 

equations as a source. This is good for the advective-diffusive solidification problems in 

multi-dimension, because it may be hard to construct discontinuous weighting functions like 

the Petrov-Galerkin scheme in 1D. Figure 6.17 is the temperature history received from non-

physical capacitance with analytical advection. The behaviour of temperature profile is also 
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stable, though for high velocity, such as the velocity ‖𝑣‖ = 0.001 𝑚/𝑠, the curve has little 

undulation. 

 

Figure 6.17: Temperature histories at 𝑥 = 0.02 𝑚, with non-physical capacitance method and 

analytical advection 

In continuous casting, in order to prevent the solidifying shell to stick on the mould, the 

mould is usually moved sinusoidally up and down (for vertical continuous casting machine) 

[136]. Thus, it is necessary to examine the non-physical variable method with the velocity 

in all directions. From Figure 6.18 to Figure 6.20, are the numerical results when the material 

velocity is positive. The figures indicate that all the three strategies show great stability and 

feasibility for positive velocity. 
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Figure 6.18: Temperature histories at 𝑥 = 0.02 𝑚, with numerical advection and positive 

velocities 

 

Figure 6.19: Temperature histories at 𝑥 = 0.02 𝑚, new non-physical variable method with ]ℎ̂𝑛[ =

0 on Γ𝑖 and positive velocity 
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Figure 6.20: Temperature histories at 𝑥 = 0.02 𝑚, with analytical advection and positive velocities 

6.6 Summary 

This chapter aims to solve the instability of the non-physical enthalpy method when 

involving the advection-diffusion. A new definition of the non-physical enthalpy has been 

given by the transport equation (5—1). Through this definition, the physical advection is 

isolated from the non-physical temporal term. As a consequence, no negative non-physical 

capacitance will be obtained. In order to deal with the new non-physical advective term, the 

upwind method, such as the Petrov-Galerkin method, was applied with this concept. 

This chapter provides a detailed procedure on the implementation of the new non-physical 

variable method to the 1D FEM. Numerical model has been set up, and it is solved by three 

methods which belong to the family of non-physical theory. In the numerical experiments, 

it shows that the CVCM has incompatibility issue with the Petrov-Galerkin method, as 

disorder can be found in the computation of capacitances. The disorder may arise from the 

great change of non-physical capacitance. The new non-physical variable method just 

resolves this issue because the discontinuity is forced to be removed from the temporal term, 

which makes the non-physical capacitance does not vary significantly. However, the new 

method give rise to a new source term introduced to keep the discontinuity and to maintain 

the consistency of energy. It was demonstrated by the numerical experiments that the 

stability had been dramatically improved.  
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Chapter 7 The non-physical variable 

method for solidification in 2D 

7.1 General 

In the previous two chapters, the solidification problems were solved by the non-physical 

variable method with one-dimensional linear finite elements. The one-dimensional 

modelling is used to test of the theory underpinning the non-physical variable method. 

Specifically, the implementation of the non-physical variable approach in the FEM 

illustrated how the non-physical variables behave and perform in the test cases considered. 

Results provided directly from the program were used to compare against existing analytical 

solutions. In practice, many problems in two or three dimensions can be simplified to 

equivalent one-dimensional problems, although this requires the geometry and boundary 

conditions to be sufficiently simple. However, it is of interest to investigate how the non-

physical variable method deals with complex geometry and boundary conditions, this 

chapter attempts to solve solidification problems by utilising the non-physical variable 

approach and two-dimensional linear triangular elements. The difficulties involved are the 

approximation of solid fraction by the element based temperature approximation, the 

evaluation of non-physical variables and the stabilization of the advective terms.  

7.2 The non-physical variable method in 2D 

7.2.1 The semi-discretization 

The implementation of non-physical variable method in 2D follows the theory developed in 

chapter 5. In that chapter, the definition of non-physical was defined through the weak form 

of the energy conservation equation, which is 

𝐷∗

𝐷∗𝑡
∫ ℎ̂𝑑𝑉
Ω

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

=
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ𝑑𝑉
Ω

+ ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛
Γ

𝑑Γ +

∫ 𝜌𝑄
Ω

𝑑𝑉                                                                                                                       (7—1) 
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where ℎ̂ is the non-physical enthalpy, 𝑣 is the material velocity field, 𝑣∗ is the grid velocity 

field, 𝜌 is the density, ℎ is the specific enthalpy, 𝑞 ∙ 𝑛 denotes the heat flux and 𝑄 is the 

specific external heat source. The derivative 𝐷∗ 𝐷∗𝑡⁄ = 𝜕 𝜕𝑡⁄ |𝑥 + 𝑣
∗ ∙ ∇, and the operator 

∇(∎) = {𝜕 𝜕𝑥⁄ 𝜕 𝜕𝑦⁄ 𝜕 𝜕𝑧⁄ } is the gradient. 

Application of equation (7—1) to a control volume (CV) Ω
+

, in which motion is governed 

by the velocity field 𝑣+, gives 

𝐷+

𝐷+𝑡
∫ ℎ̂𝑑𝑉
𝛺+

+ ∫ ℎ̂(𝑣∗ − 𝑣+) ∙ 𝑛𝑑Γ
𝛤+

+ ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
𝛤+

+ ∫ 𝑄̂
𝛺+

𝑑𝑉 =
𝐷+

𝐷+𝑡
∫ 𝜌ℎ𝑑𝑉 +
𝛺+

∫ 𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛𝑑Γ
𝛤+

= −∫ 𝑞 ∙ 𝑛𝑑Γ
𝛤+

+ ∫ 𝜌𝑄𝑑𝑉
𝛺+

                                                     (7—2) 

where 𝑄̂ is non-physical source, which is defined for the convenience of the solution.  

The CV Ω
+

 encloses the phase interface Γi, and the velocity 𝑣+ satisfies the identity 𝑣+ ∙

𝑛 = 𝑣𝑖 ∙ 𝑛, where 𝑣𝑖 is the velocity of the phase interface.  

From equation (7—2), by defining 𝑄̂′ = ]ℎ̂𝑣 ∙ 𝑛[, a source-like jump term ℎ̂′ is obtained as 

𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑Γ + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖𝛤𝑖
= −∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑Γ

𝛤𝑖
= ∫ ]𝑞 ∙ 𝑛[ 𝑑Γ

𝛤𝑖
  

                                                                                                                                       (7—3) 

where ]∎[ signifies a jump. 

Detailed derivation can be seen in section 5.3 of chapter 5. Equation (7—3) defines the 

discontinuity on the interface boundary 𝛤𝑖, which facilitates the removal of the discontinuity 

from left hand side (LHS) of equation (7—1).  

Through equation (7—3), the non-physical source 𝑄̂ is only defined on the phase interface 

𝛤𝑖. A complete definition is achieved by the analysis for the weighted governing equation of 

(7—1), which is 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γ

− ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω

+ ∫ 𝑊𝑄̂𝑑𝑉
Ω

= ∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω

= −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

+

∫ 𝑊𝜌𝑄
Ω

𝑑𝑉                                                                                                                     (7—4) 
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where 𝑊 is the weighting function. 

Through the analysis provided in section 5.4.1, the linkage equation is obtained as 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

=
𝐷∗

𝐷∗𝑡
∫ 𝑊𝜌ℎ𝑑𝑉
Ω

+

∫ 𝑊𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

− (−∫ 𝑊]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑Γ
Γ𝑖

) − ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ ∇𝑊𝑑𝑉
Ω\Γi

  

                                                                                                                                         (7—5) 

It also provides a weighted governing equation of the form 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉
Ω\Γi

+ ∫ 𝑊ℎ̂𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̂𝑣 ∙ ∇𝑊𝑑𝑉
Ω\Γi

+ ∫ 𝑊𝑄̂𝑑𝑉
ΩΓ\Σi

= −∫ 𝑊𝑞 ∙ 𝑛
Γ

𝑑Γ +

∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω\Γi

− (∫ 𝑊 ]𝑞 ∙ 𝑛[ 𝑑Γ
Γ𝑖

) + ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉                                                   (7—6) 

Equation (7—5) can be evaluated analytically, it is not necessary to be weighted. Thus, 

choice of weighting function for equation (7—5) can be simply made as 𝑊 = 1, which gives 

𝜕

𝜕𝑡
∫ ℎ̂𝑑𝑉
Ωe\Γi

e + ∫ ℎ̂𝑣 ∙ 𝑛𝑑Γ
Γe\Σi

e + ∫ 𝑄̂𝑑𝑉
Ωe

=
𝜕

𝜕𝑡
∫ 𝜌ℎ𝑑𝑉
Ωe

+ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

−

(−∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ 𝑛[𝑑Γ
Γ𝑖
e )                                                                                          (7—7) 

where Ω\Γi and Γ\𝛴𝑖 mean no discontinuities are embodied in those terms. The curve 𝛴𝑖 is 

the boundary of interface Γi, and the vector 𝑡𝑛 is the outward pointing unit normal on the 

tangent plane of 𝛴𝑖. 

Equation (7—6) can be solved numerically, for standard Galerkin weighted residual method, 

the weighting function 𝑊 = 𝑁𝜗, consequently, equation (7—6) becomes 

𝜕

𝜕𝑡
∫ 𝑁𝜗ℎ̃𝑑𝑉Ωe\Γi

e + ∫ 𝑁𝜗ℎ̃𝑣 ∙ 𝑛𝑑Γ − ∫ ℎ̃𝑣 ∙ ∇𝑁𝜗𝑑𝑉 +Ωe\Γi
e ∫ 𝑁𝜗𝑄̂𝑑𝑉ΩeΓe\Σi

e = −∫ 𝑁𝜗𝑞 ∙Γe

𝑛 𝑑Γ + ∫ 𝑞 ∙ ∇𝑁𝜗𝑑𝑉Ωe\Γi
e − (−∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣

× ) ∙ 𝑛[𝑑Γ
Γ𝑖
𝑒 )                                        (7—8) 

where ℎ̃ is the trial solution for enthalpy, 𝑁𝜗 are the finite element shape functions. 

On defining the non-physical source that, 

∫ 𝑄̂𝑑𝑉
Ωe

= ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

+ ∫ ]𝜌ℎ𝑣 ∙ 𝑛[𝑑Γ
Γ𝑖
e − ∫ 𝑐̂𝑇𝑣 ∙ 𝑛𝑑Γ

Γe
                                        (8—9) 
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and with the identity ℎ̂ = 𝑐̂𝑇 for 𝑇 ≠ 0, subtraction of equation (7—9) from equation (7—

7) and application of mean-value approach to the integration provides 

𝑐̂ =
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉Ωe

−∫ 𝜌𝑛ℎ𝑛𝑑𝑉Ωe
−∫ ∫ ]𝜌ℎ𝑣×∙𝑛[𝑑ΓΓ𝑖

e 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

∫ 𝑇𝑛+1𝑑𝑉Ωe\Γi
e −∫ 𝑇𝑛𝑑𝑉Ωe\Γi

e

                                                       (7—10) 

The non-physical source 𝑄̂ is non-unique. Whatever the definition of ℎ̂ is, the non-physical 

source is the difference between the physical advection and numerical advection. It 

guarantees that the energy conservation and consistency are always satisfied. 

Equation (7—10) is adopted to evaluate the non-physical capacitance 𝑐̂. Equation (7—9) is 

then applied to compute the non-physical source 𝑄̂ . No discretization is required to be 

applied to equations (7—9) and (7—10) as they are only evaluated analytically. However, 

the evaluation has to be conducted on an elemental domain. Finally, the non-physical 

capacitance and the non-physical source are both substituted into equation (7—8) which is 

solved by the finite element method (FEM). 

7.2.2 The linear triangular element and assembly 

This chapter uses the 3-noded linear triangular finite element for the numerical experiments. 

Its sketch is shown in Figure 7.1. The shape functions are constructed as 

⌊𝑁⌋ = ⌊𝑁1 𝑁2 𝑁3⌋ = ⌊1 − 𝜉 − 𝜂 𝜉 𝜂⌋                                                                (7—11) 

where 𝜉 and 𝜂 are the natural co-ordinates, the sign ⌊∎⌋ signifies a row vector. 

It is known that, the weighting functions are also shape functions for the standard Galerkin 

method, consequently 

{𝑊} = {
𝑊1

𝑊2

𝑊3

} = {
1 − 𝜉 − 𝜂

𝜉
𝜂

}                                                                                          (7—12) 

where {∎} signifies a column vector. 
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Figure 7.1: A linear triangular finite element 

A trial solution with respect to temperature is given as 

𝑇𝑒 = 𝑁1𝑇1 +𝑁2𝑇2 + 𝑁3𝑇3 = ⌊𝑁⌋{𝑇}                                                                            (7—13) 

where the subscripts 1, 2 and 3 are the local node number of an element. 

In addition, for an isoparametric element 

 𝑥𝑒 = 𝑁1𝑥1 + 𝑁2𝑥2 + 𝑁3𝑥3 = ⌊𝑁⌋{𝑥}                                                                         (7—14a) 

and 

𝑦𝑒 = 𝑁1𝑦1 + 𝑁2𝑦2 + 𝑁3𝑦3 = ⌊𝑁⌋{𝑦}                                                                         (7—14b) 

where (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) are the nodal co-ordinates of a triangular element in the 

Cartesian co-ordinate system.  

The volumetric integration in the triangular finite element domain is conducted as 

∬𝑑𝑉 = ∬𝑑𝑥𝑑𝑦 = ∫ ∫ |[𝐽]|𝑑𝜉𝑑𝜂
1−𝜂

0

1

0
= ∫ ∫ |[

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

]| 𝑑𝜉𝑑𝜂
1−𝜂

0

1

0
                             (7—15) 

where [𝐽] is the Jacobian matrix, and the operator |∎| signifies the determinant of a matrix. 

The finite element programme requires the |[𝐽]| to be always positive, which is achieved by 

order of numbering the local nodes to be anticlockwise.  
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As mentioned in chapter 5, the approximation of non-physical capacitance ĉ is conducted 

through a mean-value approach. It is assumed that the non-physical ĉ is constant for each 

time step. Moreover, on setting that the mesh is stationary, i.e. the velocity 𝑣∗ = 0, equation 

(7—8) is discretised and is written in a matrix form as 

[𝐶̂]({𝑇𝑛+1} − {𝑇𝑛})/∆𝑡 + (𝜃[𝐾𝑣
𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑣

𝑛]{𝑇𝑛}) =

−(𝜃[𝐾𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑛]{𝑇𝑛}) − 𝜃{𝑄̃𝑛+1} − (1 − 𝜃){𝑄̃𝑛} + 𝜃{𝑞𝑛+1} + (1 −

𝜃){𝑞𝑛}                                                                                                                          (7—16) 

where 𝜃 is a blending factor for 𝜃-method, and the superscripts 𝑛 and 𝑛 + 1 refer to the time 

step, the bracket [∎] signifies a matrix. The forward Eularian approximation is applied for 

the temporal term. The constructions of each matrix and each loading vector are presented 

below. 

As regards the elemental capacitance matrix, there are two methods for construction, i.e. the 

consistent capacitance matrix and the lumped capacitance matrix.  

The consistent capacitance matrix can be constructed as 

[𝐶̂]
𝑒
= ∫ {𝑊}ĉ⌊𝑁⌋

Ωe
𝑑𝑉 ≈ ĉ ∫ {𝑊}⌊𝑁⌋

Ωe
𝑑𝑉 =

ĉ ∫ ∫ {
1 − 𝜉 − 𝜂

𝜉
𝜂

} ⌊1 − 𝜉 − 𝜂 𝜉 𝜂⌋ |[

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

]| 𝑑𝜉𝑑𝜂
1−𝜂

0

1

0
=

ĉ ∫ ∫ [

(1 − 𝜉 − 𝜂)2 (1 − 𝜉 − 𝜂)𝜉 (1 − 𝜉 − 𝜂)𝜂

𝜉(1 − 𝜉 − 𝜂) 𝜉2 𝜉𝜂

𝜂(1 − 𝜉 − 𝜂) 𝜂𝜉 𝜂2
] |[
𝑥2 − 𝑥1 𝑥3 − 𝑥1
𝑦2 − 𝑦1 𝑦3 − 𝑦1

]| 𝑑𝜉𝑑𝜂
1−𝜂

0

1

0
=

ĉ|[𝐽]|

[
 
 
 
 
1

12

1

24

1

24
1

24

1

12

1

24
1

24

1

24

1

12]
 
 
 
 

=
ĉ|[𝐽]|

12

[
 
 
 
 1

1

2

1

2
1

2
1

1

2
1

2

1

2
1]
 
 
 
 

                                                                           (7—17) 

The lumped matrix capacitance is much simpler, and it can be constructed as 

[𝐶̂]
𝑒
≈

ĉ𝐴𝑒

3
[
1 0 0
0 1 0
0 0 1

]                                                                                                    (7—18) 

where 𝐴𝑒 is the area of an element. 
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In the numerical experiments conducted in the previous chapters, the consistent capacitance 

matrix results in delay of phase transformation time and it also experiences numerical 

oscillations. However, the lumped capacitance matrix shows good stability as well as the 

ability to provide accurate results. Consequently, the lumped capacitance matrix is preferred 

in this project. 

For the conductivity matrix, the identity 𝑞 = −𝑘∇𝑇 is applied for the flux in equation (7—

1). Since this is a two-dimensional problem and the thermal conductivity can be anisotropic, 

the conductive term can be expressed as 

{𝑞} = − [
𝑘𝑥𝑥 0
0 𝑘𝑦𝑦

] {

𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦

} = −[𝑘](∇{𝑇})                                                                    (7—19) 

where 𝑘𝑥𝑥  and 𝑘𝑦𝑦  refer to the thermal conductivity in the principal directions for an 

orthotropic material. If the material is orthotropic, the conductivities follow 𝑘𝑥𝑥 ≠ 𝑘𝑦𝑦; and 

if the material is isotropic, the conductivities 𝑘𝑥𝑥 = 𝑘𝑦𝑦. 

The thermal conductivity matrix is constructed as 

[𝐾]𝑒 = ∫ {
𝜕𝑁

𝜕𝑥

𝜕𝑁

𝜕𝑦
} [𝑘]

Ωe
⌊
𝜕𝑁

𝜕𝑥

𝜕𝑁

𝜕𝑦
⌋ 𝑑𝑉 = ∫ [𝐵]𝑇[𝑘][𝐵]

Ωe
𝑑𝑉                                        (7—20) 

where the superscript 𝑇 signifies a transpose matrix. 

The matrix [𝐵] arises from the gradients of shape and weighting functions. Construction of 

the thermal conductivity matrix via equation (7—20) requires transform of the Cartesian co-

ordinates into the natural co-ordinates. Here, the Jacobian matrix is involved again. Suppose 

the matrix [𝐵] is the derivative of the shape functions with respect to the Cartesian co-

ordinate system, i.e. 

[𝐵] = [

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑥
𝜕𝑁1

𝜕𝑦

𝜕𝑁2

𝜕𝑦

𝜕𝑁3

𝜕𝑦

]                                                                                                 (7—21) 

Then, suppose the matrix [𝐷] is the derivative of the shape functions with respect to the 

natural co-ordinate system, i.e. 
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[𝐷] = [

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

] = [
−1 1 0
−1 0 1

]                                                                       (7—22) 

Consequently, the mapping of matrices [D] and [B] can be conducted through the Jacobian 

matrix, which is 

[𝐷] = [𝐽]𝑇[𝐵] = [

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

] [

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝜕𝑁2

𝜕𝑥
𝜕𝑁1

𝜕𝑦

𝜕𝑁2

𝜕𝑦

𝜕𝑁2

𝜕𝑦

]                                                                 (7—23) 

With the identity [𝐵] = ([𝐽]𝑇)−1[𝐷] from equation (7—23), the thermal conductivity can be 

written as 

[𝐾]𝑒 = ∫ [𝐵]𝑇[k][𝐵]
Ωe

𝑑𝑉{𝑇} = ∫ [𝐽]−1[𝐷]𝑇[k]([𝐽]𝑇)−1[𝐷]𝑑𝑉{𝑇}
Ωe

                           (7—24) 

As to the advective term, the velocity 𝑣 is a vector which can be projected on the x-direction 

and the y-direction in a Cartesian co-ordinate system. Thus, in the numerical methods the 

velocity can be expressed as 

[𝑣] = [
𝑣𝑥𝑥 0
0 𝑣𝑦𝑦

]                                                                                                          (7—25) 

where the 𝑣𝑥𝑥 is the scalar of the component of 𝑣 on the x-direction and the 𝑣𝑦𝑦 is the scalar 

of the component on the y-direction. The material velocity matrix [𝑣] is established on the 

assumption that the difference of density between the solid and liquid is effectively small, 

so that the material velocity is constant. 

Similar to the conductive term, the matrix of advection arises from 

[𝐾𝑣]𝑒 = ĉ ∫ {𝑊}: [𝑣] ⌊
𝜕𝑁

𝜕𝑥

𝜕𝑁

𝜕𝑦
⌋ 𝑑𝑉

Ω
= ĉ ∫ ∫ {𝑊}: [𝑣][𝐵]|[𝐽]|𝑑𝜉𝑑𝜂

1−𝜂

0

1

0
=

ĉ ∫ ∫ {𝑊}: [𝑣]([𝐽]𝑇)−1[𝐷]|[𝐽]|𝑑𝜉𝑑𝜂
1−𝜂

0

1

0
= [𝐾𝑣]𝑥𝑥 + [𝐾𝑣]𝑦𝑦                                      (7—26) 

where ∎:∎ signifies the Frobenius inner product of a vector and matrix. Thus, the above 

equation generates two separate matrices with respect to the velocity components 𝑣𝑥𝑥 and 

𝑣𝑦𝑦, respectively. 

 [𝐾𝑣]𝑥𝑥 =
ĉ𝑣𝑥𝑥

6
[

𝑦2 − 𝑦3 𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑦2 − 𝑦3 𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑦2 − 𝑦3 𝑦3 − 𝑦1 𝑦1 − 𝑦2

]                                                            (7—27a) 
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and 

[𝐾𝑣]𝑦𝑦 =
ĉ𝑣𝑦𝑦

6
[

𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1
𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1
𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1

]                                                             (7—27b) 

The advective term above are interpolated by the central difference technique. Detailed 

derivation from equation (7—26) to equations (7—27a) and (7—27) can be seen in 

Appendix I—(k). It is known that, when the elemental Peclèt number is greater than 1, 

oscillations will occur in the numerical methods. In chapter 5, the Petrov-Galerkin method 

was adopted as the solution for numerical oscillation. And a discontinuous one-dimensional 

weighing function was applied. A general form of the Petrov-Galerkin modified weighing 

functions is shown in [137-138] is 

{𝑊𝑥𝑥
′ } = {𝑁} +

𝛽𝑣𝑥𝑥ℎ

2‖𝑣‖
{
𝜕𝑁

𝜕𝑥
}                                                                                           (7—28a) 

and 

{𝑊𝑦𝑦
′ } = {𝑁} +

𝛽𝑣𝑦𝑦ℎ

2‖𝑣‖
{
𝜕𝑁

𝜕𝑦
}                                                                                           (7—28b) 

where the parameter 𝛽 = coth(𝑃𝑒) − 1 𝑃𝑒⁄ . In references [75, 110], the streamline Petrov-

Galerkin method is applied to the 3-node triangular elements.  

In this project, for a linear triangular element as shown in Figure 7.1, the characteristic length 

of the element is regarded as the minimum height of the triangle, i.e. 

ℎ = 𝒎𝒊𝒏 (ℎ1, ℎ2, ℎ3)                                                                                                     (7—29) 

Then, an artificial conductive matrix can be introduced to implement the upwind effect to 

the system of equations. The artificial conductive matrix is constructed as 

[𝐾𝑢𝑝]𝑒 = ∫ {
𝜕𝑁

𝜕𝑥

𝜕𝑁

𝜕𝑦
} [𝑘𝑢𝑝]Ωe

⌊
𝜕𝑁

𝜕𝑥

𝜕𝑁

𝜕𝑦
⌋ 𝑑𝑉                                                                   (7—30) 

where the artificial conductivity matrix is evaluated as 

[𝑘𝑢𝑝] =
𝛽ℎ

2|𝑣|
[
𝑣𝑥𝑥
2 𝑣𝑥𝑥𝑣𝑦𝑦

𝑣𝑦𝑦𝑣𝑥𝑥 𝑣𝑦𝑦
2 ]                                                                                      (7—31) 

A similar approach adopted for equations from (7—20) to (7—24) can be applied to equation 

(7—30). Thus the semi-discretized artificial conductivity matrix for the upwind scheme is 
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[𝐾𝑢𝑝]𝑒 = ∫ [𝐷]𝑇[𝐽]−1[𝑘𝑢𝑝]([𝐽]
𝑇)−1[𝐷]𝑑𝑉{𝑇}

Ωe
                                                          (7—32) 

When the Petrov-Galerkin method is applied, the system of equations as shown in equation 

(7—16) becomes 

[𝐶̂]
({𝑇𝑛+1}−{𝑇𝑛})

∆𝑡
+ (𝜃[𝐾𝑣

𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑣
𝑛]{𝑇𝑛}) + (𝜃[𝐾𝑢𝑝

𝑛+1]{𝑇𝑛+1} + (1 −

𝜃)[𝐾𝑢𝑝
𝑛]{𝑇𝑛}) = −(𝜃[𝐾𝑛+1]{𝑇𝑛+1} + (1 − 𝜃)[𝐾𝑛]{𝑇𝑛}) − 𝜃{𝑄̃𝑛+1} − (1 − 𝜃){𝑄̃𝑛} +

𝜃{𝑞𝑛+1} + (1 − 𝜃){𝑞𝑛}                                                                                               (7—33) 

So far, the constructions of all coefficient matrices are illustrated, the capacitance matrix [𝐶̂] 

is constructed by equations (7—10), (7—17) and (7—18); the advective matrix is 

constructed by equations (7—10), (7—27a) and (7—27b); the Petrov-Galerkin artificial 

conductivity matrix is constructed by equations (7—31) and (7—32); and the conductivity 

matrix is constructed by equation (7—24), in which the conductivities are evaluated as [𝑘] =

Υ𝑠[𝑘]𝑠 + Υ𝑙[𝑘]𝑙. 

Equation (7—33) also contains several loading vectors that are required to be evaluated. The 

vector {𝑞} relates to the boundary conditions, and the vector {𝑄̃} relates to the jump terms 

and non-physical source 𝑄̂. 

7.2.3 Boundary conditions - Robin boundary conditions 

The relationship of the number of surfaces and the number of nodes is sketched in Figure 

7.2. 

 

Figure 7.2: The numbering of nodes and faces 
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The vectors {𝑞}𝑛  and {𝑞}𝑛+1  are 3 × 1 column vectors in the system of equations for a 

triangular elements, they are nodal variables. As showed in Figure 7.2, a linear triangular 

element has three faces (boundaries), each boundary relates to two nodes, e.g. the face 2 

relates to node 1 and node 3. Consequently, the boundary condition for face 2 can be 

regarded as a 2 × 1 column vector, noted as 

{𝑞}2 = {
𝑞1
𝑞3
}                                                                                                                   (7—34) 

where 𝑞1 is the load at node 1 and 𝑞3 is the load at node 3. 

Moreover, the element boundary can be geometrically regarded as a line. Therefore, the 

boundary conditions can be calculated by considering each face as a one-dimensional rod 

element, and the shape functions are 

∅1 =
1−ζ

2
   𝑎𝑛𝑑 ∅2 =

1+ζ

2
                                                                                               (7—35) 

A different notation ∅ rather than 𝑁 is used to highlight that these shape functions are only 

for the boundary. It is the same as the natural co-ordinate ζ instead of 𝜉. 

With the shape functions as shown in equation (7—35) being adopted, the loading vector of 

boundary condition for face 2 becomes 

{𝑞}2 = {
𝑞1
𝑞3
} ≈ ∫ ∅𝜗

1

−1
𝑞𝑐2

𝐿2

2
dζ                                                                                     (7—36) 

where 𝑞𝑐2 = ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏) is the Robin boundary condition applied on face 2, the factor ℎ𝑐 

is the convective coefficient and the temperature  𝑇𝑎𝑚𝑏 is the ambient temperature. 

The length of the boundary surface 𝐿2 can be evaluated as 

{

𝐿1
𝐿2
𝐿3

} = {

√(𝑦3 − 𝑦2)2 + (𝑥3 − 𝑥2)2

√(𝑦3 − 𝑦1)2 + (𝑥3 − 𝑥1)2

√(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2

}                                                                           (7—37) 

Below is an example showing how to calculate the Robin boundary condition for the surface 

2. 
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{𝑞}2 = {
𝑞1
𝑞3
} = ∫ {

1−𝜁

2
1+𝜁

2

}
1

−1
ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏)

𝐿2

2
𝑑𝜁 = ℎ𝑐 ∫ {

1−𝜁

2
1+𝜁

2

}
1

−1
⌊
1−𝜁

2

1+𝜁

2
⌋ {
𝑇1
𝑇3
}
𝐿2

2
𝑑𝜁 −

ℎ𝑐 ∫ {

1−𝜁

2
1+𝜁

2

}
1

−1
𝑇𝑎𝑚𝑏

𝐿2

2
= ℎ𝑐

𝐿2

2
[

2

3

1

3
1

3

2

3

] {
𝑇1
𝑇3
} − ℎ𝑐

𝐿2

2
{
1
1
} 𝑇𝑎𝑚𝑏                                           (7—38) 

As it can be seen in equation (7—38), a direct integration of the heat flux with Robin 

boundary condition results in a 2 by 2 matrix, which is potentially difficult to assembly. An 

alternative way of constructing the boundary conditions for the numerical method is to lump 

the matrix again, which makes it as a vector, for example 

{𝑞}2 = {
𝑞1
𝑞3
} = ∫ {

1−𝜁

2
1+𝜁

2

}
1

−1
𝑞𝑐2

𝐿2

2
𝑑𝜁 =

𝐿2

2
{
1
1
} 𝑞𝑐2 =

𝐿2

2
{
1
1
} ℎ𝑐 (

𝑇1+𝑇3

2
− 𝑇𝑎𝑚𝑏)               (7—39) 

In equation (7—37), the boundary condition 𝑞𝑐2 = ℎ𝑐(𝑇𝑓2 − 𝑇𝑎𝑚𝑏), and 𝑇𝑓2  an average 

temperature for surface 2, i.e. 

𝑇𝑓2 =
1

𝐿2
∫ (

1−ζ

2
𝑇1 +

1+ζ

2
𝑇3)

1

−1

𝐿2

2
𝑑ζ =

𝑇1+𝑇3

2
                                                                   (7—40) 

7.2.4 The loading vector {𝑸̃} 

The loading vector {𝑄̃} is essential to the non-physical source method, since the jump and 

source which relate to the discontinuities are now accounted for in this loading vector. In 

equation (7—8), the term ∫ 𝑁𝜗𝑄̂𝑑𝑉Ωe
 on the LHS of the equation and the term 

(−∫ 𝑁𝜗]𝜌ℎ(𝑣 − 𝑣
× ) ∙ 𝑛[𝑑Γ

Γ𝑖
𝑒 ) on the RHS of the equation require further consideration for 

finite elements. 

According to the definition of non-physical source 𝑄̂ via equation (7—9), a relationship can 

be established as 

∫ 𝑁𝜗𝑄̂𝑑𝑉Ωe
− ∫ 𝑁𝜗]𝜌ℎ𝑣 ∙ 𝑛[𝑑ΓΓ𝑖

𝑒 = ∫ 𝑁𝜗𝜌ℎ𝑣 ∙ 𝑛𝑑ΓΓe
+ ∫ 𝑁𝜗]𝜌ℎ𝑣 ∙ 𝑛[𝑑ΓΓ𝑖

e − ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙Γe

𝑛𝑑Γ − ∫ 𝑁𝜗]𝜌ℎ𝑣 ∙ 𝑛[𝑑ΓΓ𝑖
𝑒 = ∫ 𝑁𝜗𝜌ℎ𝑣 ∙ 𝑛𝑑ΓΓe

− ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙ 𝑛𝑑ΓΓe
                          (7—41) 

Equation (7—41) can be loaded to a finite element system by a 3 × 1 column vector {𝑄̃}
𝑒
. 

It is known that the term ∫ 𝑁𝜗𝜌ℎ𝑣 ∙ 𝑛𝑑ΓΓe
 can be evaluated analytically as a 3 × 1 vector 
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{𝑄𝑓}𝑒
 (the shape functions 𝑁𝜗 can be ignored here, and detailed evaluation is provided later 

in this chapter), and a numerical evaluation can be conducted for ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙ 𝑛𝑑ΓΓe
 once the 

non-physical 𝑐̂ is provided by equation (7—10), and the matrices for this term are given by 

equations (7—27a), (7—27b) and (7—32). Change of the enthalpy due to ∫ 𝑁𝜗𝑐̂𝑇𝑣 ∙ 𝑛𝑑ΓΓe
 

is then numerically evaluated as 

{𝑄𝑛𝑢𝑚}𝑒 = (𝜃[𝐾𝑣
𝑛+1]

𝑒
{𝑇𝑝

𝑛+1}
𝑒
+ (1 − 𝜃)[𝐾𝑣

𝑛]𝑒{𝑇
𝑛}𝑒) + (𝜃[𝐾𝑢𝑝

𝑛+1]
𝑒
{𝑇𝑝

𝑛+1}
𝑒
+ (1 −

𝜃)[𝐾𝑢𝑝
𝑛]
𝑒
{𝑇𝑛})                                                                                                          (7—42) 

Where {𝑄𝑛𝑢𝑚}𝑒  is a 3 × 1 column vector, and {𝑇𝑝
𝑛+1}

𝑒
 is the predicted further time step 

temperature, which are directly returned from updating techniques such as predictor-

corrector method. 

With equation (7—41), equation (7—8) now has only one remaining term to consider which 

is the jump (∫ 𝑁𝜗]𝜌ℎ𝑣
×  ∙ 𝑛[𝑑Γ

Γ𝑖
𝑒 ). This term is tricky for fixed grid FEM. In Tables 5.2 and 

5.3, it can be known that this term returns a single value, which is related to the phase 

interface. However, in the fixed grid FEM, no information about the phase interface can be 

provided from the grid, all values are given to the nodes, simple equal division and 

application to every node of an element is rough, and may cause temperature overflow. 

However, how this single value is distributed to the nodes is hard to establish. One strategy 

which can avoid the establishment of the distribution and the possible temperature overflow 

is to introduce another capacitance as 

𝑐𝑖 =
∫ ∫ ]𝜌ℎ𝑣×∙𝑛[𝑑ΓΓ𝑖

e 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

∫ 𝑇𝑛+1𝑑𝑉Ωe
−∫ 𝑇𝑛𝑑𝑉Ωe

                                                                                               (7—43) 

Then a matrix is constructed in a similar manner as equation (7—18), which is denoted as 

[𝐶𝑖]𝑒, consequently, the jump ∫ ∫ ]𝜌ℎ𝑣× ∙ 𝑛[𝑑Γ
Γ𝑖
e 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
 is treated as 

{𝑄𝑖}𝑒 = [𝐶𝑖]𝑒 ({𝑇𝑝
𝑛+1}

𝑒
− {𝑇𝑛}𝑒)                                                                                 (7—44) 

Finally, the loading vector {𝑄̃} can be evaluated as 

{𝑄̃}
𝑒
= {𝑄𝑓}𝑒

+ {𝑄𝑛𝑢𝑚}𝑒 + {𝑄𝑖}𝑒                                                                                 (7—45) 
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As mentioned, the predicted temperature vector {𝑇𝑝
𝑛+1}

𝑒
 is obtained by the methods such as 

the predictor-corrector method. In a time step, the predictor-corrector method has several 

loops to generate the predicted temperature for future time step. At each loop, the system of 

equations are considered as linear system of equations, and the cooling rate is potentially 

faster than it should be. Because, it is known that the cooling rate for phase change 

solidification is slower than the cooling rate of single phase material if the boundary 

conditions are the same, because latent heat is released when phase changes. Thus, it is 

artificially slowed as below. 

{𝑇𝑝
𝑛+1}

𝑒
= 𝑅{𝑇𝜏−1

𝑛+1}𝑒 + (1 − 𝑅){𝑇𝜏
𝑛+1}𝑒                                                                      (7—46) 

where 𝜏 denotes the 𝜏th loop, and the factor 𝑅 ∈ [0, 1], which adjust the dependence of 

predicted temperature {𝑇𝑝
𝑛+1}

𝑒
 on the temperatures returned from two adjacent loops. 

7.3 The non-physical variable method in triangular elements 

7.3.1 The evaluation of solid fraction 

The evaluation of solid volume fraction for a triangular element is similar to the one-

dimensional case. The element based temperature approximation is applied. For example, in 

the modelling of isothermal solidification, if the nodal temperature of node 1 is less than the 

solidus temperature 𝑇𝑠𝑜𝑙, and the nodal temperatures of node 2 and node 3 are greater than 

𝑇𝑠𝑜𝑙, then the solid domain and liquid domain within the element can be sketched as Figure 

7.3. The solid volume fraction of this element can be approximated as Υ𝑠 ≈ 𝑉𝑠 𝑉𝑒⁄ . In order 

to evaluate the volume 𝑉𝑠, the shaded area is required to be evaluated. This evaluation is 

conducted via the assumptions 𝑓𝑠
1 = (𝑇𝑠𝑜𝑙 − 𝑇1) (𝑇2 − 𝑇1)⁄  and 𝑓𝑠

2 =

(𝑇𝑠𝑜𝑙 − 𝑇1) (𝑇3 − 𝑇1)⁄  as shown in Figure 7.3. 
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Figure 7.3: Solid fraction of an element 

As a consequence, the volume of solid domain can be approximated as 

𝑉𝑠 ≈
1

2
𝑓𝑠
1𝐿2 ∗ 𝑓𝑠

2𝐿3 𝒔𝒊𝒏(𝛽1)                                                                                          (7—47) 

and 

𝑉𝑒 ≈ √𝑃(𝑃 − 𝐿1)(𝑃 − 𝐿2)(𝑃 − 𝐿3)                                                                             (7—48) 

where 𝛽1 is the angle between face 2 and face 3, 𝐿 is the length of face and 𝑃 is the semi-

parimeter. The subscripts 1, 2 and 3 refer to the local face number of element. The evaluation 

of each parameter is shown in Appendix I—(l). 

However, there may be another situation as shown in Figure 7.4. In this situation, the nodal 

temperatures 𝑇1  and 𝑇2  are both less than 𝑇𝑠𝑜𝑙 , but 𝑇3  is greater than 𝑇𝑠𝑜𝑙 . It means the 

portion of element in the solid region is quadrilateral, which makes it difficult to calculate 

the area. The strategy applied is that, the liquid fraction Υ𝑙 can be calculated by evaluating 

𝑓𝑙
1 = (𝑇3 − 𝑇𝑠𝑜𝑙) (𝑇3 − 𝑇1)⁄  and 𝑓𝑙

2 = (𝑇3 − 𝑇𝑠𝑜𝑙) 𝑇3 − 𝑇2⁄ , the solid fraction is then 

calculated with respect to the identity Υ𝑠 = 1 − Υ𝑙 for isothermal solidification. 
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Figure 7.4: Quadrilateral solid region 

7.3.2 The evaluation of enthalpy 

Once the solid/liquid fractions are evaluated, the linkage equation can be recalled to evaluate 

the non-physical enthalpy and the non-physical capacitance. Application of the mixture 

enthalpy 𝜌ℎ = Υ𝑠𝜌𝑠ℎ𝑠 + Υ𝑙𝜌𝑙ℎ𝑙 gives 

∫ 𝜌ℎ
Ω𝑒

𝑑𝑉 = ∫ Υ𝑠𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑒
𝑑𝑉 + ∫ Υ𝑠Ω𝑒

𝜌𝑠 ∫ 𝑐𝑠(𝑇
′)𝑑𝑇 ′𝑇

𝑇𝑠𝑜𝑙
𝑑𝑉 + ∫ Υ𝑙Ω𝑒

𝜌𝑙ℎ𝑠𝑜𝑙𝑑𝑉 +

∫ Υ𝑙𝜌𝑙𝑙Ω𝑒
𝑑𝑉 + ∫ Υ𝑙𝜌𝑙Ω𝑒

∫ 𝑐𝑙(𝑇
′)𝑑𝑇 ′𝑇

𝑇𝑙𝑖𝑞
𝑑𝑉                                                                     (7—49) 

Assuming that the capacitances and the densities are constant, equation (7—49) becomes 

∫ 𝜌ℎ
Ω𝑒

𝑑𝑉 = ∫ Υ𝑠𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑒
𝑑𝑉 + ∫ Υ𝑠Ω𝑒

𝜌𝑠𝑐𝑠(𝑇 − 𝑇𝑠𝑜𝑙)𝑑𝑉 + ∫ Υ𝑙Ω𝑒
𝜌𝑙ℎ𝑠𝑜𝑙𝑑𝑉 +

∫ Υ𝑙𝜌𝑙𝑙Ω𝑒
𝑑𝑉 + ∫ Υ𝑙𝜌𝑙Ω𝑒

𝑐𝑙(𝑇 − 𝑇𝑙𝑖𝑞)𝑑𝑉                                                                         (7—50) 

Computation of equation (7—50) requires the integration of temperature over the solid and 

liquid region, respectively. In the one-dimensional cases, the integrations are conducted 

directly to the interpolated temperatures. For two dimensional and three dimensional 

elements, an averaging strategy provided by Mondragon [139] can be applied. For instance, 

if the situation is the same as Figure 7.3, then 
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∫ Υ𝑠Ω𝑒
𝑇𝑑𝑉 ≈

Υ𝑠𝑉𝑒

3
(𝑇1 + 2𝑇𝑠𝑜𝑙)                                                                                      (7—51) 

and 

∫ Υ𝑠Ω𝑒
𝜌𝑠𝑐𝑠(𝑇 − 𝑇𝑠𝑜𝑙)𝑑𝑉 ≈ 𝜌𝑠𝑐𝑠 [

Υ𝑠𝑉𝑒

3
(𝑇1 + 2𝑇𝑠𝑜𝑙) − Υ𝑠𝑉𝑒𝑇𝑠𝑜𝑙]                                    (7—52) 

Similarly, in the liquid phase 

∫ Υ𝑙Ω𝑒
𝑇𝑑𝑉 ≈

𝑉𝑒

3
(𝑇1 + 𝑇2 + 𝑇3) −

Υ𝑙𝑉𝑒

3
(𝑇1 + 2𝑇𝑙𝑖𝑞)                                                      (7—53) 

and 

∫ Υ𝑙𝜌𝑙Ω𝑒
𝑐𝑙(𝑇 − 𝑇𝑙𝑖𝑞)𝑑𝑉 ≈ 𝜌𝑙𝑐𝑙 [

𝑉𝑒

3
(𝑇1 + 𝑇2 + 𝑇3) −

Υ𝑙𝑉𝑒

3
(𝑇𝑖 + 2𝑇𝑙𝑖𝑞) − Υ𝑙𝑉𝑒𝑇𝑙𝑖𝑞]      (7—54) 

An alternative approach in this project is to conduct direct integrations to the temperatures 

over the finite element domain. Thus equations (7—52) and (7—54) become 

∫ 𝑔𝑠Ω𝑒
(𝑇 − 𝑇𝑠𝑜𝑙)𝑑𝑉 ≈ ∫ ∫ (𝑁1𝑇1 + 𝑁2𝑇2 + 𝑁3𝑇3 − 𝑇𝑠𝑜𝑙)|[𝐽]|

𝑓𝑠
2(1−𝜂)

0

𝑓𝑠
1

0
𝑑𝜉𝑑𝜂 =

|[𝐽]|𝑓𝑠
1𝑓𝑠

2

6
(6𝑇1 − 6𝑇𝑠𝑜𝑙 + 2𝑇1𝑓𝑠

22 − 2𝑇3𝑓𝑠
22 − 3𝑇1𝑓𝑠

1 − 6𝑇1𝑓𝑠
2 + 3𝑇2𝑓𝑠

1 + 3𝑇3𝑓𝑠
1 +

3𝑇𝑠𝑜𝑙𝑓𝑠
2 + 3𝑇1𝑓𝑠

1𝑓𝑠
2 − 3𝑇2𝑓𝑠

1𝑓𝑠
2 − 𝑇1𝑓𝑠

1(𝑓𝑠
2)2 + 𝑇2𝑓𝑠

1(𝑓𝑠
2)2)                                      (7—55) 

and 

∫ 𝑔𝑙(𝑇 − 𝑇𝑙𝑖𝑞)Ω𝑒
𝑑𝑉 ≈ ∫ ∫ (𝑁1𝑇1 + 𝑁2𝑇2 + 𝑁3𝑇3)|[𝐽]|

1−𝜂

0

1

0
𝑑𝜉𝑑𝜂 − ∫ ∫ (𝑁1𝑇1 +

𝑓𝑠
2(1−𝜂)

0

𝑓𝑠
1

0

𝑁2𝑇2 + 𝑁3𝑇3 − 𝑇𝑠𝑜𝑙)|[𝐽]| 𝑑𝜉𝑑𝜂 =
|[𝐽]|

6
(𝑇1 + 𝑇2 + 𝑇3) − ∫ 𝑔𝑠Ω𝑒

(𝑇 − 𝑇𝑠𝑜𝑙)𝑑𝑉             (7—56) 

7.3.3 The advection and the non-physical source 

In chapter 6, results of numerical experiment show that, there is an incompatibility issue 

between the variable non-physical capacitance and the upwind Petrov-Galerkin method. 

Nevertheless, numerical instability arises from the advection and thus requires a stability 

technique such as upwind method. The new non-physical variable method removes the 

discontinuity from the advection term, and the discontinuity related to the advection is now 

accounted for by the non-physical source 𝑄̂ . The evaluation of non-physical source 𝑄̂ 

requires the analytical evaluation for the physical advection. 
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Figure 7.5: Areas swept by the elemental boundaries with velocity 𝑣 

Figure 7.5 shows the area swept by each surface of the element due to material motion, and 

the angle of the velocity is denoted as 𝜑 . Different colours are used to distinguish the 

components of 𝑣 on x-direction and y-direction. The areas are marked with the same colour 

as their related components. The shape of swept area is rectangle. As a consequence, 

different shape functions have to be used to evaluate the enthalpy change due to advection 

in the solidification problem. The shape functions are 

{𝑁̃} = {
(1−𝜉)(1−𝜂)

4

(1+𝜉)(1−𝜂)

4

(1+𝜉)(1+𝜂)

4

(1−𝜉)(1+𝜂)

4
}                                              (7—57) 

In a rectangular CV, the interface of solid and liquid may exist in three different situations. 

The sketches of these situations are presented in Figure 7.6. The shaded area is the solid 

region and the blank area is the liquid region. The evaluation of the solid/volume fraction in 

the swept area can be conducted through the calculation of the shaded triangle or the 

trapezium. Their lengths of sides are approximated by the temperature, which is similar to 

the triangular element as mentioned in section 7.3.1. 
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Figure 7.6: Solid volume fraction in the swept area 

Thus, the enthalpy in the swept region Ω𝑓 can be calculated as 

∫ 𝜌ℎ
Ω𝑓

𝑑𝑉 = ∫ ∫ 𝑔𝑠
𝑓
𝜌𝑠ℎ𝑠𝑜𝑙 + 𝑔𝑠

𝑓
𝜌𝑠𝑐𝑠(𝑇̃𝑓 −

1

−1
𝑇𝑠𝑜𝑙)

1

−1
+ 𝑔𝑙

𝑓
𝜌𝑙ℎ𝑠𝑜𝑙 + 𝑔𝑙𝜌𝑙𝑙 + 𝑔𝑙𝜌𝑙𝑐𝑙(𝑇̃𝑓 −

𝑇𝑙𝑖𝑞)|[𝐽]|𝑑𝜉𝑑𝜂                                                                                                                (7—58) 

where 

𝑇̃𝑓 = 𝑁̃1𝑇1
𝑛 + 𝑁̃2𝑇2

𝑛 + 𝑁̃3𝑇1
𝑛+1 + 𝑁̃4𝑇2

𝑛+1                                                                    (7—59) 

and [𝐽] is the Jacobian matrix for the rectangle, which is expressed as 

[𝐽] = [

(𝑥2−𝑥2
𝑓
)(1+𝜂)

4
+
(𝑥1−𝑥1

𝑓
)∗(1−𝜂)

4

(𝑦2−𝑦2
𝑓
)(1+𝜂)

4
+
(𝑦1−𝑦1

𝑓
)∗(1−𝜂)

4

(𝑥2−𝑥1)(1+𝜉)

4
+
(𝑥2
𝑓
−𝑥1

𝑓
)(1−𝜉)

4

(𝑦2−𝑦1)(1+𝜉)

4
+
(𝑦2
𝑓
−𝑦1

𝑓
)(1−𝜉)

4

]                             (7—60) 

It should be noticed that the rectangular swept areas do not really exist in the finite element 

meshes. They are created just to evaluate analytically the enthalpy change for the triangular 

element according to advection. As a matter of fact, the co-ordinates (𝑥1
𝑓
, 𝑦1

𝑓
) and (𝑥2

𝑓
, 𝑦2

𝑓
) 

do not exist as well. They are related to the real co-ordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2), the velocity 

and the time increment. Moreover, the situations of the interface as shown in Figure 7.6 and 

equations from the (7—55) to (7—57) are examples according to surface 3. In practice, 
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according to the cooling rate and the direction of heat flow, the order of nodes may change. 

Thus, there are more combinations, but the evaluations follow the same approach as 

mentioned. 

7.4 The numerical experiments 

7.4.1 Updating procedure 

Simulation of isothermal solidification using non-physical variable method in 2D requires 

an update procedure. Assuming that the temperature of the present time {𝑇𝑛} step is known, 

with given material properties, boundary conditions and initial conditions, the steps below 

are generally followed. 

(1) Obtain the predicted temperature of the future time step, which is denoted as {𝑇𝑝
𝑛+1}. 

The approach can be the techniques such as explicit method, the predictor-corrector 

method, etc.; 

(2) Obtain element liquid fraction Υ𝑙 or element solid fraction Υ𝑠 as described in section 

7.3.1; 

(3) Evaluate each term appearing in equations (7—33) with the temperature {𝑇𝑛} , 

{𝑇𝑝
𝑛+1} and element solid fraction Υ𝑠 as described in section 7.3.2; 

(4) Evaluate the non-physical vector {𝑄̃} as described in sections 7.2.4 and 7.3.3; 

(5) Construct coefficient matrices and loading vectors via section 7.2.2; 

(6) Solve the system of equations in equation (7—33) and obtain {𝑇𝑛+1}; 

(7) If {𝑇𝑛+1} satisfies the error criteria, go to the next time step, i.e. {𝑇𝑛+1} → {𝑇𝑛}; if 

not {𝑇𝑛+1} → {𝑇𝑝
𝑛+1}, go through (1) to (7) again at the current time step. 

In order to examine the feasibility of non-physical variable method in 2D, three groups of 

numerical experiments are provided. The geometries of the modelling are different. In the 

first group, the model is a long and thin tube. The boundary conditions are set identical to 

the one dimensional study illustrated in chapter 6. This makes it comparable with the 

analytical solution and the existing numerical method. In the second group, the geometry is 

modelled as a square, and it is used to examine the performance of method with off-axis 

material velocity. In the third group, the geometry is a rectangle and more practical BCs are 

applied. Details of the numerical experiments are described as follows. 
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7.4.2 The numerical experiments, results and comments 

Although different geometries and BCs are designed for the three groups of tests, some 

settings are commonly applied to all the three groups. For example, thermal dynamic 

properties of pure zinc are adopted in the modelling; the solidus temperature and liquidus 

temperature are equal to each other, i.e.𝑇𝑠𝑜𝑙 = 𝑇𝑙𝑖𝑞 = 400℃ ; and the solidification is 

isothermal. In addition, the initial temperature 𝑇𝑖𝑛𝑖𝑡 is 405 ℃ and the ambient temperature 

𝑇𝑎𝑚𝑏 is 25 ℃.  

7.4.2.1 Numerical experiment 1 

In the first numerical experiment, the geometry is modelled as shown in Figure 7.7. The BCs 

are applied identically to the 1D numerical experiment in chapter 6. This setting makes it 

comparable with the existing numerical method such as the CVCM [66]. The material 

velocity is considered as the most important aspect of the project, thus different magnitudes 

of material velocity are set in the experiment. Detailed settings can be seen in Table 7.1. 

Moreover, with the modelling of advection, both solid and liquid move. It is assumed here 

that the difference between the velocity of solid 𝑣𝑠 and the velocity of liquid 𝑣𝑙 are relatively 

small, i.e. 𝑣𝑠 = 𝑣𝑙. 

Magnitude Direction 

‖𝑣‖ = 0.0001 𝑚/𝑠 𝜑 = 180° 

‖𝑣‖ = 0.0005 𝑚/𝑠 𝜑 = 180° 

‖𝑣‖ = 0.001 𝑚/𝑠 𝜑 = 180° 

Table 7.1: Material velocities for TEST 1 
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Figure 7.7: Sketch of solidifying model for experiment 1 

 

Figure 7.8: Nodal temperature provided by the non-physical capacitance method 

Figure 7.8 illustrates the change of nodal temperature of node 5 which is provided by the 

non-physical capacitance method. Recall the concepts of the non-physical enthalpy and the 

non-physical source term as displayed in Figure 7.10, which is shown in Figure 7.8 again for 

convenience. The non-physical capacitance belongs to the concept (a) in Figure 7.9, in which 

the discontinuities exist on the boundary of element. In the experiment with 40 triangular 

elements, result shows that when the material velocity is low, e.g.  

‖𝑣‖ = 0.0001 𝑚/𝑠 and ‖𝑣‖ = 0.0005 𝑚/𝑠, the results in 2D agree well with the results in 

1D. However, when the material velocity is high, e.g. ‖𝑣‖ = 0.001 𝑚/𝑠,  inaccuracy arises. 

The reason is believed as the incompatibility between the rapid changing non-physical 

capacitance and the advection term.  

 

Figure 7.9: Concepts of non-physical enthalpy and source 
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It is known that the construction of Petrov-Galerkin weighting equations requires the 

element Peclèt number, and is further dependent on the capacitance. In the non-physical 

capacitance method, the significant change of capacitance of the element under phase change 

results in a different level of upwind than the continuous elements, this may provide 

inaccurate results, e.g. the history of temperature when 𝑣 = −0.001 𝑚/𝑠 in Figure 7.8.  The 

new non-physical variable method provided in chapter 5 was confirmed by numerical 

experiments that it effectively solves the incompatibility issue. However, the two-

dimensional modelling is more complicated than the one-dimensional modelling. For 

example, the nodes of one-dimensional element are also the boundary of the element, so the 

analytical advection is evaluated from the boundary assigned to the node. This feature of 

one-dimensional elements allows the consistency to be satisfied with analytical advection. 

Nevertheless, Figure 7.2 shows that the node and face are different, and the inconsistency 

may arise from the assignment of analytical advection from elemental face to the elemental 

node. 

Figure 7.10 shows the results provided by the new non-physical variable method, in which 

the concept (c) is applied. In other words, the removal of discontinuity procedure makes the 

non-physical capacitance for advective term to be almost continuous, and it is now 

compatible with the Petrov-Galerkin method. In Figure 7.10, the results agree well with the 

CVCM and it is also stable for high material velocity, i.e. ‖𝑣‖ = 0.001 𝑚/𝑠. 

 

Figure 7.10: Nodal temperature provided by the new non-physical variable method, NELS=40 
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Moreover, it also can be seen that undulation exists in the change of nodal temperature from 

both figures. However, the author believes it arises from the rapid change of non-physical 

capacitance in the temporal term. And this can be removed by refining the mesh. One 

example can be seen in Figure 7.11 that, when the number of elements is increased from 40 

to 200, the undulation disappears. 

 

Figure 7.11: Nodal temperature provided by the new non-physical variable method, NELS=200 

The numerical experiments also show that the increase of mesh density cannot be applied 

for the non-physical capacitance method (i.e. concept (a)) because the incompatibility 

between the non-physical capacitance and the advection term becomes more severe when 

the mesh density is increased. As to the non-physical variable method (i.e. concepts (c)), a 

relaxation factor 𝑅 ∈ [0, 1]  is required to prevent the inconsistency and temperature 

overflow. Normally, greater mesh density requires higher relaxation factor. In the two 

simulations, the factor 𝑅 = 0.7. 

7.4.2.2 Numerical experiment 2 

In this experiment, a 0.1 𝑚 × 0.1 𝑚 square plate is modelled. The thermodynamic material 

properties of the plate are exactly the same as those applied in the previous experiments, 

which can be seen in Table 4.9. The initial temperature is 405 ℃  and the ambient 

temperature is 25 ℃ . The Robin boundary condition is applied on the bottom and left 

boundaries of the plate, and the other two boundaries are isolated. The off-axis material 

velocity is assigned in this experiment, magnitude of which is 0.001 𝑚/𝑠 and angle is 210°. 
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This configuration of material property gives the component of velocity on x-direction 𝑣𝑥𝑥 =

−0.00086 𝑚/𝑠and the component of velocity on y-direction 𝑣𝑦𝑦 = −0.0005 𝑚/𝑠 . The 

purposes of conducting this experiment are, firstly, to exam the feasibility and stability of 

non-physical variable methods when complex boundary conditions and off-axis material 

velocity are applied; secondly, to see the effect of the off-axis material velocity on the 

cooling rate in different directions of the model; and thirdly, to display the ability of front 

tracking by temperature in 2D. A sketch of a model is drawn in Figure 7.12. The model is 

discretised into 5000 linear triangular elements, which generate 2601 nodes. The mesh is 

plotted in Figure 7.13, which also displays the example node numbers chosen for results 

collection. 

 

 

Figure 7.12: Sketch of solidifying model for TEST 2 
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Figure 7.13: Mesh of square plate 

 

Figure 7.14: Comparison of temperature profile between the non-physical capacitance method and 

the non-physical variable method 

Figure 7.14 illustrates results from the non-physical capacitance method. The results are 

compared against the results from the non-physical variable method. It can be seen in Figure 

7.14 that, results returned from both strategies agree well for all picked example nodes. 
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However, this good agreement relies on the relaxation factor applied on the non-physical 

source. In the simulation, the relaxation factor is set as 𝑅 = 0.5. 

Figure 7.15 presents the phase front position which is visualised by the software ParaView. 

It can read files in the Visualisation Tool Kit (VTK) format, which are directly created by 

the self-made programme. The examples are captured at time 7.44 seconds, 14.94 seconds, 

22.44 seconds and 29.94 seconds respectively. The phase front is plotted with the assumption 

that the temperature of the interface is the solidus temperature, e.g. 400 ℃. In Figure 7.15, 

the contour plotted by the combination strategy is smoother than the non-physical 

capacitance method. 



Chapter 7: 7.5 Summary     191 
 

 

Figure 7.15: Phase front tracked by temperature 
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7.4.2.3 Numerical experiment 3 

In the third numerical experiment, a more practical simulation is considered, which refers to 

continuous casting. A sketch of a continuous casting is presented as Figure 7.16.  

 

Figure 7.16: The Continuous casting machine [140] 

In the simulation, the model is simplified as two components, the entry nozzle and the mould. 

The geometry of the model is a 0.1 m by 0.05 m rectangle. The area marked in red is assumed 

as the nozzle, and the area marked in blue is the mould as shown in Figure 7.16. It is assumed 

that the model is only in thermal contact with the environment on the surface of the mould, 

thus these are the places where the Robin BCs apply. The nozzle is assumed thermal isolated. 

The molten material (i.e. Zinc) flows in from the left surface of the rectangle and the material 

is then flowing out from the right end of the model. It is also assumed that, the model is filled 

with molten material initially. Although this model is simple, it shows the ability to deal with 

the isothermal solidification with advection-diffusion. 
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Figure 7.17: The simplified model 

 

 

Figure 7.18: Mesh of simplified model 

The geometry of the simplified model is shown in Figure 7.18. It is meshed with 2500 linear 

triangular elements. The total time for the cooling process is 40 seconds, with 0.05 seconds 

time step and 800 time steps. The Robin boundary condition with forced convective term 

ℎ𝑐  = 4800 𝑊/𝑚2℃ is applied to the surfaces which is highlighted with thick lines. The 

material velocity in the simulations is set to be ‖𝑣‖ = 0.001 𝑚/𝑠 and ‖𝑣‖ = 0.0001 𝑚/𝑠 

respectively. And the angle of velocity 𝜑 is always 180°. 
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Figure 7.19 is the history of temperature recorded at the co-ordinate (0.02 m, 0.018m). It can 

be seen that increasing of material velocity reduces the cooling time for the material in the 

mould. Consequently, the energy state of the numerical model is higher. This phenomenon 

is already confirmed in the one-dimensional simulation, which can be used to control the 

cooling rate in the continuous casting, and the temperature of the leaving solidified material. 

 

Figure 7.19: History of temperature, node number = 419 

Figure 7.20 is the history of temperature recorded at the co-ordinate (0.044 m, 0.018 m), 

which is 0.024 m away from the first example node in the x direction. This example 

temperature profile shows that the influence of material velocity in the continuous casting 

simulation is consistent for all points of the model, showing evidence of stability. 

 

Figure 7.20: History of temperature, node number = 431 
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In Figure 7.21, some features of continuous casting can be seen, i.e. the solidifying shell, the 

liquid pool and the metallurgic length. The size of the model is very small if compared with 

a real continuous casting mould, i.e. this model is only 0.05 metres long while the length of 

a real casting mould is between 0.5 metres to 1.2 metres. It makes the material in the mould 

solidify fast and it results in a “cold shut” (the solidified material blocks the nozzle) when 

the material velocity is 0.0001 𝑚/𝑠 and the forced convective coefficient is 4800 𝑊/𝑚2℃. 

It means that the cooling rate is too high for this model. Reference [136] introduces several 

factors that have effects on the cooling rate of continuous casting mould, including the flow-

rate of cooling water, the type of mould lubricant, the material composition and the casting 

speed. In this numerical simulation, the flow-rate of cooling water is reflected by the forced 

convective term, the casting speed is considered identical to the material velocity. When the 

material velocity is increased to 0.001 𝑚/𝑠, but the forced convective coefficient stays at 

4800 𝑊/𝑚2℃, the status of continuous casting for time 7.44 sec, 14.94 sec, 22.44 sec and 

39.94 sec are shown on the left of Figure 7.21. It can be seen that increasing the velocity 

alone is not sufficient enough to prevent the “cold shut”. Thus, on the right side of Figure 

7.21, the new simulation reduces the forced convective coefficient to 1000 𝑊/𝑚2℃ (this 

operation can be achieved by adjusting the flow rate of cooling water in practice). It shows 

that the metallurgical length is long enough for material to flow out of the mould.  
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Figure 7.21: Simulation of a continuous casting mould by Non-physical variable method 

7.4.2.4 Execution time 

The Execution time of programme is dependent on four factors, which are the specification 

of the computer, the number of elements/nodes, the number of time steps and the number of 

iterations. Table 7.2 presents three computers on which, the programme is executed. In the 

numerical experiments, the total number of time steps is always 800, and the total number 
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of iterations is constantly 50, thus, comparisons can be conducted through different mesh 

densities, which are shown in Table 7.3. 

Hardware Low specification Medium specification High Specification 

CPU 
Intel(R) Core(TM) i5 

1.60 ~ 2.26GHz 

Intel(R) Core(TM) i7 

1st Generation 2.80GHz 

Intel(R) Core(TM) 

i7 2nd Generation 

3.50GHz 

RAM 
DDR3 1600MHz 

4GB 

DDR3 1333MHz     

4GB 

DDR3 1600MHz 

8GB 

Hard drive SSD 256 GB 
SATA HHD 500 GB 

7200 rpm 
SSD 256 GB 

Operating 

System 

Microsoft Windows 

8.1 64-bit 

Microsoft Windows 7 

Enterprise SP1-64 bit 

Microsoft Windows 

8.1 64-bit 

Table 7.2: Specifications of test computer 

SPEC.                   Low___    _____                Medium____   ___                High__________ 

NELS 200 2500 5000 200 2500 5000 200 2500 5000 

Time 

(HH:MM:SS) 

00:02:59 02:40:26 15:34:55 00:03:56 02:13:39 10:49:55 00:01:49 01:24:12 07:16:36 

CPU (%) ~51.1 ~47.0 ~45.8 ~48 ~41 ~35 ~57.1 ~51.3 ~42.2 

RAM (MB) ~18.4 ~138 ~378.7 ~21.0 ~144.2 ~445.6 ~18.8 ~138.9 ~381.8 

Table 7.3: Execution time, CPU and memory usages 

7.5 Summary 

In summary, the chapter 7 extends the application of non-physical variable method into 

two-dimension. However, in this process, there are three major difficulties including: 

(1) The implementation of Petrov-Galerkin finite element method into two-dimensional 

linear triangular element; 



Chapter 7: 7.5 Summary     198 
 

(2) The evaluation of enthalpy and solid volume fraction on the base triangular element; 

(3) The analytical evaluation of advective term. 

The first difficulty is overcome by equations (7—28a) and (7—28b), which makes the 

Petrov-Galerkin element applicable for all elements as long as the shape functions are known. 

The second difficulty is overcome by the element-based temperature approximations, which 

evaluates the solid volume fraction and further evaluate the specific enthalpy. For the last 

difficulty, the physical advection is analytically evaluated by the addition volume swept by 

the element surface with material velocity. The additional volumes are generated with 

respect to the components with material velocity in the x and y directions. This strategy 

promises that the addition volume generated is always a square in geometry, and it makes 

the simulation simpler as fewer situations are required to be considered. 

This chapter also provides three groups of tests. In the first group, the geometry of the model 

is a long and thin slab, which makes the results comparable with one-dimensional simulation. 

Though an exact solution with advection and transient phase change is difficult to obtain, 

the results returned in this group of tests are compared with the classic CVCM [66]. The 

second group of tests, the off-axis material velocity is applied. The simulation is conducted 

on the base of a square. The comparison between the non-physical capacitance method and 

the non-physical variable method shows good agreement in results. However, it also shows 

that relaxation is required if the non-physical source is involved. In the final group, a 

continuous caster is simplified. The simulations present many features of the continuous 

casting process, such as solidifying shell, liquid pool and metallurgical length. Moreover, 

based on the theory of continuous casting [136], the “cold shut” is solved by increasing the 

material velocity and reducing the forced convective coefficient. 
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Chapter 8 Conclusion and Future 

Work 

8.1 General 

This project aims to establish an effective numerical methodology for phase change problem. 

The concept underpinning this project is to define several non-physical variables through 

weak forms of transport equations, which helps to adjust the distributions of discontinuities 

in the governing transport equations. This concept can in principle be applied to various 

discontinuous problems, such as shock propagation and fluid flow through porous medium. 

Particularly, this project focuses on the isothermal solidification, which is a typical Stefan 

problem.  

In chapter 2, a literature review is conducted to better understand the theory related to the 

project, such as the establishment of a mathematical model for solidification, which includes 

the governing equation of energy, the initial condition, the boundary conditions and the 

Stefan condition. A review of an enrichment scheme for solidification modelling is provided. 

This enrichment scheme is a representative front-tracking method, which uses XFEM but  is 

limited to one-dimension. This project is founded on the recently discovered non-physical 

enthalpy method. Following the review of references [62-63], it is shown in Chapter 2 how 

the non-physical method can be further extended by considering the following aspects. First 

of all, the possibility that the weighting functions may vary with movement of the control 

volume. Secondly, the application of a non-physical source as a source term in the finite 

element method. Thirdly, to situations where advection is involved, i.e. when the material 

velocity is non-zero. 

In chapters 3 and 4, a series of studies, which followed the control volume capacitance 

method (CVCM) [66] and the weak non-physical enthalpy method [62-63, 139], was 

provided to solve the problem of isothermal solidification. These two chapters provided 

alternative solution methods to the existing CVCM and non-physical enthalpy method. The 

study in chapter 3 indicates that information about the liquid volume fraction is essential to 

the non-physical enthalpy method, especially when the non-physical source term is adopted 
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to capture the discontinuity, as different approximations of liquid volume fraction that 

control the behaviour of non-physical variables can be seen in this chapter. It is also indicated 

in chapter 4 that when advection is involved in the evaluation of non-physical capacitance, 

it may result in an instability problem because negative capacitance may be generated. In 

order to solve this problem, a new definition of non-physical enthalpy was defined through 

energy conservation equation in chapter 5. The advective term is isolated from the temporal 

term, which helps to prevent the negative capacitance. Chapter 6 provided three concepts 

which illustrated how the discontinuities distribute in the non-physical capacitance and non-

physical source. In the three concepts, concept (a) account the discontinuities in the change 

of enthalpy of an element, e.g. the non-physical capacitance method; concept (b) is that the 

discontinuities are completely annihilated in the enthalpy and re-applied to the system as a 

source, e.g. the non-physical enthalpy method; concept (c) is the new definition of non-

physical variables, in which the non-physical jump ℎ̂′ is established to facilitate the removal 

of discontinuity from the volumetric domain, while the non-physical source 𝑄̂ is designed to 

account for the discontinuity related to advection. The one-dimensional study in chapter 6 

was then extended into two-dimensional study in chapter 7, and the stability and feasibility 

of non-physical variable method were verified. 

8.2 Contributions 

This project provides the new definition of non-physical variable method, and studies the 

distribution of discontinuities within the non-physical variables. Application of non-physical 

variable method together with the upwind Petrov-Galerkin method breaks the limitation of 

the CVCM and non-physical enthalpy method to the advection-diffusion problem. It also 

illustrates the implementation of non-physical variable method into the finite element 

method in detail, which includes: 

(1) The temporal and spatial discretization of governing equation, which involves the 

non-physical variables. The Galerkin weighted residual method is applied for one-

dimensional and two dimensional studies, the advection is discretised by the Petrov-

Galerkin method if required; 

(2) The evaluation of solid/liquid volume fraction via element-based temperature 

fraction. The effects of solid/liquid volume fraction to the non-physical variables are 

studied;
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(3)  

(4) The evaluations of non-physical variables and the influence of approximation and 

updating procedure on the performance of non-physical variable method.  

(5) Most importantly, it describes how the non-physical source is applied to maintain the 

energy conservation, which is not very clear in reference [62-63, 139].  

Both the non-physical capacitance method and non-physical source method are applied to 

the stationary (material velocity ‖𝑣‖ = 0 𝑚/𝑠 ) isothermal solidification. Different 

configuration of mesh density, matrix format and temporal approximation are examined by 

the numerical experiments. For the example node positioned at 𝑥 = 0.03 𝑚 , the non-

physical capacitance method achieves its most accurate simulation with maximum 

percentage error only 1.16 %, and the classic non-physical enthalpy method achieves its 

most accurate simulation with maximum percentage error of only 0.79%. In chapters 6 and 

7, the numerical experiments show that, the new non-physical variable method performs 

well with material velocity in different magnitudes and in different directions. This stable 

performance also persists in two-dimensional simulation. The non-physical variable method 

is now able to solve the solidification problem with advection-diffusion. In the two-

dimensional simulation, it also shows the possibility of tracking the phase front via 

temperature approximation. 

8.3 Limitations 

The study of non-physical variable method requires the knowledge of solidification, heat 

transfer, numerical method and advanced mathematics. Restricted by the author’s 

knowledge, this study has some limitations. 

First of all, the exact solution of solidification problem with advection-diffusion cannot be 

established, which makes the accuracy of non-physical variable method cannot be examined. 

Though the results provided by the non-physical variable method is compared with the 

CVCM, however, it only confirms the stability of the new method and it is hard to determine 

which method is more accurate.  

Secondly, this study evaluates the non-physical source analytically. The element-based 

temperature approximation may not be precise enough for the evaluation of the non-physical 

source. Moreover, the assignment of non-physical source to the FEM is not well considered.
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 For example, once the non-physical source is evaluated on the base of an element, its 

assignment is only conducted by the average approach. This may give rise to the numerical 

temperature “overflow” (nodal temperature may be greater than the initial temperature, 

which is wrong for a cooling process), thus the author had to use a relaxation factor to prevent 

it. But there is no clear mathematical formulation for the evaluation of relaxation factor, and 

it is only measured through experiments.  

Thirdly, this study offers three updating methods, the predictor-corrector method, the secant 

method and the homotopy method, to calculate future time-step temperature and update the 

material properties. It also offers three solution methods, the successive under-relaxation 

method, the Gauss-Jordan elimination method and the LU decomposition method to solve 

the linear system of equations. However, due to the time constraints, there is not enough time 

to refine the program to improve the time efficiency and accuracy.  

Finally, the study is conducted based on some assumptions. For example, the thermodynamic 

material properties of each phase are assumed constant; the material velocity of solid and 

the material velocity of liquid are assumed equal, i.e. ‖𝑣𝑠‖ = ‖𝑣𝑙‖; And the solidification is 

isothermal. However, these assumptions may not be met in the alloy solidification. The non-

physical variable method is only able to simulate macro-solidification, since only one 

governing equation (i.e. the energy conservation equation) is involved. Thus, caution should 

be taken when using these methods. 

8.4 Possible further research 

The research described in this thesis breaks the limitation of the CVCM due to the generation 

of negative capacitance. It also refines the concept of non-physical enthalpy method and 

provides a new definition for it. Although this thesis has these advantages, this research give 

rise to more questions that needs further exploration. 

First of all, in the non-physical variable method, the removal of the discontinuities from the 

governing equation will absolutely generate a non-physical source term. The averaging 

technique adopted in this research arises overflow issues, and it requires relaxation. Thus the 

distribution of non-physical source to each node of an element requires further study. A 

point-based approximation of solid/liquid volume fraction may solve this problem, but its 

implementation to the FEM needs to be developed.
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As to the solid/liquid volume fraction, this research utilises the temperature approximation, 

which leads to a cumulative solid volume fraction. When implemented with the non-physical 

variable method, it generates a significant peak in the change of non-physical capacitance 

and non-physical source. This peak increases the possibility that the instability occurs. In the 

comparison with analytical solutions, the author found that the evaluation of solid/liquid 

fraction through the position of phase front gives almost constant increasing rate of solid 

volume fraction. And this prevents the generation of the peak. In the author’s point of view, 

the non-physical variable method can be developed as a fixed grid front tracking method, 

which may fulfil the potential of non-physical variable method. 

Secondly, the research is based on isothermal solidification, which is the pure material 

solidification in practice. Alloy solidification requires the study on the mushy zone 

solidification, which has multiple phase fronts. The ground theory can be easily developed 

from this thesis. However, the implementation of it to the FEM is more challenging. 

Thirdly, this research provides the governing equation with respect to the jump ℎ̂′. This term 

is not directly applied to the solution procedure. A simultaneous solution of the non-physical 

governing equation, the linkage equation and the source equation may avoid the troublesome 

updating process for solid/liquid fraction. 

Moreover, this research solves the governing equation of energy conservation alone. 

However, the non-physical concept can be applied to all mass conservation equation, the 

momentum conservation equation and the concentration conservation equation as well. The 

application of non-physical variable method to these equations and solve them 

simultaneously may provide greater insight. 

In the end, the accuracy of results provided by the non-physical variable method is required 

to be determined, especially when advection is involved and it is in two dimensions. 

8.5 Implications for further research 

This thesis presents detailed derivations of non-physical variables in mathematics, which 

helps to understand how this new methodology is established. The complicated equations 

may be hard to comprehend, thus the author uses the prescribed temperature profile from the 

exact solution to illustrate how these non-physical variables behave in the numerical method. 

This analysis provided in chapter 3 also highlights the crucial relationship between the 
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liquid/solid volume fraction and the non-physical variables, which may be an important 

direction in the further study. 

Examples of application of non-physical variable method to both one-dimensional modelling 

and two-dimensional modelling are illustrated. The programme is updated to the latest 

format in Fortran. It provides alternative updating techniques, such as predictor corrector 

method, the secant method and the homotopy method, and also provides multiple solution 

methods as seen in Chapter 4. Rather than an unknown “black box”, the programme has 

better data input and output. Through input file, the researcher can change mesh density, 

time step information, material properties, etc., which helps to comprehensively examine the 

method. The output function includes the use of CSV file format, which is readable for 

Microsoft Excel and Wolfram Mathematica. Data such as temperature, enthalpy, non-

physical capacitance and non-physical source can be output and documented in the CSV, 

which helps the user to check and identify the problem. It also enables visualisation through 

VTK file formats; both static picture and dynamic animation can be created for two-

dimensional modelling.  

It is believed that this thesis provides a good grounding study on the non-physical variable 

method. The derivations of non-physical variables and the studies of their behaviour provide 

new insights for researchers to better develop this theory and implement it into practical 

application. The programme is well constructed which allow researchers to modify and 

verify their ideas. Therefore, the theory and the programmes illustrated in this thesis can be 

adopted for further study. 
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Appendix I 

(a) The analytical solution (2—7) 

Considering a one-dimensional semi-infinite slab, 0 ≤ 𝑥 < ∞. The material is initially all 

liquid with a constant temperature 𝑇𝑖𝑛𝑖𝑡 > 𝑇𝑠𝑜𝑙 , where 𝑇𝑠𝑜𝑙  is the solidus temperature. At 

𝑥 = 0, Newton’s Law of cooling is applied, i.e. 𝑘𝑠𝜕𝑇 𝜕𝑥⁄ = ℎ𝑐(𝑇 − 𝑇𝑎𝑚𝑏), where ℎ𝑐 is the 

forced convective heat transfer coefficient, 𝑇 is the surface temperature, and 𝑇𝑎𝑚𝑏  is the 

ambient temperature. The density of the model is assumed to be constant. The parameters 𝑐 

and 𝑘 denote the capacitance and thermal conductivity respectively, and the sub-script 𝑠 and 

𝑙 refer to the solid phase and liquid phase respectively. 

The problem is governed by the first law of thermodynamics. The governing equation is a 

parabolic PDE which is applied in different phases as 

𝜕𝑇

𝜕𝑡
= 𝛼𝑠

𝜕2𝑇

𝜕𝑥2
         𝑖𝑓    0 ≤ 𝑥 < 𝑋𝑖(𝑡)                                                                               (I—1) 

for the solid phase, 

𝜕𝑇

𝜕𝑡
= 𝛼𝑙

𝜕2𝑇

𝜕𝑥2
        𝑖𝑓     𝑥 > 𝑋𝑖(𝑡)                                                                                       (I—2) 

for the liquid phase, where 𝛼𝑠 = 𝑘𝑠 (𝜌𝑠𝑐𝑠)⁄  and 𝛼𝑙 = 𝑘𝑙 (𝜌𝑙𝑐𝑙)⁄  are the thermal diffusivity 

of solid phase and liquid phase, respectively. 

The solution of equations (I—1) and (I—2) requires the boundary conditions, for which, 

Robin boundary conditions is applied as 

𝑘𝑠
𝜕𝑇

𝜕𝑥
|
𝑥=0

= ℎ𝑐(𝑇(0, 𝑡) − 𝑇𝑎𝑚𝑏)      𝑤ℎ𝑒𝑛   𝑥 = 0, 𝑡 > 0                                             (I—3a) 

This is a phase change problem. The moving front is governed by the Stefan condition, which 

is 

𝐿
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= −𝑘𝑠

𝜕𝑇(𝑋𝑖(𝑡),𝑡)

𝜕𝑥
+ 𝑘𝑙

𝜕𝑇(𝑋𝑖(𝑡),𝑡)

𝜕𝑥
                                                                         (I—3b) 

where 𝐿 is the latent heat of fusion, and 𝑋𝑖(𝑡) is the phase interface position. 

Its relative boundary condition of the phase interface is 
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𝑇((𝑋𝑖(𝑡), 𝑡) = 𝑇𝑠𝑜𝑙                         𝑤ℎ𝑒𝑛    𝑥 = 𝑋𝑖(𝑡), 𝑡 > 0                                           (I—3c) 

Moreover, since this is a transient state problem, the initial condition as shown in equation 

(3—5d) is needed to initiate the problem. 

𝑇(𝑥, 𝑡) = 𝑇𝑖𝑛𝑖𝑡                                      𝑤ℎ𝑒𝑛   𝑥 > 0, 𝑡 = 0                                             (I—3d) 

In equations (I—1) and (I—2), it can be observed that the solution 𝑇 has two dependent 

variables, space 𝑥 and time 𝑡. One approach that in sometimes useful is the substitution 

method which applied to the equations. Consider then the new variable 𝜁 = 𝑥 √𝑡⁄  which is 

chosen, so that the solution becomes 𝐹(𝜉) instead of 𝑇(𝑥, 𝑡). Applying chain rule to each 

term in equation (I—1) gives 

𝜕𝑇

𝜕𝑡
=

𝜕𝐹

𝜕𝜁

𝜕𝜁

𝜕𝑡
= −

1

2

𝑥

𝑡
3
2

𝑑𝐹

𝑑𝜁
                                                                                                      (I—4) 

and 

𝜕2𝑇

𝜕𝑥2
=

𝜕𝐹

𝜕𝜁

𝜕2𝜁

𝜕𝑥2
+
𝜕2𝐹

𝜕𝜁2
(
𝜕𝜁

𝜕𝑥
)
2

=
1

𝑡

𝑑2𝐹

𝑑𝜁2
                                                                                    (I—5) 

Substitution of equations (I—4) and (I—5) transforms equation (I—1) from a parabolic PDE 

to a second order ordinary differential equation (ODE). After simplification, it gives 

−
1

2
𝜁
𝑑𝐹

𝑑𝜁
= 𝛼𝑠

𝑑2𝐹

𝑑𝜁2
                                                                                                             (I—6) 

which is evidently dependent on the single variable 𝜁. 

The substitution method is applied again by letting 𝜃 =
𝑑𝐹

𝑑𝜁
, then equation (I—6) becomes a 

1st order ODE, which is 

−
1

2
𝜁𝜃 = 𝛼𝑠

𝑑𝜃

𝑑𝜁
                                                                                                                 (I—7) 

Integration of equation (I—7) with respect to 𝜁 gives 

𝑑𝐹

𝑑𝜁
= 𝜃 = 𝑒𝐶1𝑒

−
1

4

𝜁2

𝛼𝑠 = 𝐵𝑒
−
1

4

𝜁2

𝛼𝑠                                                                                         (I—8) 

Integration of equation (I—8) with respect to 𝜁 again gives the general solution 𝐹(𝜁), which 

is 
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 𝐹(𝜁) = 𝐵 ∫ 𝑒
−
1

4

𝜁2

𝛼𝑠
𝜁

𝑑𝜁 + 𝐶 = 𝐵√𝜋𝛼𝑠 𝒆𝒓𝒇 (
𝜁

2√𝛼𝑠
) + 𝐶                                                (I—9) 

where 𝐵 and 𝐶 are constant values, and 𝒆𝒓𝒇(𝑥) = (2 √𝜋⁄ ) ∫ 𝑒−𝜏
2
𝑑𝜏

𝑥
 is the error function. 

Applying boundary condition (I—3a) to equation (I—9), the exact solution for 𝐹(𝜁) is 

calculated as 

𝐹(𝜁) = (
𝑇𝑠𝑜𝑙−𝑇𝑎𝑚𝑏

1+ℎ𝑐√𝜋𝛼𝑠𝑡 𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)
)√𝜋𝛼𝑠𝑡 𝒆𝒓𝒇 (

𝜁

2√𝛼𝑠
) +

𝑇𝑠𝑜𝑙+𝑇𝑎𝑚𝑏ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

1+ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

           (I—10) 

Substituting the replacement 𝜁 = 𝑥 √𝑡⁄  back to equation (I—10), the exact solution of the 

temperature in the solid phase is 

𝑇(𝑥, 𝑡) = (
𝑇𝑠𝑜𝑙−𝑇𝑎𝑚𝑏
1

ℎ𝑐√𝜋𝛼𝑠𝑡
+𝒆𝒓𝒇(

𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)
)𝒆𝒓𝒇(

𝑥

2√𝛼𝑠𝑡
) +

𝑇𝑠𝑜𝑙+𝑇𝑎𝑚𝑏ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

1+ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

                      (I—11) 

For the liquid region, the exact solution as shown in equation (I—11) can be found in a 

similar way. Thus, the solution of the phase change problem with Robin boundary condition 

can be written as 

𝑇(𝑥, 𝑡) =

{
 
 

 
 (

𝑇𝑠𝑜𝑙−𝑇𝑎𝑚𝑏
1

ℎ𝑐√𝜋𝛼𝑠𝑡
+erf (

𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)
)𝒆𝒓𝒇(

𝑥

2√𝛼𝑠𝑡
) +

𝑇𝑠𝑜𝑙+𝑇𝑎𝑚𝑏ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

1+ℎ𝑐√𝜋𝛼𝑠𝑡𝒆𝒓𝒇(
𝑋𝑖(𝑡)

2√𝛼𝑠𝑡
)

  (0 ≤ 𝑥 < 𝑋𝑖(𝑡))

𝑇𝑖𝑛𝑖𝑡 + (𝑇𝑠𝑜𝑙 − 𝑇𝑖𝑛𝑖𝑡)
𝒆𝒓𝒇𝒄(

𝑥

2√𝛼𝑙𝑡
)

𝒆𝒓𝒇𝒄(𝜆√
𝛼𝑠
𝛼𝑙
)
                                                         (𝑥 > 𝑋𝑖(𝑡))

  

                                                                                                                                       (I—12) 

It can be seen in equation (I—12) that the exact solution requires the evaluation of the phase 

interface position which is changing with time. In order to evaluate the phase interface 

position, a variable 𝜆 = 𝑋𝑖(𝑡) (2√𝛼𝑠𝑡)⁄  is introduced. The value of 𝜆 can be computed via 

a transcendental equation, which is established by substituting equation (I—12) into the 

Stefan condition. After simplification, it is written as 

√𝜋𝜆 = −
𝑆𝑡𝑠

𝑒𝜆
2
(

1

ℎ𝑐√𝜋𝛼𝑠𝑡
+erf(𝜆))

+
𝑆𝑡𝑙

𝑣𝑒(𝑣𝜆)
2
𝑒𝑟𝑓𝑐(𝑣𝜆)

                                                                 (I—13) 
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where   𝑆𝑡𝑠 = 𝑐𝑠(𝑇𝑠𝑜𝑙 − 𝑇2) 𝐿⁄  and 𝑆𝑡𝑙 = 𝑐𝑙(𝑇1 − 𝑇𝑠𝑜𝑙 𝐿⁄  are the Stefan numbers, and 𝑣 =

√𝛼𝑠 𝛼𝑙⁄ .  

The computation of 𝜆 in the [67-68] was conducted with approximations. But the direct 

solution of equation (I—13) can be conducted through a good root finding method, such as 

the Newton’s method, which is used in this project. 

(b) The equation (3—5) 

Equation (3—5) is obtained from equation (3—4) under standard assumed conditions of 

differentiation and integration. For example, the CV Ω is compact and its CS Γ is piecewise 

smooth. The field variables and vector fields are continuously differentiable. Equation (3—

4) is repeated here for convenience and it is of the form 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 + ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉    (I—14) 

Recall that the CV Ω is a time dependent region, and its motion is governed by the velocity 

𝑣∗. Thus, application of Reynolds transport theorem to the LHS term of equation (3—4) and 

the first term in the middle of equation (3—4) gives 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω

𝑑𝑉 = ∫ (
𝐷∗

𝐷∗𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣∗)

Ω
𝑑𝑉                                                                         (I—15) 

And similarly 

𝐷∗

𝐷∗𝑡
∫ 𝜌ℎ
Ω

𝑑𝑉 = ∫ (
𝐷∗

𝐷∗𝑡
𝜌ℎ + 𝜌ℎ∇ ∙ 𝑣∗)

Ω
𝑑𝑉                                                                  (I—16) 

Then applying the divergence theorem to the boundary terms ∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

 and 

−∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

 gives 

∫ 𝜌ℎ(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= ∫ ∇ ∙ (𝜌ℎ(𝑣 − 𝑣∗))
Ω

𝑑𝑉                                                         (I—17) 

and 

−∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

= −∫ ∇ ∙ 𝑞
Ω

𝑑𝑉                                                                                      (I—18) 

The substitution of equations (I—15), (I—16), (I—17) and (I—18) into the equation (I—

14), which is equation (3—4) in the chapter 3, gives 

∫
𝐷∗

𝐷∗𝑡
ℎ̂

Ω
+ ℎ̂∇ ∙ 𝑣∗𝑑𝑉 = ∫

𝐷∗

𝐷∗𝑡
𝜌ℎ + 𝜌ℎ∇ ∙ 𝑣∗

Ω
𝑑𝑉 + ∫ ∇ ∙ (𝜌ℎ(𝑣 − 𝑣∗))

Ω
𝑑𝑉 = −∫ ∇ ∙

Ω

𝑞 𝑑𝑉 + ∫ 𝜌𝑄
Ω

𝑑𝑉                                                                                                          (I—19) 

Since the CV Ω is essentially arbitrary in shape it can be shrunk to a point to give the strong 

form of the equation (I—14), which is 
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𝐷∗

𝐷∗𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣∗ =

𝐷∗

𝐷∗𝑡
𝜌ℎ + 𝜌ℎ∇ ∙ 𝑣∗ + ∇ ∙ (𝜌ℎ(𝑣 − 𝑣∗)) = −∇ ∙ 𝑞 + 𝜌𝑄                   (I—20) 

In the view of the identity 𝐷∗ 𝐷∗𝑡⁄ = 𝜕 𝜕𝑡⁄ + 𝑣∗ ∙ ∇, the LHS of equation (I—20) reduces to 

𝐷∗

𝐷∗𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣∗ =

𝜕

𝜕𝑡
ℎ̂ + 𝑣∗ ∙ ∇ℎ̂ + ℎ̂∇ ∙ 𝑣∗ =

𝜕

𝜕𝑡
ℎ̂ + ∇ ∙ (ℎ̂𝑣∗)                                     (I—21) 

The application of the product rule to the middle terms of equation (I—21) gives 

𝜌
𝐷∗ℎ

𝐷∗𝑡
+ ℎ

𝐷∗𝜌

𝐷∗𝑡
+ 𝜌ℎ𝛻 ∙ 𝑣∗ + ℎ𝛻 ∙ (𝜌(𝑣 − 𝑣∗)) + 𝜌(𝑣 − 𝑣∗)𝛻ℎ = −𝛻 ∙ (𝑞) + 𝜌𝑄        (I—22) 

Rearranging equation (I—22) gives 

𝐷∗ℎ

𝐷∗𝑡
+ 𝜌(𝑣 − 𝑣∗)𝛻ℎ + ℎ (

𝐷∗𝜌

𝐷∗𝑡
+ 𝜌𝛻 ∙ 𝑣∗ + 𝛻 ∙ (𝜌(𝑣 − 𝑣∗))) = −𝛻 ∙ (𝑞) + 𝜌𝑄          (I—23) 

In the equation (I—23), the analysis of the terms 
𝐷∗𝜌

𝐷∗𝑡
+ 𝜌𝛻 ∙ 𝑣∗ + 𝛻 ∙ (𝜌(𝑣 − 𝑣∗)) can be 

conducted through the governing equation of the mass conservation, which is 

𝐷∗

𝐷∗𝑡
∫ 𝜌𝑑𝑉
Ω

+ ∫ 𝜌(𝑣 − 𝑣∗) ∙ 𝑛𝑑Γ
Γ

= 0                                                                         (I—24) 

Similar to equation (I—14), the strong form of equation (I—24) is obtained by applying the 

Reynold transport theorem and the divergence theorem, which is 

𝐷∗𝜌

𝐷∗𝑡
+ 𝜌∇ ∙ 𝑣∗ + ∇ ∙ [𝜌(𝑣 − 𝑣∗)] = 0                                                                             (I—25) 

Consequently, equation (I—24) reduces to 

𝐷∗ℎ

𝐷∗𝑡
+ 𝜌(𝑣 − 𝑣∗)𝛻ℎ = −𝛻 ∙ (𝑞) + 𝜌𝑄                                                                           (I—26) 

And the definition of non-physical enthalpy in the strong form is obtained by the equation 

of (I—21) and (I—26), which gives 

𝐷∗

𝐷∗𝑡
ℎ̂ + ℎ̂∇ ∙ 𝑣∗ =

𝐷∗ℎ

𝐷∗𝑡
+ 𝜌(𝑣 − 𝑣∗)𝛻ℎ = −𝛻 ∙ (𝑞) + 𝜌𝑄                                              (I—27) 

The equation (I—27) is the equation (3—5) in chapter 3. 

(c) The weighted residual method 

Many discrete methods has been developed to obtain the approximate solution of continuous 

problems, such as the direct continuum elements, the variational methods and the weighted 

residual method. From the weighted residual method, is developed the computational 

Galerkin methods which contains the modern finite element method [108, 110]. The 

weighted residual method is preferred because it is easy to apply to a great many PDEs with 

different boundary conditions and initial conditions, but other methods such as the 

variational method requires more mathematical operation but it does not apply to all 

problems [111]. This project uses the Galerkin weighted residual method, which 

fundamental theory has been described by Finlayson [111], and its examples application can 

be found in the books [108, 111-112]. 
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In Chapter 3, the equation required to be solved by the Galerkin weighted residual method 

is 

𝐷∗

𝐷∗𝑡
∫ ℎ̂
Ω

𝑑𝑉 = −∫ 𝑞 ∙ 𝑛𝑑Γ
Γ

+ ∫ 𝜌𝑄
Ω

𝑑𝑉                                                                     (I—28) 

Assuming that the trial solution of equation (I—28) is 

ℎ̃ = ∑ 𝐶𝑗𝑓𝑗
𝑁𝑁
𝑗=1                                                                                                                 (I—29) 

where the accent ∎̃ signifies the solution is an approximation, the upper case letters 𝑁𝑁 is 

the number of nodes, 𝐶𝑗  (𝑗 = 1,2,3…𝑁𝑁)  are the unknown constants and 𝑓𝑗(𝑗 =

1,2,3…𝑁𝑁) are the trial solutions. 

It is obvious that the trial solution ℎ̃ is only approximated, and if substituting the solution ℎ̃ 

back to (I—28), the equation (I—28) will not be satisfied, and it will generate an error or 

residual. And the residual 𝑅 is defined as 

∫ 𝑅(ℎ̃)
Ω

𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ ℎ̃
Ω

𝑑𝑉 + ∫ 𝑞(ℎ̃) ∙ 𝑛𝑑Γ
Γ

− ∫ 𝜌𝑄(ℎ̃)
Ω

𝑑𝑉                                     (I—30) 

where the flux 𝑞(ℎ̃) and the specific heat source 𝑄(ℎ̃) may be indirectly dependent on ℎ̃ 

through temperature. 

Observing equation (I—30), it is sensible that once the residual 𝑅(ℎ̃) ≡ 0, the trial solution 

approaches the exact solution of equation (I—29). To achieve this, the inner product of the 

residual 𝑅(ℎ̃) and the weighting functions 𝑊 has to be zero, say 

∫ 𝑊𝑅(ℎ̃)
Ω

𝑑𝑉 = 0                                                                                                         (I—31) 

The expansion of equation (I—31) gives 

∫ 𝑊𝑅(ℎ̃)𝑑𝑉 =
𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̃
Ω

𝑑𝑉 + ∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ

− ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

− ∫ 𝑊𝜌𝑄
Ω

𝑑𝑉 = 0
Ω

  

                                                                                                                                       (I—32) 

which is equation (3—30) in chapter 3. Both the terms ∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ

 and ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

 are 

come from −∫ 𝑞 ∙ 𝑛𝑑𝐴
Γ

 by the product rule of differentiation and the divergence therom, 

i.e. ∫ 𝑊𝑞 ∙ 𝑛𝑑Γ
Γ

= ∫ 𝑊∇ ∙ 𝑞𝑑𝑉
Ω

+ ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

. 

The set of 𝑊 and the 𝑅(ℎ̃) is required to be orthogonal so that the residual can approaches 

to zero in the mean. The weighting functions and the trial functions can be different through 

different approaches. In the Galerkin weighted residual method, both the test functions and 

the weighting functions are set as the shape functions, thus the trial solution is 

ℎ̃𝑒 = ∑ 𝑁𝜍ℎ̂𝜍
𝑁𝑁
𝜍=1                                                                                                               (I—33) 
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where ℎ̃𝑒 refers to the trial solution with respect to the element, and the upper-case letters 

𝑁𝑁 refers to the local node number of the element. 

And the weighting functions are 

𝑊𝜗 = 𝑁𝜗                                                                                                                       (I—34) 

(d) The analytical evaluation of advective term (3—38) 

In the numerical simulation of advection-diffusion problem, the material flowing through 

the element boundary can be regarded as an additional volume attached on the boundary of 

element. For example the volume swept by the elemental boundary with material velocity in 

one-dimension can be seen in Figure I.1. The swept volume is not real, but the advective 

term can be evaluated analytically through this volume. 

 

Figure I.1: The virtual CV swept by elemental CS with material velocity 

Recall the equation (3—38) in Chapter 3, which is 

∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
= ∫ 𝜌ℎ(𝑋𝑛+1 − 𝑋𝑛) ∙ 𝑛

Γe
𝑑Γ                                                   (I—35) 

With the concept of swept volume, it can be approximated as 

∫ ∫ 𝜌ℎ𝑣 ∙ 𝑛𝑑Γ
Γe

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
≈ ∫ 𝜌ℎ𝑑𝑉

Ωf
                                                                              (I—36) 

where the volume of swept CV can be evaluated as 𝑣𝑜𝑙(Ωf) ≈ 𝐴𝑒(𝑋
𝑛+1 − 𝑋𝑛). 

Assuming then the swept CV is also a one-dimensional element, whose nodal position is 

𝑋𝑛+1 and 𝑋𝑛 respectively, and its nodal temperatures are 𝑇𝑛+1 and 𝑇𝑛 respectively. Then 

the same approach for equation (3—46) can be adopted for equation (I—36). 

(e) The evaluation of jump term Equation (3—41) 

The jump appeared in equation (3—41) is 
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∫ ∫ ]𝜌ℎ(𝑣 − 𝑣×) ∙ (−𝑛)[𝑑Γ
Γ𝑖𝑒

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = ∫ ∫ 𝜌𝑠ℎ𝑠(𝑣𝑠 − 𝑣

×) ∙ 𝑛𝑙 − 𝜌𝑙ℎ𝑙(𝑣𝑙 − 𝑣
×) ∙

Γ𝑖
e

𝑡𝑛+1

𝑡𝑛

𝑛𝑙𝑑Γ𝑑𝑡                                                                                                                          (I—37) 

The equation (I—37) is written according to equations (3—11a) and (3—12) in section 3.2. 

Then, breaking the brackets in the integral gives 

∫ ∫ 𝜌𝑠ℎ𝑠(𝑣𝑠 − 𝑣
×) ∙ 𝑛𝑙 − 𝜌𝑙ℎ𝑙(𝑣𝑙 − 𝑣

×) ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = ∫ ∫ 𝜌𝑠ℎ𝑠𝑣𝑠 ∙ 𝑛𝑙 − 𝜌𝑠ℎ𝑠𝑣

× ∙
Γ𝑖
e

𝑡𝑛+1

𝑡𝑛

𝑛𝑙 − 𝜌𝑙ℎ𝑙𝑣𝑙 ∙ 𝑛𝑙 + 𝜌𝑙ℎ𝑙𝑣
× ∙ 𝑛𝑙𝑑Γ𝑑𝑡                                                                              (I—38) 

Furthermore, rearranging equation (I—38) and the application of linear combination gives 

∫ ∫ 𝜌𝑠ℎ𝑠𝑣𝑠 ∙ 𝑛𝑙 − 𝜌𝑠ℎ𝑠𝑣
× ∙ 𝑛𝑙 − 𝜌𝑙ℎ𝑙𝑣𝑙 ∙ 𝑛𝑙 + 𝜌𝑙ℎ𝑙𝑣

× ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = ∫ ∫ 𝜌𝑠ℎ𝑠𝑣𝑠 ∙Γ𝑖

e

𝑡𝑛+1

𝑡𝑛

𝑛𝑙 − 𝜌𝑙ℎ𝑙𝑣𝑙 ∙ 𝑛𝑙𝑑Γ𝑑𝑡 + ∫ ∫ 𝜌𝑙ℎ𝑙𝑣
× ∙ 𝑛𝑙 − 𝜌𝑠ℎ𝑠𝑣

× ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡                               (I—39) 

Rearranging equation (I—39) gives 

∫ ∫ 𝜌𝑠ℎ𝑠𝑣𝑠 ∙ 𝑛𝑙 − 𝜌𝑙ℎ𝑙𝑣𝑙 ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 + ∫ ∫ 𝜌𝑙ℎ𝑙𝑣

× ∙ 𝑛𝑙 − 𝜌𝑠ℎ𝑠𝑣
× ∙ 𝑛𝑙𝑑ΓΓ𝑖

e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 =

∫ ∫ (𝜌𝑠ℎ𝑠𝑣𝑠 − 𝜌𝑙ℎ𝑙𝑣𝑙) ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 + ∫ ∫ (𝜌𝑙ℎ𝑙 − 𝜌𝑠ℎ𝑠)𝑣

× ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡              (I—40) 

From equation (I—37) to equation (I—40) are applicable based on the assumption that the 

integral is Riemann integrable on the surface  Γ𝑖
e. Assuming that 𝜌𝑠𝑣𝑠 = 𝜌𝑙𝑣𝑙 as the amount 

of liquid swept by the surface Γ𝑖
e becomes the same amount of solid in mass. Thus, the first 

term on the RHS of equation (I—40) gives 

∫ ∫ (𝜌𝑠ℎ𝑠𝑣𝑠 − 𝜌𝑙ℎ𝑙𝑣𝑙) ∙ 𝑛𝑙𝑑ΓΓ𝑖
e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = ∫ ∫ 𝜌𝑙(ℎ𝑠 − ℎ𝑙)𝑣𝑙 ∙ 𝑛𝑙𝑑ΓΓ𝑖

e

𝑡𝑛+1

𝑡𝑛
𝑑𝑡                  (I—41) 

 (f) The analytical evaluation of equation (3—51) 

The evaluation of enthalpy in an element is conducted via equation (3—46), which is 

∫ 𝜌𝑛ℎ𝑛
Ω𝑒

𝑑𝑉 = ∫ Υ𝑠
𝑛𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑒

𝑑𝑉 + ∫ Υ𝑠
𝑛

Ω𝑒
𝜌𝑠 ∫ 𝑐𝑠(𝑇

′)𝑑𝑇′
𝑇𝑛

𝑇𝑠𝑜𝑙
𝑑𝑉 + ∫ Υ𝑙

𝑛
Ω𝑒

𝜌𝑙ℎ𝑠𝑜𝑙𝑑𝑉 +

∫ Υ𝑙
𝑛𝜌𝑙𝑙Ω𝑒

𝑑𝑉 + ∫ Υ𝑙
𝑛𝜌𝑙Ω𝑒

∫ 𝑐𝑙(𝑇
′)𝑑𝑇′

𝑇𝑛

𝑇𝑙𝑖𝑞
                                                                     (I—42) 

It can be divided into two equations, which are 
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∫ 𝜌𝑛ℎ𝑛
Ω𝑠
𝑒 𝑑𝑉 = ∫ Υ𝑠

𝑛𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑒
𝑑𝑉 + ∫ Υ𝑠

𝑛
Ω𝑒

𝜌𝑠 ∫ 𝑐𝑠(𝑇
′)𝑑𝑇′

𝑇𝑛

𝑇𝑠𝑜𝑙
𝑑𝑉                             (I—43a) 

and 

∫ 𝜌𝑛ℎ𝑛
Ω𝑙
𝑒 𝑑𝑉 = ∫ Υ𝑙

𝑛
Ω𝑒

𝜌𝑙ℎ𝑠𝑜𝑙𝑑𝑉 + ∫ Υ𝑙
𝑛𝜌𝑙𝑙Ω𝑒

𝑑𝑉 + ∫ Υ𝑙
𝑛𝜌𝑙Ω𝑒

∫ 𝑐𝑙(𝑇
′)𝑑𝑇′

𝑇𝑛

𝑇𝑙𝑖𝑞
           (I—43b) 

respectively. 

Equation (I—43a) evaluates the enthalpy of solid in the element, and equation (I—43b) 

evaluates the enthalpy of liquid in the same element. 

Assuming that the thermoproperties of material (i.e. 𝜌𝑠, 𝜌𝑙, 𝑐𝑠, 𝑐𝑙 and 𝐿) are constants, the 

first term on the RHS of equation (I—43a) gives 

∫ Υ𝑠
𝑛𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑒

𝑑𝑉 = ∫ 𝜌𝑠ℎ𝑠𝑜𝑙Ω𝑠
𝑒 𝑑𝑉 ≈ 𝜌𝑠𝑉𝑠

𝑛ℎ𝑠𝑜𝑙 = 𝑀𝑠
𝑛ℎ𝑠𝑜𝑙                                           (I—44) 

where 𝑀𝑠
𝑛  is the mass of solid in the element. The volume of solid 𝑉𝑠

𝑛 = Υ𝑠
𝑛𝑉𝑒 , and the 

volume of element is the product of cross-sectional area 𝐴𝑒  and the length of one-

dimensional element 𝐿𝑒 , i.e. 𝑉𝑒 = 𝐴𝑒𝐿𝑒 . The phase change enthalpy ℎ𝑠𝑜𝑙 = 𝑐𝑠𝑇𝑠𝑜𝑙  is 

constant. 

The temperature 𝑇 appearing in the second term on the RHS of equation (I—43a) requires 

integration. Since all material properties are constant, it gives 

∫ Υ𝑠
𝑛

Ω𝑒
𝜌𝑠 ∫ 𝑐𝑠(𝑇

′)𝑑𝑇′
𝑇𝑛

𝑇𝑠𝑜𝑙
𝑑𝑉 = ∫ 𝜌𝑠𝑐𝑠(𝑇

𝑛 − 𝑇𝑠𝑜𝑙)Ω𝑠
𝑒 𝑑𝑉                                             (I—45) 

Substitution of 𝑇𝑛 =
1−𝜉

2
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 into equation (I—45) gives 

∫ 𝜌𝑠𝑐𝑠(𝑇
𝑛 − 𝑇𝑠𝑜𝑙)Ω𝑠

𝑒 𝑑𝑉 = ∫ 𝜌𝑠𝑐𝑠(
1−𝜉

2
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 − 𝑇𝑠𝑜𝑙)Ω𝑠

𝑒 𝑑𝑉                               (I—46) 

In Figure 3.6, it can be seen that, for the solid elemental domain Ω𝑠
𝑒, the integration through 

𝜉 is only conducted from −1 to 2 × Υ𝑠
𝑛 −1, thus 

∫ 𝜌𝑠𝑐𝑠(
1−𝜉

2
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 − 𝑇𝑠𝑜𝑙)Ω𝑠

𝑒 𝑑𝑉 ≈ 𝜌𝑠𝑐𝑠
𝐴𝑒𝐿𝑒

2
∫

1−𝜉

2

2×Υ𝑠
𝑛−1

−1
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 − 𝑇𝑠𝑜𝑙𝑑𝜉 =

𝜌𝑠𝑐𝑠
𝐴𝑒𝐿𝑒

2
(
𝜉−

𝜉2

2

2
𝑇1
𝑛 +

𝜉+
𝜉2

2

2
𝑇2
𝑛 − 𝜉𝑇𝑠𝑜𝑙)|

−1

2×𝑔𝑠
𝑛−1

= 𝜌𝑠𝑐𝑠
𝐴𝑒𝐿𝑒

2
Υ𝑠
𝑛[2𝑇1

𝑛 − 2𝑇𝑠𝑜𝑙 +

Υ𝑠
𝑛(𝑇2

𝑛 − 𝑇1
𝑛)]                                                                                                         (I—47) 
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Furthermore, the evaluation of equation (I—43b) follows the same approach adopted for 

equation (I—43a). For the first term on the RHS of equation (I—43b)  

∫ Υ𝑙
𝑛𝜌𝑙ℎ𝑠𝑜𝑙Ω𝑒

𝑑𝑉 = ∫ 𝜌𝑙ℎ𝑠𝑜𝑙Ω𝑙
𝑒 𝑑𝑉 ≈ 𝜌𝑙𝑉𝑙

𝑛ℎ𝑠𝑜𝑙 = 𝑀𝑙
𝑛ℎ𝑠𝑜𝑙                                            (I—48) 

where 𝑀𝑙
𝑛 is the mass of liquid in the element. The volume of solid 𝑉𝑙

𝑛 = Υ𝑙
𝑛𝑉𝑒. 

Similarly, the second term on RHS of equation (I—43b) is 

∫ Υ𝑙
𝑛𝜌𝑙𝐿Ω𝑒

𝑑𝑉 = ∫ 𝜌𝑙𝐿Ω𝑙
𝑒 𝑑𝑉 ≈ 𝜌𝑙𝑉𝑙

𝑛𝐿 = 𝑀𝑙
𝑛𝐿                                                            (I—49) 

Substitution of 𝑇𝑛 =
1−𝜉

2
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 into the third term on the RHS of equation (I—43b) 

gives 

∫ Υ𝑙
𝑛𝜌𝑙Ω𝑒

∫ 𝑐𝑙(𝑇
′)𝑑𝑇′

𝑇𝑛

𝑇𝑙𝑖𝑞
= ∫ 𝜌𝑙𝑐𝑙(

1−𝜉

2
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 − 𝑇𝑙𝑖𝑞)Ω𝑙

𝑒 𝑑𝑉                              (I—50) 

With the identity Υ𝑠 + Υ𝑙 = 1 for isothermal solidification, the integration for liquid domain 

through 𝜉 is only conducted from 2 × Υs
𝑛 −1 to 1, consequently 

∫ 𝜌𝑙𝑐𝑙(
1−𝜉

2
𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 − 𝑇𝑙𝑖𝑞)Ω𝑙

𝑒 𝑑𝑉 ≈ 𝜌𝑙𝑐𝑙
𝐴𝑒𝐿𝑒

2
∫

1−𝜉

2

1

2×Υ𝑠
𝑛−1

𝑇1
𝑛 +

1+𝜉

2
𝑇2
𝑛 − 𝑇𝑙𝑖𝑞𝑑𝜉 =

𝜌𝑙𝑐𝑙
𝐴𝑒𝐿𝑒

2
(1 − Υ𝑠

𝑛)[𝑇1
𝑛 + 𝑇2

𝑛 − 2𝑇𝑠𝑜𝑙 + Υ𝑠
𝑛(𝑇2

𝑛 − 𝑇1
𝑛)]                                         (I—51) 

For isothermal solidification, 𝑇𝑙𝑖𝑞 = 𝑇𝑠𝑜𝑙 , and total mass of element 𝑀𝑒
𝑛 = 𝑀𝑠

𝑛 +𝑀𝑙
𝑛 . 

Substitution of equations (I—44), (I—47), (I—48), (I—49) and (I—51) into equation (I—

42) gives 

∫ 𝜌𝑛ℎ𝑛
Ω𝑒

𝑑𝑉 ≈ 𝑀𝑒
𝑛ℎ𝑠𝑜𝑙 + 𝜌𝑠𝑐𝑠

𝐴𝑒𝐿𝑒

2
Υ𝑠
𝑛[2𝑇1

𝑛 − 2𝑇𝑠𝑜𝑙 + Υ𝑠
𝑛(𝑇2

𝑛 − 𝑇1
𝑛)] + 𝑀𝑙

𝑛𝐿 +

𝜌𝑙𝑐𝑙
𝐴𝑒𝐿𝑒

2
(1 − Υ𝑠

𝑛)[𝑇1
𝑛 + 𝑇2

𝑛 − 2𝑇𝑠𝑜𝑙 + Υ𝑠
𝑛(𝑇2

𝑛 − 𝑇1
𝑛)]                                         (I—52) 

Finally, the equation (3—51) is obtained. 

(g) Equation (5—12) 

Equation (5—12) is obtained from equation (5—11). Suppose that the term ℎ̂′, the vector 

field 𝑣+ are continuously differentiable on  CS 𝛤𝑖. Also, the jump terms ]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[, 

]ℎ̂(𝑣 − 𝑣+) ∙ 𝑛[  and ]𝑞 ∙ 𝑛[are assumed to be constant on CS 𝛤𝑖 . Equation (5—11) is 

repeated here for convenience and is of the form 
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𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑Γ + ∫ ℎ̂′(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖𝛤𝑖
− ∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑Γ

𝛤𝑖
+ ∫ 𝑄̂′𝑑𝐴

𝛤𝑖
= −∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙

𝛤𝑖

𝑛[𝑑Γ = ∫ ]𝑞 ∙ 𝑛[ 𝑑Γ
𝛤𝑖

                                                                                                   (I—53) 

Thus, application of Reynolds transport theorem to the LHS term of equation (I—53) gives 

𝐷+

𝐷+𝑡
∫ ℎ̂′𝑑𝛤
𝛤𝑖

= ∫ (
𝐷+

𝐷+𝑡
ℎ̂′ + ℎ̂′∇ ∙ 𝑣+)

𝛤𝑖
𝑑𝑉                                                                     (I—54) 

Then applying the divergence theorem to the boundary term ∫ ℎ̂
′
(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖
 gives 

∫ ℎ̂
′
(𝑣∗ − 𝑣+) ∙ 𝑡𝑛𝑑𝛴

𝛴𝑖
= ∫ (𝛻𝛤𝑖 ∙ (ℎ̂′(𝑣

∗ − 𝑣+)
𝑇
))

𝛤𝑖
𝑑𝛤                                                 (I—55) 

where the subscript 𝛤𝑖  of divergence 𝛻𝛤𝑖  refers to the tangent plane of 𝛤𝑖 , and the 𝑣𝑇
+ 

indicates that the CS 𝛤𝑖 expands or shrinks in the tangent direction. 

The substitution of equations (I—32) and (I—33) into the equation (I—31) gives 

∫ (
𝐷+

𝐷+𝑡
ℎ̂′ + ℎ̂′∇ ∙ 𝑣+)

𝛤𝑖
𝑑𝛤 − ∫ (𝛻𝛤𝑖 ∙ (ℎ̂′(𝑣

∗ − 𝑣+)
𝑇
))

𝛤𝑖
𝑑𝛤 − ∫ ]ℎ̂𝑣 ∙ 𝑛[𝑑𝛤

𝛤𝑖
+ ∫ 𝑄̂′𝑑𝛤

𝛤𝑖
=

−∫ ]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[𝑑𝛤
𝛤𝑖

= ∫ ]𝑞 ∙ 𝑛[ 𝑑𝛤
𝛤𝑖

                                                                  (I—56) 

Since the CS 𝛤𝑖 is essentially arbitrary in shape it can be shrunk to a point to give the strong 

form of the equation (I—31), which is 

𝐷+

𝐷+𝑡
ℎ̂′ + ℎ̂′∇ ∙ 𝑣+ + 𝛻𝛤𝑖 ∙ (ℎ̂′(𝑣

∗ − 𝑣+)
𝑇
) − ]ℎ̂𝑣 ∙ 𝑛[ + 𝑄̂′ = −]𝜌ℎ(𝑣 − 𝑣+) ∙ 𝑛[ = ]𝑞 ∙ 𝑛[  

                                                                                                                                      (I—57) 

Equation (I—57) is equation (5—12) in chapter 5.  

(h) Consideration on the term 𝐥𝐢𝐦
𝒗𝒐𝒍(𝛀𝒊)→𝟎

∫ 𝒒 ∙ 𝛁𝑾
𝛀𝒊

𝒅𝑽 

The extended divergence theorem is of the form 

∫ ∇
Ω\𝛤𝑖

∙ (𝑊 ∙ 𝑞) 𝑑𝑉 = ∫ 𝑊𝑞
𝛤

∙ 𝑛𝑑𝛤 − ∫ ]𝑊𝑞 ∙ 𝑛[
𝛤𝑖

𝑑𝛤                                             (I—58) 

which provides an extended Green’s first theorem 

∫ ∇W
Ω\𝛤𝑖

∙ 𝑞𝑑𝑉 = ∫ 𝑊𝑞
𝛤

∙ 𝑛𝑑𝛤 − ∫ ]𝑊𝑞 ∙ 𝑛[
𝛤𝑖

𝑑𝛤 − ∫ W
Ω\𝛤𝑖

∇ ∙ 𝑞𝑑𝑉                       (I—59) 

Moreover it is a simple matter to show with ∇ ∙ 𝑞 taking the form of a distribution at i  that 

∫ W
Ω

∇ ∙ 𝑞𝑑𝑉 = ∫ W
Ω\𝛤𝑖

∇ ∙ 𝑞𝑑𝑉 + ∫ ]𝑊𝑞 ∙ 𝑛[
𝛤𝑖

𝑑𝛤                                                   (I—60) 

which on substitution into equation (I—59) gives 
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∫ ∇W
Ω\𝛤𝑖

∙ 𝑞𝑑𝑉 = ∫ 𝑊𝑞
𝛤

∙ 𝑛𝑑𝛤 − ∫ W
Ω

∇ ∙ 𝑞𝑑𝑉                                                       (I—61) 

It is of interest to observe that 𝛤𝑖 is excluded from the left hand side of equation (I—61) but 

not from the right hand side. It is apparent from the non-physical theory and equation (5—

26) that lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉 takes on a finite value which suggests that (I—61) takes the 

form 

∫ ∇W ∙ 𝑞
Ω

𝑑𝑉 − lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉 = ∫ 𝑊𝑞
𝛤

∙ 𝑛𝑑𝛤 − ∫ W
Ω

∇ ∙ 𝑞𝑑𝑉               (I—62) 

or equivalently 

−∫ 𝑊𝑞
𝛤

∙ 𝑛𝑑𝛤 + ∫ W
Ω

∇ ∙ 𝑞𝑑𝑉 = lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉 − ∫ W
Ω\𝛤𝑖

∇ ∙ 𝑞𝑑𝑉 − ∫ ]𝑊𝑞 ∙
𝛤𝑖

𝑛[ 𝑑𝛤                                                                                                                           (I—63) 

It is evident that the weighting of transport equation (5—1) to arrive at equation (5—19) has 

some unintended consequences since −∫ 𝑊𝑞
𝛤

∙ 𝑛𝑑𝛤 + ∫ 𝑞 ∙ ∇𝑊𝑑𝑉
Ω

  does not equal 

−∫ ∇W
Ω\𝛤𝑖

∙ 𝑞𝑑𝑉  but in fact gives rise to two additional terms, i.e. a source term 

lim
𝑣𝑜𝑙(Ω𝑖)→0

∫ 𝑞 ∙ ∇𝑊
Ω𝑖

𝑑𝑉 and a jump term ∫ ]𝑊𝑞 ∙ 𝑛[
𝛤𝑖

𝑑𝛤. 

(i) Derivation of equation (5—32) 

The CV Ω is time dependent and is transported with the velocity 𝑣∗, application of Reynold 

transport theorem to the weighted term (𝐷∗ 𝐷∗𝑡⁄ ) ∫ 𝑊ℎ̂𝑑𝑉
Ω

 gives 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
= ∫

𝐷∗

𝐷∗𝑡
𝑊ℎ̂ +𝑊ℎ̂∇ ∙ 𝑣∗𝑑𝑉

Ω
                                                                  (I—64) 

According to the theorem of product rule on differentiation, equation (I—64) can be 

expanded as 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
= ∫ 𝑊

𝐷∗

𝐷∗𝑡
ℎ̂ + ℎ̂

𝐷∗

𝐷∗𝑡
𝑊 +𝑊ℎ̂∇ ∙ 𝑣∗𝑑𝑉

Ω
                                                 (I—65) 

Assuming that, the CV Ω is compact and its CS Γ is piecewise smooth. Application of 

Divergence theorem to the RHS of equation (I—65) gives 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
= ∫ 𝑊

𝜕

𝜕𝑡
ℎ̂ + 𝑊𝑣∗ ∙ ∇ℎ̂ + ℎ̂

𝐷∗

𝐷∗𝑡
𝑊 +𝑊ℎ̂∇ ∙ 𝑣∗𝑑𝑉

Ω
                              (I—66) 
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Re-arrangement of equation (I—66) gives 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
= ∫ 𝑊

𝜕

𝜕𝑡
ℎ̂

Ω
𝑑𝑉 + ∫ (

𝐷∗𝑊

𝐷∗𝑡
) ℎ̂𝑑𝑉

Ω
+ ∫ 𝑊

Ω
∇ ∙ (ℎ̂𝑣∗)𝑑𝑉                       (I—67) 

According to the theorem of product rule on differentiation and the divergence theorem again, 

equation (I—67) becomes 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
= ∫ 𝑊

𝜕

𝜕𝑡
ℎ̂

Ω
𝑑𝑉 + ∫ (

𝐷∗𝑊

𝐷∗𝑡
) ℎ̂𝑑𝑉

Ω
+ ∫ 𝑊ℎ̂𝑣∗

Γ
∙ 𝑛𝑑𝑉 − ∫ ℎ̂𝑣∗

Ω
∇ ∙ 𝑊𝑑𝑉  

                                                                                                                                      (I—68) 

Similarly, for the CV 𝛺+, the term (𝐷+ 𝐷+𝑡⁄ ) ∫ 𝑊ℎ̂𝑑𝑉
Ω
+  can be expanded as 

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
+ = ∫ 𝑊

𝜕

𝜕𝑡
ℎ̂

Ω
+ 𝑑𝑉 + ∫ (

𝐷+𝑊

𝐷+𝑡
) ℎ̂𝑑𝑉

Ω
+ + ∫ 𝑊ℎ̂𝑣+

Γ+
∙ 𝑛𝑑𝑉 − ∫ ℎ̂𝑣+

Ω
+ ∇ ∙ 𝑊𝑑𝑉   

                                                                                                                                       (I—69) 

Despite the transport of two domains, the following identity is always true, which is 

∫ 𝑊
𝜕

𝜕𝑡
ℎ̂

Ω
𝑑𝑉 = ∫ 𝑊

𝜕

𝜕𝑡
ℎ̂

Ω
+ 𝑑𝑉                                                                                      (I—70) 

Substitution of equations (I—68) and (I—69) into equation (I—70) returns 

𝐷∗

𝐷∗𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
− ∫ (

𝐷∗𝑊

𝐷∗𝑡
) ℎ̂𝑑𝑉

Ω
− ∫ 𝑊ℎ̂𝑣∗

Γ
∙ 𝑛𝑑𝑉 + ∫ ℎ̂𝑣∗

Ω
∇ ∙ 𝑊𝑑𝑉 =

𝐷+

𝐷+𝑡
∫ 𝑊ℎ̂𝑑𝑉

Ω
+ −

∫ (
𝐷+𝑊

𝐷+𝑡
) ℎ̂𝑑𝑉

Ω
+ − ∫ 𝑊ℎ̂𝑣+

Γ+
∙ 𝑛𝑑𝑉 + ∫ ℎ̂𝑣+

Ω
+ ∇ ∙ 𝑊𝑑𝑉                                               (I—71) 

Thus, equation (5—32) in Chapter 5 is obtained, which is the same as equation (I—71). 

(j) The Taylor Galerkin method 

The Taylor-series expansion can be expressed as 

𝑇𝑛+1 ≈ 𝑇𝑛 +
∆𝑡

1!

𝜕𝑇𝑛

𝜕𝑡
+
∆𝑡2

2!

𝜕2𝑇𝑛

𝜕𝑡2
                                                                                       (I—72) 

Thus 

𝑇𝑛+1−𝑇𝑛

∆𝑡
≈

𝜕𝑇𝑛

𝜕𝑡
+
∆𝑡

2

𝜕2𝑇𝑛

𝜕𝑡2
                                                                                                 (I—73) 

From the strong form of the transport equation,  
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𝑐̂
𝜕𝑇𝑛

𝜕𝑡
= −𝑐̂𝑣

𝜕𝑇𝑛

𝜕𝑥
+ 𝑘

𝜕2𝑇𝑛

𝜕𝑥2
+ 𝑄̂(𝑇𝑛)                                                                               (I—74) 

where 𝑣 is a scalar value and 𝑣 = 𝑣 ∙ 𝑛.  

Similarly, 

𝑐̂
𝜕2𝑇𝑛

𝜕𝑡2
= −𝑐̂𝑣

𝜕

𝜕𝑥

𝜕𝑇𝑛

𝜕𝑡
+ 𝑘

𝜕2

𝜕𝑥2
𝜕𝑇𝑛

𝜕𝑡
+ 𝑄̂ (

𝜕𝑇𝑛

𝜕𝑡
)                                                                   (I—75) 

Substitution of equations (I—74) and (I—75) back to equation (I—73) gives 

𝑐̂
𝑇𝑛+1−𝑇𝑛

∆𝑡
= −𝑐̂𝑣

𝜕𝑇𝑛

𝜕𝑥
+ 𝑘

𝜕2𝑇𝑛

𝜕𝑥2
+ 𝑄̂(𝑇𝑛) +

∆𝑡

2
(−𝑐̂𝑣

𝜕

𝜕𝑥

𝜕𝑇𝑛

𝜕𝑡
+ 𝑘

𝜕2

𝜕𝑥2
𝜕𝑇𝑛

𝜕𝑡
+ 𝑄̂ (

𝜕𝑇𝑛

𝜕𝑡
))     (I—76) 

Then, application of forward Euler method to the temporal derivative, i.e. 𝜕𝑇𝑛 𝜕𝑡⁄ ≈

(𝑇𝑛+1 − 𝑇𝑛) ∆𝑡⁄ , equation (I—54) gives 

𝑐̂
𝑇𝑛+1−𝑇𝑛

∆𝑡
= −𝑐̂𝑣

𝜕𝑇𝑛

𝜕𝑥
+ 𝑘

𝜕2𝑇𝑛

𝜕𝑥2
+ 𝑄̂(𝑇𝑛) −

∆𝑡

2
(−

𝑐̂𝑣

∆𝑡

𝜕

𝜕𝑥
(𝑇𝑛+1 − 𝑇𝑛) +

𝑘

∆𝑡

𝜕2

𝜕𝑥2
(𝑇𝑛+1 − 𝑇𝑛) +

𝑄̂(𝑇𝑛+1)−𝑄̂(𝑇𝑛)

∆𝑡
)                                                                                                                (I—77) 

Rearrangement of equation (I—77) gives 

(𝑐̂ +
∆𝑡

2
𝑐̂𝑣

𝜕

𝜕𝑥
−
∆𝑡

2
𝑘
𝜕2

𝜕𝑥2
) 𝑇𝑛+1 = (𝑐̂ −

∆𝑡

2
𝑐̂𝑣

𝜕

𝜕𝑥
+
∆𝑡

2
𝑘
𝜕2

𝜕𝑥2
) 𝑇𝑛 +

∆𝑡

2
𝑄̂(𝑇𝑛+1) +

∆𝑡

2
𝑄̂(𝑇𝑛)  

                                                                                                                                       (I—78) 

Application of standard Galerkin Finite Element method to equation (I—78) gives a system 

of equations which are exactly the same as equation (6—2) with 𝜃 =
1

2
. 

(k) The matrix of advection [𝑲𝒗]𝒆 

In chapter 7, the matrix for advection can be constructed as 

[𝐾𝑣]𝑒 = ĉ ∫ ∫ {𝑊}: [𝑣]([𝐽]𝑇)−1[𝐷]|[𝐽]|𝑑𝜉𝑑𝜂
1−𝜂

0

1

0
                                                         (I—79) 

For a two-dimensional triangular element, the Jacobian matrix can be established as 

[𝐽] = [

𝜕((1−𝜉−𝜂)𝑥1+𝜉𝑥2+𝜂𝑥3)

𝜕𝜉

𝜕((1−𝜉−𝜂)𝑥1+𝜉𝑥2+𝜂𝑥3)

𝜕

𝜕((1−𝜉−𝜂)𝑦1+𝜉𝑦2+𝜂𝑦3)

𝜕𝜉

𝜕((1−𝜉−𝜂)𝑦1+𝜉𝑦2+𝜂𝑦3)

𝜕𝜂

] = [
𝑥2 − 𝑥1 𝑥3 − 𝑥1
𝑦2 − 𝑦1 𝑦3 − 𝑦1

]               (I—80) 



Appendix I     232 
 

Consequently, the inverse matrix of the transposed Jacobian matrix is 

([𝐽]𝑇)−1 =
1

|[𝐽]𝑇|
[
𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑥1 − 𝑥3 𝑥2 − 𝑥1

]                                                                             (I—81) 

According to equation (7—22) in chapter 7, it is known that  

[𝐷] = [

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

] = [
−1 1 0
−1 0 1

]                                                                        (I—82) 

Thus, inside the integral in equation (I—79), the terms can be evaluated as 

[𝑣]([𝐽]𝑇)−1[𝐷]|[𝐽]| = [
𝑣𝑥𝑥 0
0 𝑣𝑦𝑦

]
1

|[𝐽]𝑇|
[
𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑥1 − 𝑥3 𝑥2 − 𝑥1

] [
−1 1 0
−1 0 1

] |[𝐽]| =

[
𝑣𝑥𝑥 0
0 𝑣𝑦𝑦

] [
𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑥1 − 𝑥3 𝑥2 − 𝑥1

] [
−1 1 0
−1 0 1

] =

[
𝑣𝑥𝑥(𝑦2 − 𝑦3) 𝑣𝑥𝑥(𝑦3 − 𝑦1) 𝑣𝑥𝑥(𝑦1 − 𝑦2)

𝑣𝑦𝑦(𝑥3 − 𝑥2) 𝑣𝑦𝑦(𝑥1 − 𝑥3) 𝑣𝑦𝑦(𝑥2 − 𝑥3)
]                                                           (I—83) 

Substitution of equation (I—83) into equation (I—79) gives 

[𝐾𝑣]𝑒 = ĉ ∫ ∫ {
1 − 𝜉 − 𝜂

𝜉
𝜂

} : [
𝑣𝑥𝑥(𝑦2 − 𝑦3) 𝑣𝑥𝑥(𝑦3 − 𝑦1) 𝑣𝑥𝑥(𝑦1 − 𝑦2)

𝑣𝑦𝑦(𝑥3 − 𝑥2) 𝑣𝑦𝑦(𝑥1 − 𝑥3) 𝑣𝑦𝑦(𝑥2 − 𝑥3)
] 𝑑𝜉𝑑𝜂

1−𝜂

0

1

0
     

                                                                                                                                       (I—84) 

According to the Frobenius inner product of a vector and matrix, 

[𝐾𝑣]𝑒 =

ĉ𝑣𝑥𝑥 ∫ ∫ [

(1 − 𝜉 − 𝜂)(𝑦2 − 𝑦3) (1 − 𝜉 − 𝜂)(𝑦3 − 𝑦1) (1 − 𝜉 − 𝜂)(𝑦1 − 𝑦2)

𝜉(𝑦2 − 𝑦3) 𝜉(𝑦3 − 𝑦1) 𝜉(𝑦1 − 𝑦2)

𝜂(𝑦2 − 𝑦3) 𝜂(𝑦3 − 𝑦1) 𝜂(𝑦3 − 𝑦1)
] 𝑑𝜉𝑑𝜂

1−𝜂

0

1

0
+

ĉ𝑣𝑦𝑦 ∫ ∫ [

(1 − 𝜉 − 𝜂)(𝑥3 − 𝑥2) (1 − 𝜉 − 𝜂)(𝑥1 − 𝑥3) (1 − 𝜉 − 𝜂)(𝑥2 − 𝑥3)

𝜉(𝑥3 − 𝑥2) 𝜉(𝑥1 − 𝑥3) 𝜉(𝑥2 − 𝑥3)

𝜂(𝑥3 − 𝑥2) 𝜂(𝑥1 − 𝑥3) 𝜂(𝑥2 − 𝑥3)
] 𝑑𝜉𝑑𝜂

1−𝜂

0

1

0
=

ĉ𝑣𝑥𝑥

6
[

𝑦2 − 𝑦3 𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑦2 − 𝑦3 𝑦3 − 𝑦1 𝑦1 − 𝑦2
𝑦2 − 𝑦3 𝑦3 − 𝑦1 𝑦1 − 𝑦2

] +
ĉ𝑣𝑦𝑦

6
[

𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1
𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1
𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1

]                             (I—85) 

Finally, the matrix for advection can be written as 

[𝐾𝑣]𝑒 = [𝐾𝑣]𝑥𝑥 + [𝐾𝑣]𝑦𝑦                                                                                                 (I—86) 
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(l) The evaluation of solid volume fraction for triangular element 

In equations (7—47) and (7—48), the length of each face of element is required to be 

evaluated first, and it can be simply conducted as 

𝐿1 = √(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2                                                                                  (I—87a) 

𝐿2 = √(𝑥3 − 𝑥1)2 + (𝑦3 − 𝑦1)2                                                                                  (I—87b) 

𝐿3 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                                                                  (I—87c) 

the relationship between the node number and face number can be seen in Figure I.2. 

Once the lengths are calculated, the angles can be evaluated as 

𝒔𝒊𝒏 (𝛽1) = √
1−(𝐿2

2+𝐿3
2−𝐿1

2)

(2𝐿2𝐿3)2
                                                                                             (I—88a) 

𝒔𝒊𝒏 (𝛽2) = √
1−(𝐿1

2+𝐿3
2−𝐿2

2)

(2𝐿1𝐿3)2
                                                                                            (I—88b) 

𝒔𝒊𝒏 (𝛽3) = √
1−(𝐿1

2+𝐿2
2−𝐿3

2)

(2𝐿1𝐿2)2
                                                                                            (I—88c) 

 

 

Figure I.2: the numbering of triangular element 

At last, the semi-parameter of the triangle is evaluated as 

𝑃 =
1

3
(𝐿1 + 𝐿2 + 𝐿3)                                                                                                   (I—89) 
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Appendix II The user Manual for 1D 

programme 

II.1 The programme for one-dimensional simulation 

II.1.1 end user manual 

The programme for one-dimensional study is under the folder named as 

“Solidification_V20”. And “Solidification_V20.exe” is the executable file. In order to run 

this program, the file “SIM_DATA.dat” must be contained in the same folder of 

“Solidification_V20”. Because the file “SIM_DATA.dat” is used to give the material 

properties, mesh and time step to the programme. This file can be opened and edited by the 

Notepad in Windows operating system. The corresponding arguments in the programme, 

together with respect to values in the file “SIM_DATA.dat”, are displayed in the box. 

!---------------------------------Format-of-SIM_DATA.dat------------------------------------------- 

cap_liq cap_sol con_liq con_sol den_liq den_sol lat_heat t_sol t_liq 

total_length 

NELS 

no_steps 

tinit 

hc 

material_velocity 

heat_source 

be_control 

dtime_in 

mat_form 
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dis_form 

l_solver 

t_solver 

jout, cout 

snode, tpri, npri 

no_convergence 

sigma 

Pbeta 

relax 

!------------------------------------------------------------------------------------------------------------ 

where 

cap_liq: specific thermal capacitance of liquid 𝑐𝑙 (𝐽/𝑘𝑔℃); 

cap_sol: specific thermal capacitance of solid 𝑐𝑠 (𝐽/𝑘𝑔℃; 

con_liq: thermal conductivity of liquid 𝑘𝑙 (𝑊/𝑚℃); 

con_sol: thermal conductivity of solid 𝑘𝑠 (𝑊/𝑚℃); 

den_liq: density of liquid 𝜌𝑙 (𝑘𝑔/𝑚
3); 

den_sol: density of solid 𝜌𝑠 (𝑘𝑔/𝑚
3); 

lat_heat: Latent heat (𝐽/𝑘𝑔); 

t_sol: solidus temperature (℃); 

t_liq: liquidus temperature (℃); 

total_length: total length of the one-dimensional slab; 

NELS: total number of elements; 

T_init: initial temperature (℃); 
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T_amb: ambient temperature (℃); 

h_c: forced convective coefficient (𝑊/𝑚2℃); 

material_velocity: material velocity (𝑚/𝑠); 

heat_source: external heat source (𝐽); 

be_control: 1.0D0 = Neumann’s boundary condition, 0.0D0 = isolation; 

dtime_in: time step size (𝑠𝑒𝑐); 

no_steps: total number of time steps; 

THETA: 𝜃 = 1 for implicit scheme, 𝜃 = 0.5 for Crank-Nicolson scheme and 𝜃 = 0 for    

               explicit scheme; 

mat_form: LUMPED/lumped = lumped capacitance, CONSIST/consist = consistent matrix; 

dis_form: FUPWIND/fupwind = full upwind,  PUPWIND/pupwind = Perov-Garkin method, 

CENTRAL/central = central difference); 

SOLVER: ANATST/anatst = analytical method, SECANT/ secant = secant method, 

HOMOTO/homoto = homotopy method, LINEAR/linear = predictor-corrector 

method; 

Non_Physical: CVCMO/cvcmo: the non-physical capacitance method, 

                        CVCMV/cvcmv: the control volume capacitance method, 

                        CVCMX/cvcmx: the weak annihilation method, 

                        CVCMU/cvcmu: non-physical capacitance + continuous advection + non-

physical source method, 

                         CVCMQ/cvcmq: non-physical source method; 

JOUT: data of time step JOUT is recorded in the file “TEST.res” for debug; 

COUT: data of convergence step COUT is recorded in the file “TEST.res” for debug; 

SNODE: results of node number “SNODE” is displayed on screen, also documented in the 

file “ERROR.csv”. 

TPRI: result is collected every “TPRI” time step; 
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NPRI: result is collected every “NPRI” node; 

No_convergence: Maximum number of convergence loop is set to prevent infinite loop; 

relax: relaxation factor for non-physical source method. 

Note: All floats in the programme are double precision, thus the value should be given as 

500.0D0, where “D0” informs the program this value is in double precision. For string 

argument such as “Non_Physical”, the string should be all in uppercase or in lowercase. 

Other files contained in the folder “Solidification_V20” are 

ALL_RESULTS.csv: this file saves the nodal temperatures with respect to time; 

BETA.csv: this file saves the upwind factor 𝛽 for exam; 

CAPACITANCE.csv: this file saves the non-physical capacitance of element with respect 

to time; 

CONDUCTIVITY.csv: this file saves the conductivity of element with respect to time; 

ENTHALPY.csv: this file saves the nodal enthalpy with respect to time; 

NON_PHYSICAL_SOURCE_TERM.csv: this file saves the non-physical source with 

respect to time; 

TEST.res: this file saves the matrices, loading vectors, temperatures, etc. for debug. 

Note: the format  “*.csv” is 

!------------------------------------------------------------------------------------------------------------ 

VALUE,VALUE, VALUE, VALUE,… 

VALUE,VALUE, VALUE, VALUE,… 

VALUE,VALUE, VALUE, VALUE,… 

!------------------------------------------------------------------------------------------------------------ 

This format is readable by the package “Microsoft Excel for a quick check. It is also readable 

by the package “Wolfram Mathematics”, which can be used for plotting. All files have a 

storage limitation (1228800 bite). However, users can set “TPRI” and “NPRI” to prevent the 
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data overflow. The file “TEST.res” can be used to examine the assembled matrices and 

loading vectors, but the number of element NELS<=10 is necessary. 

The execution of program “Solidification_V20.exe” requires user to specify the file name to 

save the example nodal profile as shown in Figure II.1. The user can give any name to it, but 

the string has to be no more than 10 characters long including the file extension name “.csv”. 

This file saves the corresponding analytical solution of node “SNODE”, the numerical 

solution of node “SNODE” and the numerical solution of node “(SNODE − 1)/3 ∗ 2 + 1”. 

This file helps for post-process such as plotting by Mathematica. 

 

Figure II.1: The input of file name for result output 

Then, the program contains several statements “PAUSE”. At first “PAUSE”, which is 

displayed in Figure II.2, users can check whether the data (i.e. material properties, mesh 

information and selected method etc.) is correctly assigned or not. By pressing the key 

“ENTER”, execution continues. As program continues, Figure II.3 will display. The “TIME 

STEP J PASS” means that the time step “J” is successfully computed. Then the result of 

example node 16 (SNODE) is displayed. The information includes the numerical solution as 

“NUMERICAL SOLN”, the corresponding analytical solution as “ANALYTICAL SOLN”, 

the maximum error is “ERR”, and the maximum percentage error is “% ERR”. The argument 

“MAX_ERR” refers to the tolerances |F(T𝑘+1
𝑛+1)|  for secant method and |H(T𝑘+1

𝑛+1, 𝜆)| for 

homotopy method. Detailed information can be seen in section 5.4 of chapter 5 and section 

7.4.1 of chapter 7. For predictor-corrector method, please ignore this display. 
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Figure II.2: Display the assigned data 

 

Figure II.3: Display during the solution 
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Figure II.4: The display when the program executed successfully 

When the program finishes the computation, it displays information as shown in Figure II.4. 

The argument “TIME SPENT” provides the time for execution with respect to CPU time. 

The argument “MAX. ERROR” provides the maximum error of the example node after the 

comparison through the results of all time steps. The argument “% ERROR” provides the 

maximum percentage error of the example node after the comparison through the results of 

all time steps. 

It has to be mentioned that the built-in analytical solution is calculated in the absence of 

material velocity, which derivation can be seen in chapter 3. Thus, when the advection-

diffusion is involved in the numerical simulation, please ignore the result comparison with 

the analytical solution. 

II.2.2 developer’s manual 

The programme is originally coded with the compiler NAG Fortran Builder 5.2, and it is 

compatible for the version 5.3. The programme is created as a project, which can be seen in 

Figure II.5. It has to be noticed that the NAG Library Application is selected, because the 

programme calls some routines from NAG Fortran Library Mark 22. For that reason, the 

NAG Fortran Library Mark 22 is required to be installed in the computer. If user doesn’t 
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have the library, the subroutines such as “DGESV” have to be deleted by hand, then the 

secant method and the homotopy method will not be available, and only the Gauss-Jordan 

elimination method is available as a solver. The project can be directly opened by double 

clicking the file “Solidification_V20.fbp” in the folder “Solidification_V20”. And the 

project only contains one source file which is “Solidification_V20.f95”. 

 

Figure II.5: The Fortran project 

The Main structure of the programme is shown as below. 

!-------------------------------------------Declare-the-arguments--------------------------------------

- 

PROGRAM Solidification_V20 

Define arguments; 

Input data such as material properties, mesh density, time step, solution methods, etc; 

Allocate arrays for coefficient matrices and loading vectors; 

Prepare the files for output. 

!------------------------------------------Main-Program----------------------------------------------- 
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timestep_loop1 : DO  J = 1, Time_steps 

   SolverSelection : IF(SOLVER == 'ANATST' .OR. SOLVER == 'anatst') THEN  

       Execute the module for analytical method 

   ELSEIF(SOLVER == 'SECANT' .OR. SOLVER == 'secant') THEN 

       Execute the module for secant method 

  ELSEIF(SOLVER == 'HOMOTO' .OR. SOLVER == 'homoto') THEN 

       Execute the module for homoto method 

  ELSEIF(SOLVER == 'LINEAR' .OR. SOLVER == 'linear') THEN 

       Execute the module for predictor corrector method 

  END IF 

  Output data returned for time step J. 

END DO 

!------------------------------------------------------------------------------------------------------------ 

CONTAINS 

Subroutines ready to be called by the main programme. 

END PROGRAM Solidification_V20 

!------------------------------------------------------------------------------------------------------------ 

Above describes the fundamental structure of the program. The program involves thousands 

of lines of statements and explanation of the whole program requires a great many pages. 

Fortunately, the program is “modularized”, and the modules are programmed with similar 

procedure and logic. Thus, this manual only explains one module as an example, which 

includes the functions of statement and their relation to the theory. The module explained 

here is the module for the non-physical capacitance method, in which the non-physical 

capacitance is applied for both temporal term and the advective term. This is illustrated as 
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the non-physical capacitance method in chapter 6. And this part of code is for the first time 

step and first convergence loop for predictor corrector method. 

For each time step and each iteration, it is important that some arrays (i.e. the coefficient 

matrices and the loading vectors) are required to be initiated. Especially for the assembled 

matrices, the algorithm of assembly is incrementation, thus clearing the data from the 

previous iteration is very important. The subroutine “ZERO” assigns the value 0 to arrays. 

!------------------------------------------------------------------------------------------------------------ 

CALL ZERO(C_matn, K_matn, Kv_matn, C_matn1, K_matn1, Kv_matn1, GC_matn,     & 

GK_matn, GKv_matn, GC_matn1, GK_matn1, GKv_matn1, LHS_MAT, RHS_MAT,     & 

gs_n, gs_n1, q_n, q_n1, Enthalpy_s, Jacob_F, Inv_JF, nonQ_n1, nonQ_n, nonQ_n1,        & 

G_nonQ, BETA, Jacob_T, Inv_JT) 

!------------------------------------------------------------------------------------------------------------ 

For the first time step of predictor corrector method, the explicit time approximation is 

adopted. Thus, the blending factor 𝜃 is set to be 0.0D0. The related theory can be seen in 

section 4.2 in chapter 4 and section 6.3 in chapter 6.  

!------------------------------------------------------------------------------------------------------------   

    THETA = 0. 0D0 

!------------------------------------------------------------------------------------------------------------ 

Then, the sensible enthalpy is calculated by the following loop. The calculation follows the 

identity that 

𝐻𝑁𝑁 = {
𝜌𝑙𝑐𝑙𝑇𝑁𝑁     𝑇𝑠𝑜𝑙 ≤ 𝑇𝑁𝑁
𝜌𝑠𝑐𝑠𝑇𝑁𝑁     𝑇𝑁𝑁 < 𝑇𝑠𝑜𝑙

                                                                                     (II—1) 

where 𝑁𝑁 is the node number, and NNODE is the total number of nodes. 

!------------------------------------------------------------------------------------------------------------ 

      Node_Loops_03 : DO NN = 1, NNODE 

        IF (GTp_n1(NN) > T_liq) THEN 

          Enthalpy_n1(NN) = (GTp_n1(NN) * den_liq * cap_liq) 
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        ELSEIF (GTp_n1(NN) <= T_liq) THEN 

          Enthalpy_n1(NN) = (GTp_n1(NN) * den_sol * cap_sol) 

        END IF 

      END DO Node_Loops_03 

!------------------------------------------------------------------------------------------------------------ 

Once the argument “Non_physical” is assigned as “CVCMO” or “cvcmo”, it means that the 

non-physical capacitance method is selected. 

!------------------------------------------------------------------------------------------------------------ 

IF(Non_physical == 'CVCMO' .OR. Non_physical == 'cvcmo') THEN 

!------------------------------------------------------------------------------------------------------------ 

Then, the following loop evaluates the coefficients such as solid volume fraction, non-

physical capacitance and conductivity for the element with the number “IEL”. The array 

“NUM” records the node number of element “IEL”. After the evaluations of coefficients, 

the matrices are established and directly being assembled to the global coefficient matrices. 

!------------------------------------------------------------------------------------------------------------ 

ElementLoop_03 : DO IEL = 1, NELS 

          NUM = (/IEL, IEL + 1/) 

!------------------------------------------------------------------------------------------------------------ 

The subroutine “Sol_Fraction” evaluates the solid volume fraction via the element based 

temperature approximation. The theory can be seen in chapter 3 as equation (3—49) and in 

chapter 6 as equation (6—7). 

!------------------------------------------------------------------------------------------------------------ 

          CALL Sol_Fraction(GT_n(NUM(1)), GT_n(NUM(2)), T_liq, gs_n(IEL), Pbeta) 

          CALL Sol_Fraction(GTp_n1(NUM(1)), GTp_n1(NUM(2)), T_liq, gs_n1(IEL),      &   

Pbeta) 
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!------------------------------------------------------------------------------------------------------------ 

The subroutine “nonc” evaluates the non-physical capacitance, according to equations (3—

55) and (6—53). This related to the concept (a), which is described in chapter 6. 

!------------------------------------------------------------------------------------------------------------ 

          CALL nonc(GT_n(NUM(1)), GT_n(NUM(2)), GTp_n1(NUM(1)),                         &  

GTp_n1(NUM(2)), gs_n(IEL), gs_n1(IEL), lat_heat, h_sol, den_liq,   & 

den_sol, cap_liq, cap_sol, t_liq, capacitance_n(IEL),                             & 

capacitance_n1(IEL), Senthalpy_n(IEL), Senthalpy_n1(IEL), 1.0D0, 

e_length(iel), J, CLOOP, IEL)                                                               

!------------------------------------------------------------------------------------------------------------ 

The subroutine “nonk1” evaluates the conductivity for different time steps. It is known that 

the discontinuity embodied in the flux term is annihilated, thus, a mixture conductivity is 

applied. The annihilation procedure can be seen in section 3.4 in chapter 3, and section 5.4.1 

in chapter 5. The mixture conductivity can be seen in equation (3—53). 

!------------------------------------------------------------------------------------------------------------ 

          CALL nonk1(con_liq, con_sol, gs_n(iel), conductivity_n(iel))       

          CALL nonk1(con_liq, con_sol, gs_n1(iel), conductivity_n1(iel)) 

!------------------------------------------------------------------------------------------------------------ 

Once the non-physical capacitance and conductivity are evaluated, they are substituted into 

the elemental matrices. The subroutine “rod_cm” constructs elemental matrices for non-

physical capacitance. The lumped form and the consistent form can be selected by setting 

the argument “mat_form”. The subroutine “rod_km” constructs the conductivity matrix. 

The subroutine “beta_get” calculates the parameter 𝛽 for Patrov-Galerkin method. It is then 

substituted into subroutine “rod_kvm” to construct matrix for advective term. 

The theory related to the construction of each matrix is described in section 4.2 in chapter 4 

and section 6.3 in chapter 6. 

The subroutine  “matrix_assembly” assembles the matrices. 
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!------------------------------------------------------------------------------------------------------------ 

          CALL rod_cm(C_matn, E_length(IEL), mat_form, capacitance_n1(IEL)) 

          CALL rod_cm(C_matn1, E_length(IEL), mat_form, capacitance_n1(IEL)) 

          CALL rod_km(K_matn, conductivity_n(IEL), E_length(IEL)) 

          CALL rod_km(K_matn1, conductivity_n1(IEL), E_length(IEL))           

          CALL beta_get(BETA(IEL), material_velocity, conductivity_n1(IEL),  & 

capacitance_n1(IEL), e_length(iel), dis_form) 

          CALL rod_kvm(kv_matn, capacitance_n1(IEL), material_velocity, BETA(IEL)) 

          CALL rod_kvm(kv_matn1, capacitance_n1(IEL), material_velocity, BETA(IEL)) 

          CALL matrix_assembly(GC_matn, C_matn, NUM(1), NUM(2)) 

          CALL matrix_assembly(GK_matn, K_matn, NUM(1), NUM(2)) 

          CALL matrix_assembly(GKv_matn, kv_matn, NUM(1), NUM(2)) 

          CALL matrix_assembly(GC_matn1, C_matn1, NUM(1), NUM(2)) 

          CALL matrix_assembly(GK_matn1, K_matn1, NUM(1), NUM(2)) 

          CALL matrix_assembly(GKv_matn1, kv_matn1, NUM(1), NUM(2)) 

!------------------------------------------------------------------------------------------------------------ 

        END DO ElementLoop_03 

     ELSEIF … 

!------------------------------------------------------------------------------------------------------------ 

This program includes the method “CVCMO/cvcmo” (non-physical capacitance method) as 

well as other methods, e.g. 

Non_Physical: CVCMO/cvcmo: the non-physical capacitance method, 

                        CVCMV/cvcmv: the control volume capacitance method, 

                        CVCMX/cvcmx: the weak annihilation method, 
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                        CVCMC/cvcmc: non-physical capacitance + continuous advection + non-

physical source method, 

                         CVCMQ/cvcmq: non-physical source method; 

They are programmed similarly, thus they are omitted in this manual. 

Once the coefficient matrices are created, the next step is to construct loading vectors for 

boundary conditions (BCs). The array “BC_ACTIVE” controls the boundary where BCs are 

applied. For example, “BC_ACTIVE = (/1.0D0, 0.0D0/)” means that the BC is applied on 

the left of the one-dimensional model and the right boundary is isolated. 

As described in chapter 4, “two adjacent elements share the same boundary node, which will 

make the numerical flux 𝑞𝜍 cancel for any node 𝜍 shared by two elements after assembly. 

The cancellation of numerical flux is because that, at node 𝜍, the flux leaving the present 

element and the flux entering the next element are equal in quantities, but they are in opposite 

directions and have opposite signs in equations.” Thus only the first node and last node are 

required to be evaluated. 

!------------------------------------------------------------------------------------------------------------ 

h_c = BC_ACTIVE(1) * hc_in * conductivity_n1(1) + BC_ACTIVE(2) * hc_in *             & 

conductivity_n1(NELS) 

q_n(1) = BC_ACTIVE(1) * D_time * (1.0D0 - THETA) * h_c * T_amb 

q_n1(1) = BC_ACTIVE(1) * D_time * THETA * h_c * T_amb 

 q_n(NNODE) = BC_ACTIVE(2) * D_time * (1.0D0 - THETA) * h_c * T_amb 

 q_n1(NNODE) = BC_ACTIVE(2) * D_time * THETA * h_c * T_amb 

!------------------------------------------------------------------------------------------------------------ 

As described in section 6.2, the system of equation appears in the form as equation (6—5). 

According to that, the arrays 

LHS_MAT=[𝐶̂𝑛+1] + 𝜃∆𝑡[𝐾𝑣
𝑛+1] + 𝜃∆𝑡[𝐾𝑛+1]                                                         (II—2) 

and 

RHS_MAT=[𝐶̂𝑛] − (1 − 𝜃)∆𝑡[𝐾𝑣
𝑛] − (1 − 𝜃)∆𝑡[𝐾𝑛]                                               (II—3) 

respectively. 
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!------------------------------------------------------------------------------------------------------------     

 LHS_MAT = GC_matn1 +  D_time * THETA * GK_matn1 + D_time * THETA *          & 

GKv_matn1 

 RHS_MAT = GC_matn - D_time * (1.0D0 - THETA) * GK_matn - D_time *                 & 

(1.0D0 - THETA) * GKv_matn 

!------------------------------------------------------------------------------------------------------------ 

Since, the Newton’s law of cooling is applied as BCs, the unknown temperature requires the 

forced convective coefficient ℎ𝑐  to be updated into the coefficient matrices. Thus the 

following procedure is adopted. 

!------------------------------------------------------------------------------------------------------------ 

 LHS_MAT(1, 1) = LHS_MAT(1, 1) + BC_ACTIVE(1) * THETA * D_time * h_c 

 LHS_MAT(NNODE, NNODE) = LHS_MAT(nnode, nnode) + BC_ACTIVE(2) *         & 

THETA * D_time * h_c 

 RHS_MAT(1, 1) = RHS_MAT(1, 1) - BC_ACTIVE(1) * (1.0D0 - THETA) *                & 

D_time * h_c 

 RHS_MAT(NNODE, NNODE) = RHS_MAT(nnode, nnode) - BC_ACTIVE(2) *         & 

(1.0D0 - THETA) * D_time * h_c 

!------------------------------------------------------------------------------------------------------------ 

From now on, the coefficient matrices and the loading vectors are ready. The system of 

equations can be solved by the following statements. The string “GJE/gje” refers to the 

Gauss Jordan elimination method, which is independent of NAG Fortran library; the string 

“NAG/nag” is the LU composition method which is call from NAG Fortran library. 

!------------------------------------------------------------------------------------------------------------ 

GT_s = MATMUL(RHS_MAT,GT_n) + q_n1 + q_n1 - G_nonQ 

IF (lesolver == 'GJE' .OR. lesolver == 'gje') THEN 

  CALL gaussj(LHS_MAT, tps_n1, GT_s, NNODE) 
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ELSEIF (lesolver == 'NAG' .OR. lesolver == 'nag') THEN 

  GTp_n1 = GT_s 

   CALL DGESV(W,1,LHS_MAT,LDA,IPIV,GTp_n1,LDB,INFO) 

END IF 

!------------------------------------------------------------------------------------------------------------ 

The following algorithm is an over-shooting/under-shooting technique, similar to the 

technique that is applied for liquid fraction in references [37, 46]. It follows the fact that, the 

temperature of future time step should always be less than or equal to the temperature of 

present time step in a cooling process. 

!------------------------------------------------------------------------------------------------------------ 

      DO NN = 1, NNODE 

        IF(GTp_n1(NN) > GT_n(NN) .AND. T_init >=T_sol) THEN 

          GTp_n1(NN) = GT_n(NN) 

       ELSEIF(GTp_n1(NN) < GT_n(NN) .AND. T_init <T_sol) THEN 

          GTp_n1(NN) = GT_n(NN) 

        END IF 

      END DO 

!------------------------------------------------------------------------------------------------------------ 

Then, the nodal temperature of future time step is computed as “GTp_n1”. The argument 

“GTp_n1” is used rather than “GT_n1” means that this future time step temperature requires 

to be checked. If it doesn’t meet the specified criterion, it goes back to the next convergence 

loop. 

!------------------------------------------------------------------------------------------------------------ 
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The following example is a subroutine that calculates the non-physical capacitance. For 

convenience, all subroutines are put into the same source file as “Solidification_V20.f95”, 

which are under the statement “CONTAINS”.  

!------------------------------------------------------------------------------------------------------------ 

SUBROUTINE nonc(T1_n, T2_n, T1_n1, T2_n1, gs, gs1, lat, h_sol, den_l, den_s, cap_l, & 

cap_s, T_liq, cap_n, cap_n1, h_n, h_n1, area, elength, J, CLOOP, IEL) 

DOUBLE PRECISION, INTENT(IN) :: T1_n, T2_n, T1_n1, T2_n1, gs, gs1, lat, h_sol,    & 

den_l, den_s, cap_l, cap_s, t_liq, area, elength  

INTEGER, INTENT(IN) :: J, CLOOP, IEL 

DOUBLE PRECISION, INTENT(INOUT) :: cap_n, cap_n1 

DOUBLE PRECISION, INTENT(OUT) :: h_n, h_n1 

DOUBLE PRECISION :: T11_n, T22_n, T11_n1, T22_n1 

DOUBLE PRECISION :: ms_n, ms_n1, ml_n, ml_n1, mt_n, mt_n1, e_vol, hn_d 

DOUBLE PRECISION :: non_h, tn_vol, tn1_vol 

non_h = 0.0D0 

cap_n1 = 0.0D0 

!------------------------------------------------------------------------------------------------------------ 

The following conditional execution statements do not have any physical meaning. These 

are applied to mathematically minimise the effect of any oscillations during computation. 

Since they only affect the subroutine, which evaluates the non-physical capacitance, they 

have no influence on the main programme and the numerical results. 

!------------------------------------------------------------------------------------------------------------ 

IF (T1_n < T2_n) THEN 

  T11_n = T1_n 

  T22_n = T2_n 
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ELSE 

  T11_n = T2_n 

  T22_n = T1_n 

END IF 

 

IF (T1_n1 < T2_n1) THEN 

  T11_n1 = T1_n1 

  T22_n1 = T2_n1 

ELSE 

  T11_n1 = T2_n1 

  T22_n1 = T1_n1 

END IF 

!------------------------------------------------------------------------------------------------------------ 

e_vol = area * elength 

h_n = 0.0D0 

h_n1 = 0.0D0 

hn_d = 0.0D0 

non_h = 0.0D0 

!------------------------------------------------------------------------------------------------------------ 

The following statements calculate the mass of solid, the mass of liquid and the total mass 

of an element. 

!------------------------------------------------------------------------------------------------------------ 

ms_n = gs * den_s * e_vol 
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ms_n1 = gs1 * den_s * e_vol 

ml_n = (1.0D0 - gs) * den_l * e_vol 

ml_n1 = (1.0D0 - gs1) * den_l * e_vol 

mt_n = ms_n + ml_n 

mt_n1 = ms_n1 + ml_n1 

!------------------------------------------------------------------------------------------------------------ 

Then, the following statements calculate the values of terms ∫ 𝜌𝑛+1hn+1𝑑𝑉
Ωe

 and 

∫ 𝜌𝑛hn𝑑𝑉
Ωe

 , which appear in equations (3—46) and (3—51) in chapter 3 and in equation 

(6—8) in chapter 6. For an element, three conditions arise, i.e. the element is completely in 

liquid state (Υ𝑠 = 0); the element is partially in liquid state and partially in solid state (0 <

Υ𝑠 < 1); and the element is completely in solid state (Υ𝑠 = 1). The conditional execution 

statements are coded with respect to the element-based temperature approximation of solid 

volume fraction to inform the program in which condition the enthalpy is evaluated. The 

evaluation of terms ∫ 𝜌𝑛+1hn+1𝑑𝑉
Ωe

 and ∫ 𝜌𝑛hn𝑑𝑉
Ωe

 are conducted via equation (3—51) or 

(6—8). 

!------------------------------------------------------------------------------------------------------------ 

IF(gs == 0.0D0) THEN 

   h_n = den_l * e_vol * h_sol + e_vol * den_l * lat + (e_vol / 2.0D0) * den_l * cap_l * & 

(T11_n + T22_n - 2.0D0 * T_liq) 

ELSEIF(gs > 0.0D0 .AND. gs < 1.0D0) THEN 

   h_n = mt_n * h_sol + ml_n * lat + (e_vol * gs / 2.0D0) * (2.0D0 * T11_n - 2.0D0 * & 

T_liq + gs * (T22_n - T11_n)) * den_s * cap_s + (e_vol * (1.0D0 - gs) /    & 2.0D0) 

* (T11_n + T22_n - 2.0D0 * T_liq + gs * (T22_n - T11_n)) * den_l * & cap_l 

ELSE 

   h_n = den_s * e_vol * h_sol + den_s * cap_s * (e_vol / 2.0D0) * (T11_n + T22_n - & 

2.0D0 * T_liq) 
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END IF 

 

IF(gs1 == 0.0D0) THEN 

   h_n1 = den_l * e_vol * h_sol + e_vol * den_l * lat + (e_vol / 2.0D0) * den_l *       & cap_l 

* (T11_n1 + T22_n1 - 2.0D0 * T_liq) 

ELSEIF(gs1 > 0.0D0 .AND. gs1 < 1.0D0) THEN 

   h_n1 = mt_n1 * h_sol + ml_n1 * lat + (e_vol * gs1 / 2.0D0) * (2.0D0 * T11_n1 - & 2.0D0 

* T_liq + gs1 * (T22_n1 - T11_n1))* den_s * cap_s + (e_vol * (1.0D0 - gs1) / & 2.0D0) * 

(T11_n1 + T22_n1 - 2.0D0 * T_liq + gs1 * (T22_n1 - T11_n1)) * den_l * cap_l 

ELSE 

   h_n1 = den_s * e_vol * h_sol + den_s * cap_s * (e_vol / 2.0D0) * (T11_n1 + T22_n1 - & 

2.0D0 * t_liq) 

END IF 

!------------------------------------------------------------------------------------------------------------ 

The following statements calculate the volumetric temperatures appeared as denominator in 

equation (3—52). 

!------------------------------------------------------------------------------------------------------------ 

tn_vol = (area * elength / 2.0D0) * (T11_n + T22_n) 

tn1_vol = (area * elength / 2.0D0) * (T11_n1 + T22_n1) 

!------------------------------------------------------------------------------------------------------------ 

The evaluation of volumetric temperatures has one problem. It is highly possible that 

tn_vol − tn1_vol = 0. The denominator returned as 0 definitely gives rise to error. Thus, the 

conditional execution statements are programmed to prevent this error. Despite the situation 

that the element is complete solid or liquid, the following equation can be applied to prevent 

the 0 denominator, which is 
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𝑐̂𝑛+1 =
∫ 𝜌𝑛+1ℎ𝑛+1𝑑𝑉𝛺𝑒

−∫ 𝜌𝑛ℎ𝑛𝑑𝑉𝛺𝑒
+𝑐̂𝑛 ∫ 𝑇𝑛𝑑𝑉𝛺𝑒

∫ 𝑇𝑛+1𝑑𝑉
𝛺𝑒

                                                                 (II—3) 

However, equation (II—3) is no longer an averaged approach as described in chapter 3. Thus, 

the following equation is required, which is 

𝑐̂ =
𝑐̂𝑛+1+𝑐̂𝑛

2
                                                                                                                    (II—4) 

!------------------------------------------------------------------------------------------------------------ 

IF(T11_n >= t_liq .AND. T22_n >= t_liq .AND. T11_n1 >= t_liq .AND. T22_n1 >= t_liq) 

THEN 

  cap_n1 = cap_l * den_l 

ELSEIF (T11_n < t_liq .AND. T22_n < t_liq .AND. T11_n1 < t_liq .AND. T22_n1 < t_liq) 

THEN 

  cap_n1 = cap_s * den_s 

ELSE 

!  non_h = (gs - gs1) * (den_l * (cap_s * T_liq - cap_l * T_liq) + den_l * lat) * elength * & 

area 

!------------------------------------------------------------------------------------------------------------ 

  IF (ABS(tn_vol - tn1_vol) <= 1.E-10) THEN 

    cap_n1 = cap_n * tn_vol / tn1_vol + (h_n1 - h_n - non_h) / tn1_vol 

    cap_n1 = (cap_n + cap_n1) / 2.0D0 

  ELSE 

    cap_n1 =(h_n1 - h_n - non_h) / (tn1_vol - tn_vol) 

  END IF 

END IF 

!------------------------------------------------------------------------------------------------------------ 



Appendix II     255 
 

 

IF(IEL == 1 .AND. J == 1) THEN 

  cap_n1 = gs1 * den_s * cap_s + (1 - gs1) * den_l * cap_l 

END IF 

!------------------------------------------------------------------------------------------------------------ 

END SUBROUTINE nonc 

!------------------------------------------------------------------------------------------------------------ 

Now the subroutine “nonc” calculates the non-physical capacitance and returns the value to 

the main program “Solidification_V20”. As the program contains a lot of subroutines, they 

can be decompiled in a similar approach as this example. 
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Appendix III The user Manual for 2D 

Programme 

III.1 The programme for two-dimensional simulation 

III.1.1 end user manual  

The program for two-dimensional simulation is coded in a similar manner as one-

dimensional simulation. However, the mesh in two-dimension is more complicated than the 

mesh in one-dimension. It has influence not only on the matrix assembly, but also on the 

data output and post-processing. Figure III.1 is a sketch of a rectangle meshed in this 

program. The simple model is meshed by 32 elements, which generates 25 nodes. Their 

order of number is shown in Figure III.1. The circled numbers ○1 , ○2  and ○3  are the local 

node number of an element, the Roman number refers to the number of element, and the 

Arabic number refers to the global node number. With these numbers, the program can 

assemble the coefficient matrices, calculate non-physical variables with respect to element 

and organise data output. 
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Figure III.1: The numbering of mesh 

The two-dimensional program also contains a “SIM_DATA.dat” file which stores the 

important data such as the material properties, the mesh and time step information and the 

selected solution methods. It is editable by the Notepad in Windows operating system, and 

it must be stored in the main folder of the program, which is “Sldfctn2D_V3”. The 

statements corresponding to the format of the file “SIM_DATA.dat” in the program is shown 

below. 

!--------------------------------------READ-MATERIAL-PROPERTIES--------------------------- 

READ(91, *) cap_liq, cap_sol, den_liq, den_sol, lat_heat, t_sol, t_liq 

READ(91, *) xcon_liq, ycon_liq, xcon_sol, ycon_sol 

!------------------------------------------------------------------------------------------------------------ 



Appendix III     258 
 

The number “91” refers to the file “SIM_DATA.dat”. These two lines collect the material 

properties from file “SIM_DATE.dat” to the main program. The arguments are defined as 

double precision, and their meanings are listed as below, 

cap_liq: specific thermal capacitance of liquid 𝑐𝑙 (𝐽/𝑘𝑔℃); 

cap_sol: specific thermal capacitance of solid 𝑐𝑠 (𝐽/𝑘𝑔℃; 

con_liq: thermal conductivity of liquid 𝑘𝑙 (𝑊/𝑚℃); 

con_sol: thermal conductivity of solid 𝑘𝑠 (𝑊/𝑚℃); 

den_liq: density of liquid 𝜌𝑙 (𝑘𝑔/𝑚
3); 

den_sol: density of solid 𝜌𝑠 (𝑘𝑔/𝑚
3); 

lat_heat: Latent heat (𝐽/𝑘𝑔); 

t_sol: solidus temperature (℃); 

t_liq: liquidus temperature (℃); 

xcon_liq: principal thermal conductivity of liquid 𝑘𝑙𝑥𝑥 in x direction (𝑊/𝑚℃); 

ycon_liq: principal thermal conductivity of liquid 𝑘𝑙𝑦𝑦 in y direction (𝑊/𝑚℃); 

xcon_sol: principal thermal conductivity of solid 𝑘𝑠𝑥𝑥 in x direction (𝑊/𝑚℃); 

ycon_sol: principal thermal conductivity of solid 𝑘𝑠𝑦𝑦 in y direction (𝑊/𝑚℃). 

It is slightly different from one-dimensional simulation that, the conductivity is input as 

principal thermal conductivity in case that nonhomogeneous conductivity is preferred. 

Detailed discussion about the theory can be seen in section 7.2.2 in Chapter 7. 

The next two lines provide the geometry of the model and the mesh. The statement 

“geometry” is a 1 by 2 array, which records the length and height of a rectangle. The 

argument “c_partition” is an integer which is the number of partitions along the horizontal 

edge. The argument “r_partition” is an integer which is the number of partitions along the 

vertical edge. For example, in the mesh as shown in Figure II.6, the array “geometry = 

(/0.10D0, 0.080D0)”, the arguments “c_partition = 4” and “r_partition = 4”. 
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!-------------------------------------------READ-MODEL-AND-MESH-IN------------------------- 

READ(91, *) geometry 

READ(91, *) c_partition, r_partition 

!------------------------------------------------------------------------------------------------------------ 

Once the material properties are defined, the mesh information is provided.  The following 

four lines provide the boundary conditions, which are 

t_init: initial temperature (℃); 

t_amb: ambient temperature (℃); 

hc_top: the forced convective coefficient applied on the top surface of model (𝑊/𝑚2℃); 

hc_btm: the forced convective coefficient applied on the bottom surface of model (𝑊/𝑚2℃); 

hc_lft: the forced convective coefficient applied on the left surface of model (𝑊/𝑚2℃); 

 hc_rgt: the forced convective coefficient applied on the right surface of model (𝑊/𝑚2℃); 

material_velocity: magnitude of material velocity ‖𝑣‖ (𝑚/𝑠); 

v_angle: angle of material velocity 𝜑 in arcdgree. 

!--------------------------------------READ-BOUNDARY-CONDITION-IN---------------------- 

READ(91, *) t_init 

READ(91, *) t_amb 

!------------------------------------------------------------------------------------------------------------ 

READ(91, *) hc_top, hc_btm, hc_lft, hc_rgt 

READ(91, *) material_velocity, v_angle 

!------------------------------------------------------------------------------------------------------------ 

The following statements specify the time step, the matrix format and the solution method 

applied. At the end of this part of the code is the configuration for the data output. The 

meanings of arguments are 
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dtime_in: time step size (𝑠𝑒𝑐); 

Time_steps: total number of time steps; 

mat_form: LUMPED/lumped = lumped capacitance, CONSIST/consist = consistent matrix; 

dis_form: FUPWIND/fupwind = full upwind,  PUPWIND/pupwind = Perov-Garkin method, 

CENTRAL/central = central difference); 

l_solver: NAG/nag = LU composition mehod, GJE/gle  = Gauss Jordan Elimination method; 

Non_Physical: CVCMO/cvcmo: the non-physical capacitance method, 

                         CVCOQ/cvcmq: new non-physical variable method; 

JOUT: data of time step JOUT is recorded in the file “TEST.res” for debug; 

COUT: data of convergence step COUT is recorded in the file “TEST.res” for debug; 

SNODE: results of node number “SNODE” is displayed on screen, also documented in the 

file “ERROR.csv”. 

Opnode : number of first node for the results output to the file “ALL_RESULTS.csv”; 

tpri: result is collected every “tpri” time step; 

vtk_pri: VTK file is constructed every “vtk_pri” time steps for visualization; 

relax: relaxation factor for non-physical source method; 

No_convergence: Maximum number of convergence loop is set to prevent infinite loop; 

file_path: the location where the VTK files are saved for visualization. 

!------------------------------------------------------------------------------------------------------------ 

READ(91, *) dtime_in 

READ(91, *) Time_steps 

READ(91, *) mat_form 

READ(91, *) dis_form 

READ(91, *) l_solver 
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READ(91, *) Non_physical 

READ(91, *) jout, cout 

READ(91, *) snode, opnode 

READ(91, *) tpri, vtk_pri 

READ(91, *) no_convergence 

READ(91, *) relax 

READ(91, *) file_path 

!------------------------------------------------------------------------------------------------------------ 

An example VTK file which relates to the model shown in Figure III.1 is displayed as below. 

The VTK file can be divided into four parts. In the first part, it records the co-ordinates for 

the nodes; in the second part, it saves the global node number for each element with respect 

to its local node number; in the third part, it saves the shape of the element, and the number 

“5” refers to the triangle; in the last part, it saves the nodal values. 

!------------------------------------------------------------------------------------------------------------ 

# vtk DataFile Version 3.1 

This is a temperature distribution at a time step 

ASCII 

DATASET UNSTRUCTURED_GRID 

POINTS 25 FLOAT 

0.000000 0.000000 0.000000 

0.025000 0.000000 0.000000 

0.050000 0.000000 0.000000 

0.075000 0.000000 0.000000 

0.100000 0.000000 0.000000 
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0.000000 0.020000 0.000000 

0.025000 0.020000 0.000000 

0.050000 0.020000 0.000000 

0.075000 0.020000 0.000000 

0.100000 0.020000 0.000000 

0.000000 0.040000 0.000000 

0.025000 0.040000 0.000000 

0.050000 0.040000 0.000000 

0.075000 0.040000 0.000000 

0.100000 0.040000 0.000000 

0.000000 0.060000 0.000000 

0.025000 0.060000 0.000000 

0.050000 0.060000 0.000000 

0.075000 0.060000 0.000000 

0.100000 0.060000 0.000000 

0.000000 0.080000 0.000000 

0.025000 0.080000 0.000000 

0.050000 0.080000 0.000000 

0.075000 0.080000 0.000000 

0.100000 0.080000 0.000000 

  

CELLS 32 128 

3 0 1 5  
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3 5 1 6  

3 1 2 6  

3 6 2 7  

3 2 3 7  

3 7 3 8  

3 3 4 8  

3 8 4  9  

3 5 6 10  

3 10 6 11  

3 6 7 11  

3 11 7 12  

3 7 8 12  

3 12 8 13  

3 8  9 13  

3 13  9 14  

3 10 11 15  

3 15 11 16  

3 11 12 16  

3 16 12 17  

3 12 13 17  

3 17 13 18  

3 13 14 18  

3 18 14 19  
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3 15 16 20  

3 20 16 21  

3 16 17 21  

3 21 17 22  

3 17 18 22  

3 22 18 23  

3 18 19 23  

3 23 19 24  

  

CELL_TYPES 32 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5   

  

POINT_DATA 25 

SCALARS Temperature float 

LOOKUP_TABLE default 

403.7609 

405.0000 

405.0000 

405.0000 

405.0000 

404.2692 

405.0000 

405.0000 



Appendix III     265 
 

405.0000 

405.0000 

404.3091 

405.0000 

405.0000 

405.0000 

405.0000 

404.3091 

405.0000 

405.0000 

405.0000 

405.0000 

404.4818 

405.0000 

405.0000 

405.0000 

405.0000 

!------------------------------------------------------------------------------------------------------------ 

The VTK file can be constructed by the program automatically. However, users need to 

define a location for the VTK files and it is recommended to create a folder named as “VTK” 

under the folder “Sldfctn2D_V3”. If the folder “Sldfctn2D_V3” is located directly under C 

drive, then the location for the VTK files should be specified as “file_path = 

C:\Sldfctn2D_V3\VTK”. 
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Once the “SIM_DATA.dat” is correctly set up, the execution of two-dimensional program 

can be achieved by simply double-clicking the file “Sldfctn2D_V3.exe” under the folder 

“Sldfctn2D_V3”. The on-screen display is similar to the one-dimensional program which is 

shown in Figure III.2. 

 

Figure III.2: On-screen display of two-dimensional program 

The programme is originally coded with the compiler NAG Fortran Builder 5.3. It is created 

as a project, which can be seen in Figure II.5. It has to be noticed that the NAG Library 

Application is selected, because the programme calls some routines from NAG Fortran 

Library Mark 22. For that reason, the NAG Fortran Library Mark 22 is required to be 

installed in the computer. If user doesn’t have the library, the subroutines such as “DGESV” 

have to be deleted by hand, and only the Gauss-Jordan elimination method is then available 

as a solver. The project can be directly opened by double-clicking the file 

“Sldfctn2D_V3.fbp” in the folder “Sldfctn2D_V3_V20”. And the project only contains one 

source file which is “Sldfctn2D_V3.f95”. 

The Main structure of the programme is shown as below. 

!------------------------------------------Declare-the-arguments--------------------------------------- 
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PROGRAM Sldfctn2D_V3 

Define arguments; 

Input data such as material properties, mesh density, time step, solution methods, etc; 

Allocate arrays for coefficient matrices and loading vectors; 

Prepare the files for output; 

Specify the boundary nodes and calculate the nodal-co-ordinates. 

!------------------------------------------Main-Program----------------------------------------------- 

timestep_loop1 : DO  J = 1, Time_steps 

   Construct VTK file for time step J 

   IF(Non_physical == 'CVCMO' .OR. Non_physical == 'cvcmo') THEN 

       Execute the module for non-physical capacitance method 

   ELSEIF(Non_physical == 'CVCOQ' .OR. Non_physical == 'cvcoq') THEN 

       Execute the module for non-physical capacitance + continuous advection + non-

physical source method 

 END IF 

   Write nodal temperatures to VTK file 

  Output data returned for time step J. 

END DO 

!------------------------------------------------------------------------------------------------------------ 

CONTAINS 

Subroutines ready to be called by the main programme. 

END PROGRAM Sldfctn2D_V3 

!------------------------------------------------------------------------------------------------------------ 
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Similar to one-dimensional program, the two-dimensional program is constructed by several 

modules. In the developer’s manual for one-dimensional program, the module for non-

physical capacitance method is selected as an example to describe the development of the 

program. In this manual for two-dimensional program, the non-physical source method, 

which removes discontinuity from advective term and be re-applied as non-physical source, 

is illustrated. This method is described as the non-physical variable method in chapter 4. In 

order to use this method, the string argument “Non_physical” has to be defined as “CVCOQ” 

or “cvcoq” through the file “SIM_DATA.dat”. 

!------------------------------------------------------------------------------------------------------------ 

… 

IF… 

ELSEIF(Non_physical == 'CVCOQ' .OR. Non_physical == 'cvcoq') THEN 

!------------------------------------------------------------------------------------------------------------ 

This module runs element by element. First of all, the 1 by 3 array “num” road the global 

node number of element “iel”. For example, in Figure III.1, if the element number “iel = IX”, 

the array “num = (/7, 8, 12/)”. 

!------------------------------------------------------------------------------------------------------------ 

      element_loopOQL1:  DO iel = 1, nels 

        num = el_nodes(1:3,iel) 

!------------------------------------------------------------------------------------------------------------ 

The subroutine “sol_fraction” calculates the solid volume fraction for triangular element. 

This calculation is achieved by the element-based temperature approximation, and the 

relative theory can be seen in section 7.3.1 in chapter 7. 

!------------------------------------------------------------------------------------------------------------ 

        CALL sol_fraction(gs(iel), gt_n(num(1)), gt_n(num(2)), gt_n(num(3)), t_liq,  & 

n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),                  & 

n_coordinate(1:2, num(3))) 
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        CALL sol_fraction(gs1(iel), gtp_n1(num(1)), gtp_n1(num(2)), gtp_n1(num(3)), & 

t_liq, n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),                & 

n_coordinate(1:2, num(3))) 

!------------------------------------------------------------------------------------------------------------ 

Once the solid volume fraction is evaluated, the next step is to evaluate the non-physical 

capacitance and the thermal conductivity. The subroutine “cvcm” calculates the non-

physical capacitance. The approximation of each term in the equations is described in section 

7.3.2 in chapter 7. The subroutine “nonk” evaluates the conductivity with the mixture 

technique. 

!------------------------------------------------------------------------------------------------------------ 

        CALL cvcm(capacitance_n1(iel), capacitance_n(iel), gt_n(num(1)), gt_n(num(2)), & 

gt_n(num(3))， gtp_n1(num(1)), gtp_n1(num(2)), gtp_n1(num(3)),            & 

t_liq, gs(iel), gs1(iel), den_sol, den_liq, cap_sol, cap_liq, h_sol, lat_heat, & 

n_coordinate(1:2, num(1)),  n_coordinate(1:2, num(2)),                  & 

n_coordinate(1:2, num(3)), IEL) 

        CALL nonk(conductivity_n1(1:2,iel), gs(iel), gs1(iel), xcon_sol, xcon_liq,  & ycon_sol, 

ycon_liq, theta) 

!------------------------------------------------------------------------------------------------------------ 

The subroutine “triangle_cm1” constructs the capacitance matrix for an element. The 

subroutine “triangle_km” constructs the conductivity matrix for the element. The lumped 

capacitance matrix is adopted for the subroutine. Their relative theory can be seen in section 

7.2.2 in chapter 7. 

!------------------------------------------------------------------------------------------------------------ 

        CALL triangle_cm1(c_mat, n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),  & 

n_coordinate(1:2, num(3)), capacitance_n1(iel)) 

        CALL triangle_km(k_mat, n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),    & 

n_coordinate(1:2, num(3)),conductivity_n1(1,iel), conductivity_n1(2,iel)) 

!------------------------------------------------------------------------------------------------------------ 



Appendix III     270 
 

The capacitance in the advective term is forced continuous in chapter 5. Thus, the subroutine 

“mixc” calculates the mixture capacitance only for the advective term. Then, the subroutine 

“triangle_kvm” constructs the matrix for advection, the theory of which can be seen in 

section 7.2.2 in chapter 7. The factor 𝛽 offers the possibility to switch between the central 

difference method, the full upwind method and the Petrov-Galerkin method. The subroutine 

“beta_get” provides the factor 𝛽  for Petrov-Galerkin method. And the subroutine 

“triangle_kup” constructs the artificial conductive matrix is the full upwind method or the 

Petrov-Galerkin method is selected. 

!------------------------------------------------------------------------------------------------------------ 

        CALL mixc(gs(IEL), gs1(IEL), den_liq, den_sol, cap_liq, cap_sol,            & 

capacitance_nx(IEL), capacitance_n1x(IEL)) 

        CALL triangle_kvm(kvx_mat, kvy_mat, den_liq * cap_liq,                       & 

n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),             & 

n_coordinate(1:2, num(3)), velocity_xx, velocity_yy)           

        CALL beta_get(beta(iel), material_velocity, den_liq * cap_liq, capacitance_n1(iel), &   

n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),                 & 

n_coordinate(1:2, num(3)), dis_form)         

        CALL triangle_kup(kup_mat, n_coordinate(1:2, num(1)),                          & 

n_coordinate(1:2, num(2)), n_coordinate(1:2, num(3)),                    & 

material_velocity, velocity_xx, velocity_yy, beta(iel)) 

!------------------------------------------------------------------------------------------------------------ 

The subroutine “non_source” calculates the non-physical source, which is the discontinuity 

in the advective term. Details will be discussed later in the example of subroutines. 

!------------------------------------------------------------------------------------------------------------ 

        CALL non_source(G_nonQ, gt_n(num(1)), gt_n(num(2)), gt_n(num(3)),  & 

gtp_n1(num(1)), gtp_n1(num(2)), gtp_n1(num(3)), den_sol, den_liq,  & 

cap_sol, cap_liq, h_sol, lat_heat, t_liq, velocity_xx, velocity_yy, dtime(j), & 

n_coordinate(1:2, num(1)), n_coordinate(1:2, num(2)),    &  n_coordinate(1:2, 

num(3)), kvx_mat, kvy_mat, kup_mat, THETA, NUM) 
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!------------------------------------------------------------------------------------------------------------ 

The subroutine “matrix_assembly” assembles the element coefficient matrix into the global 

coefficient matrix. 

!------------------------------------------------------------------------------------------------------------ 

        CALL matrix_assembly(gc_mat, c_mat, num) 

        CALL matrix_assembly(gk_mat, k_mat, num) 

        CALL matrix_assembly(gkvx_mat, kvx_mat, num) 

        CALL matrix_assembly(gkvy_mat, kvy_mat, num) 

        CALL matrix_assembly(gkup_mat, kup_mat, num) 

      END DO element_loopOQL1  

!------------------------------------------------------------------------------------------------------------  

   END IF 

!------------------------------------------------------------------------------------------------------------ 

The subroutine “boundary_condition” loads boundary conditions to the system according to 

equation (7—39). The boundary nodes are already specified automatically by the program 

and saved as arrays “hbc_nodes” and “vbc_nodes”. The boundary conditions are applied 

based on the boundary nodes. Since the Robin boundary condition is applied, this subroutine 

also updates the information of coefficient matrices. 

!------------------------------------------------------------------------------------------------------------ 

    CALL  boundary_condition(q_n, gk_mat, hc_top, hc_btm, hc_lft, hc_rgt, t_amb, & nnode, 

cnode, rnode, hbc_nodes, vbc_nodes, n_coordinate,            & conductivity_n1, 

bc_iel) 

!------------------------------------------------------------------------------------------------------------ 

According to the equation (7—33) in chapter 7, the two-dimensional arrays “lhs_mat” and 

“rhs_mat” are evaluated as 
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lhs_mat = [𝐶̂] + ∆𝑡𝜃[𝐾𝑛+1] + ∆𝑡𝜃[𝐾𝑣𝑥𝑥
𝑛+1] + ∆𝑡𝜃[𝐾𝑣𝑦𝑦

𝑛+1] + ∆𝑡𝜃[𝐾𝑢𝑝
𝑛+1]                   (II—

5) 

and 

rhs_mat = [𝐶̂] − ∆𝑡𝜃[𝐾𝑛] − ∆𝑡𝜃[𝐾𝑣𝑥𝑥
𝑛 ] − ∆𝑡𝜃[𝐾𝑣𝑦𝑦

𝑛 ] − ∆𝑡𝜃[𝐾𝑢𝑝
𝑛 ]                              (II—

6) 

!------------------------------------------------------------------------------------------------------------ 

    lhs_mat = gc_mat + dtime(j) * theta * gk_mat + dtime(j) * theta * gkvx_mat +        & 

dtime(j) * theta * gkvy_mat +   dtime(j) * theta * gkup_mat 

    rhs_mat = gc_mat - dtime(j) * (1.0D0 - theta) * gk_mat - dtime(j) * (1.0D0 - theta) * & 

gkvx_mat - dtime(j) * (1.0D0 - theta) * gkvy_mat - dtime(j) * (1.0D0 - & theta) 

* gkup_mat 

!------------------------------------------------------------------------------------------------------------ 

Then, the coefficient matrices and the loading vectors are ready to be solved by the solvers 

as system of equations. The subroutine “gaussj” refers to the Gauss Jordan elimination 

method. The subroutine “DGESV” is a solver from the commercial NAG Fortran Library. 

!------------------------------------------------------------------------------------------------------------ 

    gt_s = MATMUL(rhs_mat, gt_n) + dtime(j) * q_n + G_nonQ 

    IF (l_solver == 'GJE' .OR. l_solver == 'gje') THEN 

      CALL gaussj(lhs_mat, gtp_n1, gt_s, nnode) 

    ELSEIF (l_solver == 'NAG' .OR. l_solver == 'nag') THEN 

      CALL DGESV(W,1,lhs_mat,LDA,IPIV,gt_s,LDB,INFO) 

      gtp_n1 = gt_s 

    END IF 

!------------------------------------------------------------------------------------------------------------ 
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The following example is a subroutine that calculates the non-physical source, which is 

under the statement “CONTAINS”. In chapter 5 and chapter 7, it is described that the non-

physical source can be regarded as the difference between the physical advection and the 

continuous numerical advection. The subroutine “non_source” calculates the non-physical 

source term ∫ 𝑄̃
Ω

𝑑𝑉 which is returned as an array “G_nonQ”. 

!------------------------------------------------------------------------------------------------------------ 

SUBROUTINE non_source(G_nonQ, TN_1, TN_2, TN_3, TN_n1, TN_n2, TN_n3, & 

den_s, den_l, cap_s, cap_l, h_sol, lat, T_sol, v_xx, v_yy, d_time, coord_i1, coord_j2, & 

coord_k3, kvm_xx, kvm_yy, kvupm, THETA, NUM) 

IMPLICIT NONE 

DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: G_nonQ 

DOUBLE PRECISION, INTENT(IN) :: TN_1, TN_2, TN_3, TN_n1, TN_n2, TN_n3 

DOUBLE PRECISION, INTENT(IN) :: den_s, den_l, cap_s, cap_l, h_sol, lat, T_sol, & v_xx, 

v_yy, d_time 

DOUBLE PRECISION, DIMENSION(1:2), INTENT(IN) :: coord_i1, coord_j2, coord_k3 

DOUBLE PRECISION, DIMENSION(1:3,1:3), INTENT(IN) :: kvm_xx, kvm_yy, kvupm 

DOUBLE PRECISION, INTENT(IN) :: THETA 

INTEGER, DIMENSION(1:3), INTENT(IN) :: NUM 

DOUBLE PRECISION :: Hv1_xx, Hv1_yy, Hv2_xx, Hv2_yy, Hv3_xx, Hv3_yy, & 

areaf1_xx, areaf1_yy, areaf2_xx, areaf2_yy,  areaf3_xx,   & 

areaf3_yy 

DOUBLE PRECISION :: gs1_xx, gs1_yy, gs2_xx, gs2_yy, gs3_xx, gs3_yy, Hv_xx, & 

Hv_yy, Hvn_xx, Hvn_yy 

DOUBLE PRECISION :: SIGN1_XX, SIGN1_YY, SIGN2_XX, SIGN2_YY,       & 

SIGN3_XX, SIGN3_YY 

DOUBLE PRECISION :: nonQ_xx, nonQ_yy 
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DOUBLE PRECISION, DIMENSION(1:3) :: Te_n, Te_n1, Hv_xn, Hv_yn 

!------------------------------------------------------------------------------------------------------------ 

After the declaration of all arguments and arrays for this subroutine, the elemental nodal 

temperatures are assigned to the arrays “Te_n” and “Te_n1” with respect to time-steps 𝑛 and 

𝑛 + 1 by the following two statements. 

!------------------------------------------------------------------------------------------------------------ 

Te_n(1:3) = (/TN_1, TN_2, TN_3/) 

Te_n1(1:3) = (/TN_n1, TN_n2, TN_n3/) 

!------------------------------------------------------------------------------------------------------------ 

In chapter 7, it is described that the physical advection can be evaluated analytically. The 

analysis involves the evolution of the area of material that is swept by the boundary surface 

of an element. Detailed discussion can be seen in section 7.3.3. The following six statements 

calculate the areas swept by the three boundary surfaces of a triangular element. The areas 

are evaluated as projections on the x-direction and y-direction respectively for each 

boundary surface. 

!------------------------------------------------------------------------------------------------------------ 

areaf1_xx = ABS(v_xx) * d_time * ABS(coord_j2(2) - coord_k3(2)) 

areaf1_yy = ABS(v_yy) * d_time * ABS(coord_j2(1) - coord_k3(1)) 

 

areaf2_xx = ABS(v_xx) * d_time * ABS(coord_i1(2) - coord_k3(2)) 

areaf2_yy = ABS(v_yy) * d_time * ABS(coord_i1(1) - coord_k3(1)) 

 

areaf3_xx = ABS(v_xx) * d_time * ABS(coord_i1(2) - coord_j2(2)) 

areaf3_yy = ABS(v_yy) * d_time * ABS(coord_i1(1) - coord_j2(1)) 

!------------------------------------------------------------------------------------------------------------ 
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It is possible that in a times step, the phase interface may pass through the boundary surfaces 

to get into the element. This phenomenon is evaluated as the change of solid volume fraction 

on the base of the additional areas calculated before. The theory is described in section 7.3.3 

and Figure 7.6 specifies all the possibilities that an additional area may experience. The 

subroutine “vel_fraction” evaluates the solid volume fraction for the additional area via the 

element-based temperature approximation, which is denoted as Υ𝑠
𝑓
 in chapter 7. 

!------------------------------------------------------------------------------------------------------------ 

CALL vel_fraction(gs1_xx, TN_2, TN_3, TN_n2, TN_n3, v_xx, areaf1_xx, coord_j2(1), & 

coord_k3(1), d_time) 

CALL vel_fraction(gs1_yy, TN_2, TN_3, TN_n2, TN_n3, v_yy, areaf1_yy, coord_j2(2), & 

coord_k3(2), d_time) 

 

CALL vel_fraction(gs2_xx, TN_1, TN_3, TN_n1, TN_n3, v_xx, areaf2_xx, coord_i1(1), & 

coord_k3(1), d_time) 

CALL vel_fraction(gs2_yy, TN_1, TN_3, TN_n1, TN_n3, v_yy, areaf2_yy, coord_i1(2), & 

coord_k3(2), d_time) 

 

CALL vel_fraction(gs3_xx, TN_1, TN_2, TN_n1, TN_n2, v_xx, areaf1_xx, coord_i1(1), & 

coord_j2(1), d_time) 

CALL vel_fraction(gs3_yy, TN_1, TN_2, TN_n1, TN_n2, v_yy, areaf1_yy, coord_i1(2), & 

coord_j2(2), d_time) 

!------------------------------------------------------------------------------------------------------------ 

Following the evaluation of solid volume fraction for the additional volumes swept by the 

element boundaries, the magnitude of enthalpy that passes through the element boundary is 

computed by the subroutine “enthalpy_Hv”. The corresponding equation in chapter 7 is (7—

58). 

!------------------------------------------------------------------------------------------------------------ 
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CALL enthalpy_Hv(Hv1_xx, den_s, den_l, cap_s, cap_l, lat, h_sol, T_sol, areaf1_xx, & 

TN_2, TN_3, TN_n2, TN_n3, gs1_xx) 

CALL enthalpy_Hv(Hv1_yy, den_s, den_l, cap_s, cap_l, lat, h_sol, T_sol, areaf1_yy, & 

TN_2, TN_3, TN_n2, TN_n3, gs1_yy) 

 

CALL enthalpy_Hv(Hv2_xx, den_s, den_l, cap_s, cap_l, lat, h_sol, T_sol, areaf2_xx, & 

TN_1, TN_3, TN_n1, TN_n3, gs2_xx) 

CALL enthalpy_Hv(Hv2_yy, den_s, den_l, cap_s, cap_l, lat, h_sol, T_sol, areaf2_yy, & 

TN_1, TN_3, TN_n1, TN_n3, gs2_yy) 

 

CALL enthalpy_Hv(Hv3_xx, den_s, den_l, cap_s, cap_l, lat, h_sol, T_sol, areaf3_xx, & 

TN_1, TN_2, TN_n1, TN_n2, gs3_xx) 

CALL enthalpy_Hv(Hv3_yy, den_s, den_l, cap_s, cap_l, lat, h_sol, T_sol, areaf3_yy, & 

TN_1, TN_2, TN_n1, TN_n2, gs3_yy) 

!------------------------------------------------------------------------------------------------------------ 

The enthalpy computed by the subroutine (enthalpy_Hv) is only a magnitude. The following 

operations will assign the signs “+ −⁄ ” to the enthalpies.  The sign of enthalpy is dependent 

on the direction of material flow. For example, if the material is flowing in through an 

element surface, then the sign for the enthalpy corresponding to this element surface is given 

as “+”; on the contrary, it the material is flowing out of the element through this surface, 

then the sign for the enthalpy corresponding to this surface is given as “−”. 

!------------------------------------------------------------------------------------------------------------ 

IF(v_xx > 0.0D0) THEN 

  IF(coord_k3(2) - coord_j2(2) < 0.0D0) THEN 

    SIGN1_XX = 1.0D0 

  ELSEIF(coord_k3(2) - coord_j2(2) > 0.0D0) THEN 
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    SIGN1_XX = -1.0D0 

  ELSE 

    SIGN1_XX = 0.0D0 

  END IF 

 

  IF(coord_i1(2) - coord_k3(2) < 0.0D0) THEN 

    SIGN2_XX = 1.0D0 

  ELSEIF(coord_i1(2) - coord_k3(2) > 0.0D0) THEN 

    SIGN2_XX = -1.0D0 

  ELSE 

    SIGN2_XX = 0.0D0 

  END IF 

   

  IF(coord_j2(2) - coord_i1(2) < 0.0D0) THEN 

    SIGN3_XX = 1.0D0 

  ELSEIF(coord_j2(2) - coord_i1(2) > 0.0D0) THEN 

    SIGN3_XX = -1.0D0 

  ELSE 

    SIGN3_XX = 0.0D0 

  END IF 

ELSEIF(v_xx < 0.0D0) THEN 

  IF(coord_k3(2) - coord_j2(2) < 0.0D0) THEN 

    SIGN1_XX = -1.0D0 
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  ELSEIF(coord_k3(2) - coord_j2(2) > 0.0D0) THEN 

    SIGN1_XX = 1.0D0 

  ELSE 

    SIGN1_XX = 0.0D0 

  END IF 

 

  IF(coord_i1(2) - coord_k3(2) < 0.0D0) THEN 

    SIGN2_XX = -1.0D0 

  ELSEIF(coord_i1(2) - coord_k3(2) > 0.0D0) THEN 

    SIGN2_XX = 1.0D0 

  ELSE 

    SIGN2_XX = 0.0D0 

  END IF 

   

  IF(coord_j2(2) - coord_i1(2) < 0.0D0) THEN 

    SIGN3_XX = -1.0D0 

  ELSEIF(coord_j2(2) - coord_i1(2) > 0.0D0) THEN 

    SIGN3_XX = 1.0D0 

  ELSE 

    SIGN3_XX = 0.0D0 

  END IF 

ELSEIF(v_xx == 0.0D0) THEN 

  SIGN1_XX = 0.0D0 
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  SIGN2_XX = 0.0D0 

  SIGN3_XX = 0.0D0 

END IF 

!------------------------------------------------------------------------------------------------------------ 

IF(v_yy > 0.0D0) THEN 

  IF(-(coord_k3(1) - coord_j2(1)) < 0.0D0) THEN 

    SIGN1_YY = 1.0D0 

  ELSEIF(-(coord_k3(1) - coord_j2(1)) > 0.0D0) THEN 

    SIGN1_YY = -1.0D0 

  ELSE 

    SIGN1_YY = 0.0D0 

  END IF 

 

  IF(-(coord_i1(1) - coord_k3(1)) < 0.0D0) THEN 

    SIGN2_YY = 1.0D0 

  ELSEIF(-(coord_i1(1) - coord_k3(1)) > 0.0D0) THEN 

    SIGN2_YY = -1.0D0 

  ELSE 

    SIGN2_YY = 0.0D0 

  END IF 

   

  IF(-(coord_j2(1) - coord_i1(1)) < 0.0D0) THEN 

    SIGN3_YY = 1.0D0 
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  ELSEIF(-(coord_j2(1) - coord_i1(1)) > 0.0D0) THEN 

    SIGN3_YY = -1.0D0 

  ELSE 

    SIGN3_YY = 0.0D0 

  END IF 

ELSEIF(v_yy < 0.0D0) THEN 

  IF(-(coord_k3(1) - coord_j2(1)) < 0.0D0) THEN 

    SIGN1_YY = -1.0D0 

  ELSEIF(-(coord_k3(1) - coord_j2(1)) > 0.0D0) THEN 

    SIGN1_YY = 1.0D0 

  ELSE 

    SIGN1_YY = 0.0D0 

  END IF 

 

  IF(-(coord_i1(1) - coord_k3(1)) < 0.0D0) THEN 

    SIGN2_YY = -1.0D0 

  ELSEIF(-(coord_i1(1) - coord_k3(1)) > 0.0D0) THEN 

    SIGN2_YY = 1.0D0 

  ELSE 

    SIGN2_YY = 0.0D0 

  END IF 

   

  IF(-(coord_j2(1) - coord_i1(1)) < 0.0D0) THEN 
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    SIGN3_YY = -1.0D0 

  ELSEIF(-(coord_j2(1) - coord_i1(1)) > 0.0D0) THEN 

    SIGN3_YY = 1.0D0 

  ELSE 

    SIGN3_YY = 0.0D0 

  END IF 

ELSEIF(v_yy == 0.0D0) THEN 

  SIGN1_YY = 0.0D0 

  SIGN2_YY = 0.0D0 

  SIGN3_YY = 0.0D0 

END IF 

!------------------------------------------------------------------------------------------------------------ 

Hv1_xx = SIGN1_XX * Hv1_xx 

Hv1_yy = SIGN1_YY * Hv1_yy 

 

Hv2_xx = SIGN2_XX * Hv2_xx 

Hv2_yy = SIGN2_YY * Hv2_yy 

 

Hv3_xx = SIGN3_XX * Hv3_xx 

Hv3_yy = SIGN3_YY * Hv3_yy 

!------------------------------------------------------------------------------------------------------------ 
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The following summation statements provide the total enthalpy changes due to advection in 

one time step. The summation is conducted with respect to the changes in x-direction and in 

y direction respectively. 

!------------------------------------------------------------------------------------------------------------ 

Hv_xx = Hv1_xx + Hv2_xx + Hv3_xx 

Hv_yy = Hv1_yy + Hv2_yy + Hv3_yy 

!------------------------------------------------------------------------------------------------------------ 

The above analytical evaluation of advection includes both the continuity and the 

discontinuity. However, the continuous advection is already evaluated by the numerical 

method, so it has to be extracted from analytical evaluation. 

!------------------------------------------------------------------------------------------------------------ 

Hv_xn = d_time * (1.0D0 - THETA) * MATMUL(kvm_xx, Te_n) + D_time *      & THETA 

* MATMUL(kvm_xx, Te_n1) + d_time * (1.0D0 - THETA) *      & 

MATMUL(kvupm, Te_n) + D_time * THETA * MATMUL(kvupm, Te_n1) 

Hv_yn = d_time * (1.0D0 - THETA) * MATMUL(kvm_yy, Te_n) + D_time *       & THETA 

*  MATMUL(kvm_yy, Te_n1) 

Hvn_xx = Hv_xn(1) + Hv_xn(2) + Hv_xn(3) 

Hvn_yy = Hv_yn(1) + Hv_yn(2) + Hv_yn(3) 

nonQ_xx = Hv_xx + Hvn_xx 

nonQ_yy = Hv_yy + Hvn_yy 

!------------------------------------------------------------------------------------------------------------ 

The arguments “nonQ_xx” and “nonQ_yy” are the non-physical sources for an element. 

These two arguments have to be assembled to the global loading vector “G_nonQ” through 

the following statements. The number “0.50D0” is a relaxation factor to prevent the 

temperature overflow. It is not necessary for crude mesh, but for a refine mesh, it is 

recommended.  
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!------------------------------------------------------------------------------------------------------------ 

G_nonQ(NUM(1)) = G_nonQ(NUM(1)) + 0.50D0 * (1.0D0 / 3.0D0) * (nonQ_xx + & 

nonQ_yy) 

G_nonQ(NUM(2)) = G_nonQ(NUM(2)) + 0.50D0 * (1.0D0 / 3.0D0) * (nonQ_xx + & 

nonQ_yy) 

G_nonQ(NUM(3)) = G_nonQ(NUM(3)) + 0.50D0 * (1.0D0 / 3.0D0) * (nonQ_xx + & 

nonQ_yy) 

END SUBROUTINE non_source 

!------------------------------------------------------------------------------------------------------------ 

Now, the subroutine “non_source” finishes its execution and returns the non-physical 

source to the main program. It has to be mentioned that the array “G_nonQ” requires the 

return-to-zero operation for every iteration step, just the same as all the other arrays with 

incrementation algorithm for system assembly.  
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Appendix IV Parametric Study 

VI.1 General 

VI.1 General 

The non-physical variable method generates a transport equation, which can be solved by 

the finite element method. The idea underpinning the finite element method is the 

discretisation of a continuous problem domain into smaller, simpler finite domains, which 

can be assembled and solved numerically by computers. This process is termed discretization. 

The finite domain is termed a finite element. The finite element method is an approximation 

method, so the size of the finite elements or the mesh density is essential to the accuracy of 

the approximation. Mesh density is usually associated with spatial discretization only. For 

transient problems, temporal discretization is important and also influences the accuracy of 

the method. This gives rise to concern on the time step size. One example that illustrates the 

importance of the time step size can be seen in chapter 4. The time step size is required to 

satisfy equation (4—9) for an explicit method, otherwise complex eigenvalues are generated 

and the problem is divergent. Another important parameter that is important to the non-

physical variable method is the blending factor 𝜗, which is introduced via equation (4—41) 

in chapter 4. This parameter is required to counter the possible absence of latent heat in the 

predictor step. In fact, the predicted nodal value (i.e. temperature) may be lower than the true 

value. This blending technique artificially brings the predicted value back closer to the true 

value. The blending parameter 𝜗 ∈ [0,1]  and when the parameter 𝜗 = 0 , the predicted 

temperature is at the current iteration, and when the parameter 𝜗 = 1 , the predicted 

temperature is at the previous iteration. However, a major disadvantage of introducing this 

parameter is that, there is no clear definitive mathematical identification for the optimum 

value. The parameter can be determined analytically with the assistance of exact solution as 

shown in equation (2—7) but this approach is seldom available in practice. In this section, a 

parametric study is conducted in order to better understand the influences of mesh density 

and time step size on the accuracy of non-physical variable method. Also, the influence of 

the blending parameter 𝜗 is examined for various different mesh densities and time step sizes. 

In this parametric study, there are three variants, the total number of elements (NELS), the 

total number of time steps (N_STEPS) and the blending factor (𝜗). The study is based on a 
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thin slab, which can be seen in Figure 4.4. It is 0.1 metres long. Consequently, the element 

size 𝐿𝑒 can be determined as 

𝐿𝑒 =
𝐿𝑡𝑜𝑡𝑎𝑙

𝑁𝐸𝐿𝑆
                                                                                                                     (IV—1) 

where 𝐿𝑡𝑜𝑡𝑎𝑙 is the total length of the model. 

Moreover, the total cooling time of the simulations are set as 40 seconds and consequently 

the time step size Δ𝑡 can be calculated as 

Δ𝑡 =
𝑡𝑡𝑜𝑡𝑎𝑙

𝑁_𝑆𝑇𝐸𝑃𝑆
                                                                                                                (IV—2) 

where 𝑡𝑡𝑜𝑡𝑎𝑙 is the total cooling time. 

Since temperature profile is not important in the parametric study, this section focuses on 

the percentage error defined as 

𝐸𝑟 =
|𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑠−𝑒𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|

𝑒𝑥𝑎𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
× 100%                                                             (IV—3) 

where 𝐸𝑟 is the percentage error. 

The problem is transient, so the percentage error can change with time, e.g. there are 800 

percentage errors for a sample node, in a simulation with 800 time-steps. As a consequence, 

the average percentage error and the maximum error are provided to sufficiently reflect the 

influence of the parameters, i.e. 

𝐸𝑟𝑎𝑣𝑒 =
∑ 𝐸𝑟𝑗
𝑁_𝑆𝑇𝐸𝑃𝑆
𝑗=1

𝑁_𝑆𝑇𝐸𝑃𝑆
                                                                                                    (IV—4) 

where 𝐸𝑟𝑎𝑣𝑒 is the average percentage error. 

𝐸𝑟𝑚𝑎𝑥 = 𝑀𝐴𝑋(𝐸𝑟1, 𝐸𝑟2, … , 𝐸𝑟𝑁_𝑆𝑇𝐸𝑃𝑆)                                                                      (IV—5) 

where 𝐸𝑟𝑚𝑎𝑥 is the maximum percentage error, and 𝑀𝐴𝑋(∎) signifies a maximum. 

This parametric study contains 8 groups of numerical experiments and each group has 9 

simulations. The results and comments are shown as follows. 

IV.2 The time step size and the blending factor 

In this section, the parametric study focuses on the relationship between the time step size 

Δ𝑡 and the blending factor 𝜗. The total number of elements is set constant, i.e. NELS = 100 

and 𝐿𝑒 = 0.001 𝑚. The samples of total number of time steps are set as, N_STEPS = 40, 80, 

400 and 800, respectively, so the time step size are 1.0 seconds, 0.5 seconds 0.1 seconds and 
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0.05 seconds, respectively. As for the blending factor, simulation is executed every 0.1 from 

0.1 to 0.9. 

The average percentage error and the maximum percentage error versus the blending factor 

are depicted from Figure IV.1 to Figure IV.8. It can be seen from these figures that, both the 

average percentage error and the maximum percentage error perform a U-shape with the 

blending factor 𝜗 increases. The peaks of errors occur at 𝜗 = 0.1 for all the simulations of 

different time step size. With greater time step size, the peak is even larger, e.g. 𝐸𝑟𝑎𝑣𝑒 =

33.7% (see Figure IV.1) and 𝐸𝑟𝑚𝑎𝑥 = 69.2% (see Figure IV.2) when 𝜗 = 0.1 and Δ𝑡 =

1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The peak is reduced when the time step size is smaller, e.g. 𝐸𝑟𝑎𝑣𝑒 = 10.08% 

(see Figure IV.7) and 𝐸𝑟𝑚𝑎𝑥 = 13.65%  (see Figure IV.8) when 𝜗 = 0.1  and Δ𝑡 =

0.05 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. If considering 5% as the upper bound of tolerance error, it can be seen that 

when the blending factor is between 0.5 to 0.7, the tolerance is satisfied in most situations 

(except 𝐸𝑟𝑚𝑎𝑥 = 6.15% (see Figure IV.4) when 𝜗 = 0.7 and Δ𝑡 = 0.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). When 

the time step size is less than 0.1 seconds, the minimum values of average percentage error 

and maximum percentage error occur at 𝜗 = 0.5. And when the time step size is greater than 

0.1 seconds, they occur at 𝜗 = 0.6.  

 

Figure IV.1: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 1 𝑠 
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Figure IV.2: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 1 𝑠 

 

Figure IV.3: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 0.5 𝑠 
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Figure IV.4: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 0.5 𝑠 

 

Figure IV.5: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 0. 1 𝑠 
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Figure IV.6: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 0. 1 𝑠 

 

Figure IV.7: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 = 0. 05 𝑠 
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Figure IV.7:

 

Figure IV.8: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.001 𝑚 and Δ𝑡 =

0. 05 𝑠 

IV.3 The mesh density and the blending factor 

In this section, the parametric study focuses on the relationship between the mesh density 

(element size 𝐿𝑒) and the blending factor 𝜗. The total number of time steps is set constant, 

i.e. N_STEPS = 800 and ∆𝑡 = 0.05 𝑠. The model is meshed with 50 elements, 200 elements, 

400 elements and 800 elements, respectively. Together with the 100-element mesh in section 

IV.2, the size of the element is set as 0.002 m, 0.001 m, 0.0005 m, 0.00025 m and 0.000125 

m, respectively. As for the blending factor, simulation is also executed every 0.1 from 0.1 to 

0.9. 

The average percentage error and the maximum percentage error versus the blending factor 

are depicted from Figure IV.9 to Figure IV.16. Similar to the results in section IV.2, both 

the average percentage error and the maximum percentage error perform a U-shape with the 

blending factor 𝜗 increases. However, it can be seen in Figures IV.9, IV.13 and IV.15 that, 

the peak of the average percentage error is not attained at 𝜗 = 0.1 if the total number of 

elements is not 100 or 200. Instead, the peak occurs at 𝜗 = 0.2 in these Figures. Despite the 

50-element mesh (as can be seen in Figure IV.10, the maximum percentage error is 8.45% 
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when 𝜗 = 0.1, but it is 13.1% when 𝜗 = 0.2), the peak of maximum percentage error still 

occurs at 𝜗 = 0.1. The percentage error can be lowered below the 5% tolerance if the 

blending factor 𝜗  is 0.6 and 0.7. The minimum values of average percentage error and 

maximum percentage error occur at 𝜗 = 0.6 when the total number of mesh 50 or 100 (see 

Figures from IV.7 to IV.10) and they occur at 𝜗 = 0.7 when the total number of elements is 

200, 400 or 800 (see Figures from IV.11 to IV.16).  

 

Figure IV.9: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.002𝑚 and Δ𝑡 = 0. 05 𝑠 
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Figure IV.10: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.002𝑚 and Δ𝑡 = 0. 05 𝑠 

 

Figure IV.11: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.0005𝑚 and Δ𝑡 =

0. 05 𝑠 
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Figure IV.12: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.0005𝑚 and Δ𝑡 =

0. 05 𝑠 

 

Figure IV.13: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.00025𝑚 and Δ𝑡 =

0. 05 𝑠 
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Figure IV.14: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.00025𝑚 and Δ𝑡 =

0. 05 𝑠 

 

Figure IV.15: Average percentage error vs. blending factor, when 𝑙𝑒 = 0.000125𝑚 and Δ𝑡 =

0. 05 𝑠 
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Figure IV.16: Maximum percentage error vs. blending factor, when 𝑙𝑒 = 0.000125𝑚 and Δ𝑡 =

0. 05 𝑠 

IV.4 Summary 

In summary, this appendix shows the relationship between the accuracy of the non-physical 

variable method and the parameters of finite element method, such as mesh density, time 

step size and the blending factor 𝜗. Although there is not a definitive mathematical definition 

for the blending factor 𝜗, in the parametric study, the relationship between accuracy and the 

blending factor performs consistently with different mesh densities and different time-step 

sizes. The study shows that, higher accuracy can be achieved by setting the blending factor 

𝜗 between 0.6 and 0.7 depending on the mesh density and the time step size. 


