205 research outputs found

    Qualitative Evaluation of Data Compression in Real-time Ultrasound Imaging

    Get PDF
    The purpose of this project was to evaluate qualitatively real-time ultrasound imaging using objective and subjective techniques to determine the minimum bandwidth required for clinical diagnosis of various anatomical and pathological states. In the experimental setup live ultrasound video samples representing the most common clinical examinations were compressed at 128, 256, 384, 768, 1152 and 1536 kbps using a compressor-decompressor (CODEC) adhering to International Telecommunication Union (ITU-T) recommendation H.261. A protocol for qualitative evaluation was developed and subjective and objective testing were performed based on this protocol. Subjective methods comprised of inter-rater reliability tests using kappa statistics and three way Analysis of Variance (ANOVA) using General Linear Models (GLM). Objective testing were performed using histogram analysis and estimation of peak signal to noise ratios. The kappa scores for all bandwidths greater than 256 kbps indicated good inter-rater reliablity and minimum variation in confidence levels. Using the results from GLM and ANOVA we could not establish a trend in degradation of observer confidence with increasing compression ratios. The histogram analysis showed a linear increase in standard deviation values, indicating a linear scatter in pixel intensity, with increasing compression ratios. Although higher compression levels were evaluated, only video clips with bandwidths greater than 256 kbps displayed satisfactory temporal and spatial resolution, good enough to make clinical diagnosis of various anatomical and pathological states. The evaluations also indicate that compressed real-time ultrasound imagery using H.261 can be transmitted over a T1 or ADSL networks

    The organizational implications of medical imaging in the context of Malaysian hospitals

    Get PDF
    This research investigated the implementation and use of medical imaging in the context of Malaysian hospitals. In this report medical imaging refers to PACS, RIS/HIS and imaging modalities which are linked through a computer network. The study examined how the internal context of a hospital and its external context together influenced the implementation of medical imaging, and how this in turn shaped organizational roles and relationships within the hospital itself. It further investigated how the implementation of the technology in one hospital affected its implementation in another hospital. The research used systems theory as the theoretical framework for the study. Methodologically, the study used a case-based approach and multiple methods to obtain data. The case studies included two hospital-based radiology departments in Malaysia. The outcomes of the research suggest that the implementation of medical imaging in community hospitals is shaped by the external context particularly the role played by the Ministry of Health. Furthermore, influences from both the internal and external contexts have a substantial impact on the process of implementing medical imaging and the extent of the benefits that the organization can gain. In the context of roles and social relationships, the findings revealed that the routine use of medical imaging has substantially affected radiographers’ roles, and the social relationships between non clinical personnel and clinicians. This study found no change in the relationship between radiographers and radiologists. Finally, the approaches to implementation taken in the hospitals studied were found to influence those taken by other hospitals. Overall, this study makes three important contributions. Firstly, it extends Barley’s (1986, 1990) research by explicitly demonstrating that the organization’s internal and external contexts together shape the implementation and use of technology, that the processes of implementing and using technology impact upon roles, relationships and networks and that a role-based approach alone is inadequate to examine the outcomes of deploying an advanced technology. Secondly, this study contends that scalability of technology in the context of developing countries is not necessarily linear. Finally, this study offers practical contributions that can benefit healthcare organizations in Malaysia

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey

    Full text link
    Broadband Integrated Services Digital Network (R-ISDN) provides a range of narrowband and broad-band services for voice, video, and multimedia. Asynchronous Transfer Mode (ATM) has been selected by the standards bodies as the transfer mode for implementing B-ISDN; The ability to digitize images has lead to the prospect of reducing the physical space requirements, material costs, and manual labor of traditional film handling tasks in hospitals. The system which handles the acquisition, storage, and transmission of medical images is called a Picture Archiving and Communication System (PACS). The transmission system will directly impact the speed of image transfer. Today the most common transmission means used by acquisition and display station products is Ethernet. However, when considering network media, it is important to consider what the long term needs will be. Although ATM is a new standard, it is showing signs of becoming the next logical step to meet the needs of high speed networks; This thesis is a survey on ATM, and PACS. All the concepts involved in developing a PACS are presented in an orderly manner. It presents the recent developments in ATM, its applicability to PACS and the issues to be resolved for realising an ATM-based complete PACS. This work will be useful in providing the latest information, for any future research on ATM-based networks, and PACS

    A high-speed wireless network used for telemedicine

    Get PDF
    Nowadays, there is growing interest in using telemedicine to provide non-face-to-face healthcare for patients. The emergence and development of WLAN (Wireless Local Area Network) technology, which supports high-speed wireless communications within the existing Intranet that covers the healthcare system, makes it possible to provide routine body check-ups for patients who need long-term monitoring. In this thesis, we present the design of a wireless telemedicine system using WLAN technology. [Continues.

    Towards a low complexity scheme for medical images in scalable video coding

    Get PDF
    Medical imaging has become of vital importance for diagnosing diseases and conducting noninvasive procedures. Advances in eHealth applications are challenged by the fact that Digital Imaging and Communications in Medicine (DICOM) requires high-resolution images, thereby increasing their size and the associated computational complexity, particularly when these images are communicated over IP and wireless networks. Therefore, medical research requires an efficient coding technique to achieve high-quality and low-complexity images with error-resilient features. In this study, we propose an improved coding scheme that exploits the content features of encoded videos with low complexity combined with flexible macroblock ordering for error resilience. We identify the homogeneous region in which the search for optimal macroblock modes is early terminated. For non-homogeneous regions, the integration of smaller blocks is employed only if the vector difference is less than the threshold. Results confirm that the proposed technique achieves a considerable performance improvement compared with existing schemes in terms of reducing the computational complexity without compromising the bit-rate and peak signal-to-noise ratio. © 2013 IEEE

    Light microscopy--a prototype for a remote image diagnosis system

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 67-69).by Alexander B. Zakharov.M.Eng

    Hierarchical Lossless Image Compression for Telemedicine Applications

    Get PDF
    AbstractThe main aim of hierarchical lossless image compression is to improve accuracy, reduce the bit rate and improve the compression efficiency for the storage and transmission of the medical images while maintain an acceptable image quality for diagnosis purpose. The cost and limitation in bandwidth of wireless channels has made compression is necessity in today's era. In medical images, the contextual region is an area which contains an important information and must be transmitted without distortion. In this paper the selected region of the image is encoded with Adaptive Multiwavelet Transform AMWT) using Multi Dimensional Layered Zero Coding (MLZC). Experimental results shows that Peak Signal to Noise Ratio (PSNR), Correlation Coefficient (CC), Mean Structural Similarity Index (MSSIM) performance is high and Root Mean Square Error (RMSE), Mean Absolute Error (MAE) values are low, and moderate Compression Ratio (CR) at high Bits Per Pixel (BPP) when compared to the integer wavelet and multiwavelet transform

    Hybrid Algorithmic Approach for Medical Image Compression Based on Discrete Wavelet Transform (DWT) and Huffman Techniques for Cloud Computing

    Full text link
    As medical imaging facilities move towards complete filmless imaging and also generate a large volume of image data through various advance medical modalities, the ability to store, share and transfer images on a cloud-based system is essential for maximizing efficiencies. The major issue that arises in teleradiology is the difficulty of transmitting large volume of medical data with relatively low bandwidth. Image compression techniques have increased the viability by reducing the bandwidth requirement and cost-effective delivery of medical images for primary diagnosis.Wavelet transformation is widely used in the fields of image compression because they allow analysis of images at various levels of resolution and good characteristics. The algorithm what is discussed in this paper employs wavelet toolbox of MATLAB. Multilevel decomposition of the original image is performed by using Haar wavelet transform and then image is quantified and coded based on Huffman technique. The wavelet packet has been applied for reconstruction of the compressed image. The simulation results show that the algorithm has excellent effects in the image reconstruction and better compression ratio and also study shows that valuable in medical image compression on cloud platfor
    • …
    corecore