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Abstract

The main aim of hierarchical lossless image compression is to improve accuracy, reduce the bit rate and improve the compression
efficiency for the storage and transmission of the medical images while maintain an acceptable image quality for diagnosis purpose.
The cost and limitation in bandwidth of wireless channels has made compression is necessity in today’s era. In medical images,
the contextual region is an area which contains an important information and must be transmitted without distortion. In this paper
the selected region of the image is encoded with Adaptive Multiwavelet Transform AMWT) using Multi Dimensional Layered
Zero Coding (MLZC). Experimental results shows that Peak Signal to Noise Ratio (PSNR), Correlation Coefficient (CC), Mean
Structural Similarity Index (MSSIM) performance is high and Root Mean Square Error (RMSE), Mean Absolute Error (MAE)
values are low, and moderate Compression Ratio (CR) at high Bits Per Pixel (BPP) when compared to the integer wavelet and
multiwavelet transform.
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1. Introduction

Medical images play an important role in telemedicine applications like teleradiology, telepathology, telecardiology
etc. In telemedicine applications medical images like MRI, CT scan, Positron Emission Tomography (PET) are used
in detecting the diseases and injuries. In medical diagnosis image acquisition, storage, transmission plays a critical
role.

In the process of image acquisition, medical images may be corrupted by image capturing equipment and some
environmental issues. These degraded medical images will influence on the diagnosis of the patient!. In medical
image processing removal of noise from corrupted images is a challenging issue. Over the past decades several
filtering techniques were developed for enhancing the images?~. For noise removal of medical images a Spatial
Adaptive Mask Filter (SAMF) is used. For telemedicine applications, medical images must be stored prior to
transmission. For this purpose an efficient compression algorithm is required. Image compression algorithms reduces
the memory requirement and bandwidth of wireless channels. But traditional compression algorithms for progressive
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Fig. 1. Convolution based lifting structure. Fig. 2. Adaptive predictor scheme.

data compression for medical conferencing are not fast enough to process vast amount of data®. In general a medical
image consists of foreground and background parts. Foreground contains medical information and most of the
cases the background doesn’t contain any clinical information and it is not useful for diagnosis. Hence most of the
researchers transmitted and decoded the foreground part using lossless compression techniques and background can be
transmitted and decoded using a lossy compression technique’-®. But traditional compression techniques suffer from
low PSNR, compression ratio, poor reconstructed quality and high MSE. Hence, in this paper, we propose contextual
based medical image coding. In the contextual based medical image coding selected regions of medical image to be
coded with selective compression ratio and higher quality as compared to the non selected regions of medical image.
The non selected regions are to be coded with high compression ratio. By using morphological operations select the
Region of Interest (ROI) in the medical image. In the proposed contextual based medical image coding the contextual
part of medical image is transmitted using adaptive multiwavelet transform and contextual MLZC?® with high priority
and low compression ratio and background of the image is rejected completely.

2. Adaptive MultiWavelet Transform (AMWT)

The traditional medical image compression method suffers from high Mean Square Error (MSE), low PSNR
and poor reconstructed image quality'®!12. Lossless image coding is not possible with traditional multiwavelet
transform because they cannot map integer to integer valued coefficients. Hence the adaptive multiwavelet transform
can be designed with adaptive lifting steps. The conventional convolution based lifting structure is as shown
in Fig. 1.

Due to the convolution operation the computational complexity was increased. In'? the designed prediction filter
performs an averaging operation on the right and left neighboring samples in column or row on 2D images and also
processed the samples horizontally and vertically. This method reduces the prediction error signal energy. To reduce
the computational complexity, bpp the multiwavelet transform modified via adaptive lifting scheme. In the proposed
adaptive lifting scheme the predictor can be modified and maintain the fixed update filter. In adaptive predictor the
current pixel value is predicted from the previous two samples by computing the following equation.

y(n):x(n)—[a*x(n—2)+b*x(n_1)]*% )

where x(n) & y(n) are the coefficients before and after the lifting x(n — 1) & x(n — 2) are the two previous samples,
a&b are lifting parameter.

The proposed adaptive predictor is as shown in Fig. 2.

The adaptive multiwavelet transform was designed with adaptive lifting implementation of multiwavelet transform
based on multi scaling functions and multi wavelets. The proposed adaptive multiwavelet transform diagram is as
shown in Fig. 3.

3. Spatial Adaptive Mask Filter (SAMF)

In medical image process, for accurate diagnosis, removal of noise is very important. In this paper for removing of
noise in medical images SAMF is proposed. The SAMF filter is the modified version of the adaptive median filter!*
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The main advantage of the proposed filter is it reduces the noise while preserving the edges and enhances the quality
of medical images. The proposed modified filter works as explained below.

1. Calculate the mean of horizontal pixels and vertical pixels marked as H and V in 90° neighbours of 5 x 5 window.
2. Calculate the median of diagonal pixels marked as D in 45° neighbours of 5 x 5 window.
3. Calculate median of H, V, D and center pixel.

Smed = median (H, V, D, C)

. Calculate the minimum and maximum gray level value in rectangular region Sxy marked as Syin and Spax.
. Consider the gray level at coordinates (x,y) marked as Gxy.
. Maximum allowed size of Sxy marked as Rmax.
. Level 1: B1 = Siped — Smin
B2= Smed - Smax
If Bl > 0 AND B2 < 0, GO to LEVEL 2
Else increase the window size

N o L

If window size < = Rpax repeat level 1
Else output Gyy.
Level 2: CI = Gxy - Smin

C2= ny - Smax
If C1 > 0 AND C2 < 0 output Gyy,
Else output Speq.

4. Contextual Multidimensional Layered Zero Coding (CMLZC)

In contextual coding methods the medical image is segmented using contextual (ROI) mask!’. In CMLZC mask
can be generated based on the content. The main advantage of CMLZC is to remove artifacts along region boundaries
and also provide a fully embedded bitstream upto a lossless range of bitrates. In contextual coding each context is
encoded independently based on priority. In this paper, we consider medically investigated part is a context and the
background is a non context region. In the proposed method clinically important region is encoded by using CMLZC
algorithm. Fig. 5(a), (b) and (c) shows the original ultrasound image, ROI and background (BG). The reconstructed
image is shown in Fig. (d). After extracting ROI, the CMLZC algorithm is applied as shown in Fig and non ROI is
encoded with low quality of the reconstructed image. In'® the MLZC is proposed. In MLZC the spatial and inter band
relationships are exploited, the concepts of generalized neighborhood and significance state of a given coefficient are
used. The CMLZC algorithm works explained below:

The encoder is based on two important observations:

e Medical images in general have a low pass spectrum. When a medical image is wavelet transform the energy in
the sub bands decreases as the scale decreases (low scale means high resolution), so the wavelet coefficients will,
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Fig. 4. Block diagram of proposed work.

on average, be smaller in the higher sub bands than in the lower sub bands. This shows that progressive encoding
is a very natural choice for compressing wavelet transformed medical images, since the higher sub bands only
add detail;

Large wavelet coefficients are more important than small wavelet coefficients. These two observations are
exploited by encoding the individual subbands.

Apply whole quantizers set to each subband before switching to next level. For this purpose each subband is
divided into square boxes having the width of 4.

For each lattice v, calculate the maximum absolute value xpax. Let T, = [log, abs (xpax)] be the threshold of pth
subband.

o Set the maximum of all thresholds as global threshold 7.
e Scan the wavelet coefficients in each individual subband in zig zag manner.
e If 7, < T the wavelet coefficient is, the lattice is insignificant. If 7, >= T, the lattice is significant. If this lattice

is first time significant, a ‘1’ is stored. If the lattice is already significant, no information is sent to the decoder.
If the lattice is significant, check for the significance of each coefficient in raster scan order. If coefficient is
significant a ‘1’ is assigned to significant list otherwise a ‘0’ is assigned to sign list or ‘1’ if it is negative
significant.

o After all lattices are scanned, set Ty, = T, — 1. If T, >= 0 go to step 6, otherwise stop.
e The image reconstructed at 7, = 0 will be identical to the original image and hence results in lossless

compression.

5. Proposed Work

The proposed work can be designed by adaptive multiwavelet transform followed by MLZC algorithm. Figure 4
shows the general block diagram of the proposed system.

B~ LN

W

. For filtering purpose apply Spatial Adaptive Mask Filter (SAMF) to the given image.

. Generate ROI mask based on context and process by segmentation method.

. Based on priority adjustment first encode the contextual region and encode the background later.

. Encoding of the ROI part i.e performed separately with CMLZC with high bits per pixel and low compression

ratio.

. Encoding of the background is performed with CMLZC with low bits per pixel and high compression ratio.
. Merge the encoded background with encoded ROI get the compressed image

6. Evaluation Metrics

The image quality is inspected by objective evaluation. There are various evaluation metrics used for objective
evaluation of medical images. The preferred metrics are Root Mean Squared Error (RMSE), Peak Signal to Noise
Ratio (PSNR), Mean Absolute Error (MAE), Correlation Coefficient (CC), Mean Structural Similarity Index (MSSIM)
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and Compression Ratio (CR)!7"'°. Higher PSNR, MSSIM, CC and lowest RMSE, MAE values provide high image
quality?%-22. The metrics for comparison is given below (Table 4—6):

1
RMSE = M—N\/Z > (Xij = Yi) )
PSNR = log,((255%/RMS) 3)
1
MAE = —— Z Z Irij = xij )
! J
N2 X Y — X:: Y::
CcC = Z y Ty Z 2 Z ) (5)
2 2 _ 2 2 2 _ 2
JOV XX = (xR (VX v - (S 7))
original image — compressed image
cr=""8 g¢ — comp % 100 (6)
original image
2xxxyxcl)2xoxy xC2
SSIM — (2 i y )( < Oxy X ) )
(02 + 02 +¢2) x (X2 + ()2 +cl)
1 M
MSSIM = — SSIM ; ®)
M Z_; !
Table 1. Comparison on PSNR of proposed work with existing methods.
Bpp IWT MWT AMWT Proposed
0.1 14.20 20.40 27.85 29.99
0.2 18.98 23.21 30.84 32.08
0.3 21.88 26.26 32.53 33.49
0.4 24.03 27.64 33.91 34.69
0.5 25.45 28.87 35.12 36.16
0.6 26.48 29.83 36.51 37.37
0.7 28.48 30.61 37.88 38.91
0.8 29.39 31.52 39.21 40.07
0.9 30.04 32.01 40.77 41.70
1.0 30.92 32.74 42.15 43.25
Table 2. Comparison on RMSE of proposed work with existing methods.
Bpp IWT MWT AMWT Proposed
0.1 2780.6 593.14 106.57 65.16
0.2 820.86 310.53 53.57 40.24
0.3 421.35 153.74 36.30 29.07
0.4 256.91 111.90 26.42 22.08
0.5 185.16 84.30 19.98 15.70
0.6 146.23 67.58 14.50 11.90
0.7 92.16 56.45 10.58 8.34
0.8 74.80 45.77 7.79 6.39
0.9 64.35 40.97 5.45 4.39
1.0 52.50 34.59 3.96 3.07




R. Sumalatha and M.V. Subramanyam / Procedia Computer Science 54 (2015) 838 — 848 843

Table 3. Comparison on CR of proposed work with existing methods.

Bpp IWT MWT AMWT Proposed
0.1 297.41 568.98 82.36 17.23
0.2 51.97 230.72 14.16 7.32
0.3 25.80 108.96 6.94 4.86
0.4 13.00 65.12 4.55 3.49
0.5 8.96 32.38 3.35 2.74
0.6 5.54 17.46 2.67 222
0.7 4.38 10.55 2.17 1.89
0.8 3.52 6.40 1.85 1.65
0.9 2.75 4.69 1.63 1.44
1.0 2.28 3.44 1.40 1.29

Table 4. Comparison on MAE of proposed work with existing methods.

Bpp IWT MWT AMWT Proposed
0.1 31.53 36.29 15.98 10.74
0.2 17.04 23.60 8.91 7.23
0.3 12.20 17.29 6.26 5.12
0.4 9.75 13.96 4.70 4.09
0.5 8.49 11.82 3.57 2.87
0.6 7.79 9.97 2.66 2.31
0.7 6.10 8.75 2.11 1.80
0.8 5.62 7.19 1.46 1.22
0.9 5.25 6.55 1.14 0.89
1.0 4.79 5.99 0.82 0.65

Table 5. Comparison on CC of proposed work with existing methods.

Bpp IWT MWT AMWT Proposed
0.1 0.47 0.18 0.85 0.92
0.2 0.79 0.65 0.94 0.95
0.3 0.87 0.78 0.96 0.97
0.4 0.91 0.85 0.97 0.97
0.5 0.93 0.89 0.97 0.97
0.6 0.94 0.92 0.97 0.98
0.7 0.96 0.93 0.98 0.98
0.8 0.96 0.95 0.98 0.98
0.9 0.96 0.95 0.98 0.98
1.0 0.97 0.96 0.98 0.98

Table 6. Comparison on MSSIM of proposed work with existing methods.

Bpp IWT MWT AMWT Proposed
0.1 0.44 0.41 0.58 0.70
0.2 0.59 0.48 0.77 0.82
0.3 0.69 0.57 0.86 0.89
0.4 0.74 0.62 0.91 0.93
0.5 0.79 0.67 0.94 0.96
0.6 0.81 0.73 0.96 0.97
0.7 0.86 0.78 0.98 0.98
0.8 0.88 0.84 0.98 0.99
0.9 0.89 0.86 0.99 0.99

1.0 0.90 0.88 0.99 0.99
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Fig. 5. (a) Original image; (b) Noisy image; (c) Denoised image using SAMF.
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Fig. 7. Obtained PSNR observations for different data rate coding for IWT, MWT, AMWT and proposed work.
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Fig. 8. Obtained RMSE observations for different data rate coding for IWT, MWT, AMWT and proposed work.
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Fig. 9. Obtained CR observations for different data rate coding for IWT, MWT, AMWT and proposed work.
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Fig. 11. Obtained CC observations for different data rate coding for IWT, MWT, AMWT and proposed work.
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Fig. 12. Obtained MSSIM observations for different data rate coding for IWT, MWT, AMWT and proposed work.

7. Experimental Results

We compare the performance of our adaptive multiwavelet transform (AMWT) with integer wavelet transform IWT)
and Multiwavelet transform (MWT) interms of bpp, PSNR, RMSE, CR, MAE, CC, MSSIM. We apply the above
transforms on 8-bit ultrasound image. Table 1 gives the result of comparison of different transform techniques at
different bpp interms of PSNR. In Table 2 and 3 we compare the AMWT with existing transform techniques at
different bpp interms of MSE & CR. The fig shows the graphical results of different quality performance evaluation
parameters. Figure 5(a), (b) & (c) shows the original, foreground and background images. Figure 6(a), (b) & (c)
shows the original image, reconstructed images using IWT, MWT and AMWT at 0.5bpp. The Fig. 7-Fig. 12 gives
the comparative graphical results of different quality performance evaluation parameters.

8. Conclusion

In this paper, the AMWT filter coefficients were derived from the adaptive lifting scheme. In the adaptive lifting
scheme the predictor was modified based on two previous values for calculating the current pixel. The proposed
predictor reduces the computational complexity. Experimental results were obtained by applying the proposed method
to an 8-bit ultrasound image. It is shown that the proposed AMWT outperforms the other well-known transform
techniques. The experimental results show that the proposed method gives more PSNR, MSSIM, CC and lowest
RMSE, MAE value at different bpp in the range of 0.1 to 1 and the images are transmitted with moderate CR in the
high quality of reconstructed images.
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