31,289 research outputs found

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine

    Get PDF
    Analysis of the office workers’ activities of daily working in an intelligent office environment can be used to optimize energy consumption and also office workers’ comfort. To achieve this end, it is essential to recognise office workers’ activities including short breaks, meetings and non-computer activities to allow an optimum control strategy to be implemented. In this paper, fuzzy finite state machines are used to model an office worker’s behaviour. The model will incorporate sensory data collected from the environment as the input and some pre-defined fuzzy states are used to develop the model. Experimental results are presented to illustrate the effectiveness of this approach. The activity models of different individual workers as inferred from the sensory devices can be distinguished. However, further investigation is required to create a more complete model

    Presenting the networked home: a content analysis of promotion material of Ambient Intelligence applications

    Get PDF
    Ambient Intelligence (AmI) for the home uses information and communication technologies to make users’ everyday life more comfortable. AmI is still in its developmental phase and is headed towards the first stages of diffusion. \ud Characteristics of AmI design can be observed, among others, in the promotion material of initial producers. A literature study revealed that AmI originally envisioned a central role for the user, convenience that AmI offers them and that attention should be paid to critical policy issues such as privacy and a potential loss of freedom. A content analysis of current promotion material of several high-tech companies revealed that these original ideas are not all reflected in the material. Attributes which were used most in the promotion material were ‘connectedness’, ‘control’, ‘easiness’ and ‘personalization’. An analysis of the pictures in the promotion material showed that almost half of the pictures contained no humans but appliances. These results only partly correspond to the original vision on AmI, since the emphasis is now on technology. The results represent a serious problem, since both users, as well as critical policy issues are underexposed in the current promotion material

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Social issues of power harvesting as key enables of WSN in pervasive computing

    No full text
    Pervasive systems have gained popularity and open the door to new applications that will improve the quality of life of the users. Additionally, the implementation of such systems over an infrastructure of Wireless Sensor Networks has been proven to be very powerful. To deal with the WSN problems related to the battery of the elements or nodes that constitute the WSN, Power Harvesting techniques arise as good candidates. With PH each node can extract the energy from the surrounding environment. However, this energy source could not be constant, affecting the continuity and quality of the services provided. This behavior can have a negative impact on the user's perception about the system, which could be perceived as unreliable or faulty. In the current paper, some related works regarding pervasive systems within the home environment are referenced to extrapolate the conclusions and problems to the paradigm of Power Harvesting Pervasive Systems from the user perspective. Besides, the paper speculates about the approach and methods to overcome these potential problems and presents the design trends that could be followed.<br/

    Personalized Ambience: An Integration of Learning Model and Intelligent Lighting Control

    Get PDF
    The number of households and offices adopting automation system is on the rise. Although devices and actuators can be controlled through wireless transmission, they are mostly static with preset schedules, or at different times it requires human intervention. This paper presents a smart ambience system that analyzes the user’s lighting habits, taking into account different environmental context variables and user needs in order to automatically learn about the user’s preferences and automate the room ambience dynamically. Context information is obtained from Yahoo Weather and environmental data pertaining to the room is collected via Cubesensors to study the user’s lighting habits. We employs a learning model known as the Reduced Error Prune Tree (REPTree) to analyze the users’ preferences, and subsequently predicts the preferred lighting condition to be actuated in real time through Philips Hue. The system is able to ensure the user’s comfort at all time by performing a closed feedback control loop which checks and maintains a suitable lighting ambience at optimal level

    SAT based Enforcement of Domotic Effects in Smart Environments

    Get PDF
    The emergence of economically viable and efficient sensor technology provided impetus to the development of smart devices (or appliances). Modern smart environments are equipped with a multitude of smart devices and sensors, aimed at delivering intelligent services to the users of smart environments. The presence of these diverse smart devices has raised a major problem of managing environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the environments using user defined goals. `Domotic Effects' is a user goal modeling framework, which provides Ambient Intelligence (AmI) designers and integrators with an abstract layer that enables the definition of generic goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. The high-level nature of domotic effects also allows the residents to program their personal space as they see fit: they can define different achievement criteria for a particular generic goal, e.g., by defining a combination of devices having some particular states, by using domain-specific custom operators. This paper describes an approach for the automatic enforcement of domotic effects in case of the Boolean application domain, suitable for intelligent monitoring and control in domotic environments. Effect enforcement is the ability to determine device configurations that can achieve a set of generic goals (domotic effects). The paper also presents an architecture to implement the enforcement of Boolean domotic effects, and results obtained from carried out experiments prove the feasibility of the proposed approach and highlight the responsiveness of the implemented effect enforcement architectur

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to
    • 

    corecore