435,950 research outputs found

    A Study of Security Limitations in Virtual Local Area Network Implementation

    Get PDF
    Virtual Local Area Network (VLAN) in simple terms is defined as a group of Local Area Network (LAN) that has different physical connections, but communicates as if they are connected on a single network segment.VLAN was developed mainly for the need in network segmenting solution, since network traffic increases in proportional to the network size in the same time to offer additional network security.This technology has now become possible by the advancement of various LAN Switches which offer the VLAN feature.Few researches has been carried out which explain the technology part of the system.This thesis provides a study on VLAN mainly covering the implementation of the system and the security weakness present in certain conditions of implementation.For the VLAN system,an onsite study was conducted to explore the implementation of the system in real life environment followed by a practical test conducted to examine the weaknesses part of the system.The results obtained from the test showed that under certain type of implementation, the security features of the VLAN system can be exploited. Solutions are proposed to further improve the security of the system in which certain part of the solution was gathered upon verifying the issue with the switch manufacture

    Thermoelectric Generator Using Passive Cooling

    Get PDF
    This chapter presents an analysis of a point-of-use thermoelectric generator that is patented by one of the authors. The design, implementation and performance of the generator for powering electronic monitoring devices and charging batteries is discussed. This passive generator has no moving parts and relies on ambient air cooling. In one iteration it produces 6.9 W of steady state power using six Laird thermoelectric modules (Laird PB23 Series, HT8, 12) when placed on a 160°C steam pipe with a 30°C ambient environment ( Δ T of 130°C). The generator produced 31.2 volts (V) open circuit and 0.89 amperes (A) short circuit. It successfully powered two microcontroller-based security cameras, one with a wireless Local Area Network (LAN) and another with cellular connectivity. In another scenario, the generator produced approximately 6 W with a steam pipe temperature of 140°C and an ambient of 25°C ( Δ T of 115°C). This second system powered LED lights, a cellular-interfaced video surveillance system, and monitoring robots, while simultaneously trickle charging batteries. A third installation totally powered a stand-alone 3G web security camera system

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements

    Security for Grid Services

    Full text link
    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.Comment: 10 pages; 4 figure

    Phare Programme and Contract Information, 1996 Latvia

    Get PDF
    corecore