2,172 research outputs found

    Conceptual roles of data in program: analyses and applications

    Get PDF
    Program comprehension is the prerequisite for many software evolution and maintenance tasks. Currently, the research falls short in addressing how to build tools that can use domain-specific knowledge to provide powerful capabilities for extracting valuable information for facilitating program comprehension. Such capabilities are critical for working with large and complex program where program comprehension often is not possible without the help of domain-specific knowledge.;Our research advances the state-of-art in program analysis techniques based on domain-specific knowledge. The program artifacts including variables and methods are carriers of domain concepts that provide the key to understand programs. Our program analysis is directed by domain knowledge stored as domain-specific rules. Our analysis is iterative and interactive. It is based on flexible inference rules and inter-exchangeable and extensible information storage. We designed and developed a comprehensive software environment SeeCORE based on our knowledge-centric analysis methodology. The SeeCORE tool provides multiple views and abstractions to assist in understanding complex programs. The case studies demonstrate the effectiveness of our method. We demonstrate the flexibility of our approach by analyzing two legacy programs in distinct domains

    Algorithmic Differentiation of Code with Multiple Context-Specific Activities

    Get PDF

    Compiler Support for Operator Overloading and Algorithmic Differentiation in C++

    Get PDF
    Multiphysics software needs derivatives for, e.g., solving a system of non-linear equations, conducting model verification, or sensitivity studies. In C++, algorithmic differentiation (AD), based on operator overloading (overloading), can be used to calculate derivatives up to machine precision. To that end, the built-in floating-point type is replaced by the user-defined AD type. It overloads all required operators, and calculates the original value and the corresponding derivative based on the chain rule of calculus. While changing the underlying type seems straightforward, several complications arise concerning software and performance engineering. This includes (1) fundamental language restrictions of C++ w.r.t. user-defined types, (2) type correctness of distributed computations with the Message Passing Interface (MPI) library, and (3) identification and mitigation of AD induced overheads. To handle these issues, AD experts may spend a significant amount of time to enhance a code with AD, verify the derivatives and ensure optimal application performance. Hence, in this thesis, we propose a modern compiler-based tooling approach to support and accelerate the AD-enhancement process of C++ target codes. In particular, we make contributions to three aspects of AD. The initial type change - While the change to the AD type in a target code is conceptually straightforward, the type change often leads to a multitude of compiler error messages. This is due to the different treatment of built-in floating-point types and user-defined types by the C++ language standard. Previously legal code constructs in the target code subsequently violate the language standard when the built-in floating-point type is replaced with a user-defined AD type. We identify and classify these problematic code constructs and their root cause is shown. Solutions by localized source transformation are proposed. To automate this rather mechanical process, we develop a static code analyser and source transformation tool, called OO-Lint, based on the Clang compiler framework. It flags instances of these problematic code constructs and applies source transformations to make the code compliant with the requirements of the language standard. To show the overall relevance of complications with user-defined types, OO-Lint is applied to several well-known scientific codes, some of which have already been AD enhanced by others. In all of these applications, except the ones manually treated for AD overloading, problematic code constructs are detected. Type correctness of MPI communication - MPI is the de-facto standard for programming high performance, distributed applications. At the same time, MPI has a complex interface whose usage can be error-prone. For instance, MPI derived data types require manual construction by specifying memory locations of the underlying data. Specifying wrong offsets can lead to subtle bugs that are hard to detect. In the context of AD, special libraries exist that handle the required derivative book-keeping by replacing the MPI communication calls with overloaded variants. However, on top of the AD type change, the MPI communication routines have to be changed manually. In addition, the AD type fundamentally changes memory layout assumptions as it has a different extent than the built-in types. Previously legal layout assumptions have, thus, to be reverified. As a remedy, to detect any type-related errors, we developed a memory sanitizer tool, called TypeART, based on the LLVM compiler framework and the MPI correctness checker MUST. It tracks all memory allocations relevant to MPI communication to allow for checking the underlying type and extent of the typeless memory buffer address passed to any MPI routine. The overhead induced by TypeART w.r.t. several target applications is manageable. AD domain-specific profiling - Applying AD in a black-box manner, without consideration of the target code structure, can have a significant impact on both runtime and memory consumption. An AD expert is usually required to apply further AD-related optimizations for the reduction of these induced overheads. Traditional profiling techniques are, however, insufficient as they do not reveal any AD domain-specific metrics. Of interest for AD code optimization are, e.g., specific code patterns, especially on a function level, that can be treated efficiently with AD. To that end, we developed a static profiling tool, called ProAD, based on the LLVM compiler framework. For each function, it generates the computational graph based on the static data flow of the floating-point variables. The framework supports pattern analysis on the computational graph to identify the optimal application of the chain rule. We show the potential of the optimal application of AD with two case studies. In both cases, significant runtime improvements can be achieved when the knowledge of the code structure, provided by our tool, is exploited. For instance, with a stencil code, a speedup factor of about 13 is achieved compared to a naive application of AD and a factor of 1.2 compared to hand-written derivative code

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    A design methodology for portable software on parallel computers

    Get PDF
    This final report for research that was supported by grant number NAG-1-995 documents our progress in addressing two difficulties in parallel programming. The first difficulty is developing software that will execute quickly on a parallel computer. The second difficulty is transporting software between dissimilar parallel computers. In general, we expect that more hardware-specific information will be included in software designs for parallel computers than in designs for sequential computers. This inclusion is an instance of portability being sacrificed for high performance. New parallel computers are being introduced frequently. Trying to keep one's software on the current high performance hardware, a software developer almost continually faces yet another expensive software transportation. The problem of the proposed research is to create a design methodology that helps designers to more precisely control both portability and hardware-specific programming details. The proposed research emphasizes programming for scientific applications. We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation Budget Experiment (ERBE) data processing system. This work is summarized in section two. A more detailed description is provided in Appendix A ('Programming Practices to Support Eventual Parallelism'). Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation proposal which describes our research associated with the issues of software portability and high performance. The list of research tasks are specified in the proposal. The proposal 'A Design Methodology for Portable Software on Parallel Computers' is summarized in section three and is provided in its entirety in Appendix B. We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant Energy System (CERES) data processing system. This software is the proof-of-concept for the Ph.D. dissertation. We have implemented and measured the performance of a portion of this subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four. Our future work is summarized in section five, our acknowledgements are stated in section six, and references for published papers associated with NAG-1-995 are provided in section seven

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Parallel Program Composition with Paragraphs in Stapl

    Get PDF
    Languages and tools currently available for the development of parallel applications are difficult to learn and use. The Standard Template Adaptive Parallel Library (STAPL) is being developed to make it easier for programmers to implement a parallel application. STAPL is a parallel programming library for C++ that adopts the generic programming philosophy of the C++ Standard Template Library. STAPL provides collections of parallel algorithms (pAlgorithms) and containers (pContainers) that allow a developer to write their application without reimplementing the algorithms and data structures commonly used in parallel computing. pViews in STAPL are abstract data types that provide generic data access operations independently of the type of pContainer used to store the data. Algorithms and applications have a formal, high level representation in STAPL. A computation in STAPL is represented as a parallel task graph, which we call a PARAGRAPH. A PARAGRAPH contains a representation of the algorithm's input data, the operations that are used to transform individual data elements, and the ordering between the application of operations that transform the same data element. Just as programs are the result of a composition of algorithms, STAPL programs are the result of a composition of PARAGRAPHs. This dissertation develops the PARAGRAPH program representation and its compositional methods. PARAGRAPHs improve the developer's difficult situation by simplifying what she must specify when writing a parallel algorithm. The performance of the PARAGRAPH is evaluated using parallel generic algorithms, benchmarks from the NAS suite, and a nuclear particle transport application that has been written using STAPL. Our experiments were performed on Cray XT4 and Cray XE6 massively parallel systems and an IBM Power5 cluster, and show that scalable performance beyond 16,000 processors is possible using the PARAGRAPH
    • …
    corecore