69,923 research outputs found

    Set-based design of mechanical systems with design robustness integrated

    Get PDF
    This paper presents a method for parameter design of mechanical products based on a set-based approach. Set-based concurrent engineering emphasises on designing in a multi-stakeholder environment with concurrent involvement of the stakeholders in the design process. It also encourages flexibility in design through communication in terms of ranges instead of fixed point values and subsequent alternative solutions resulting from intersection of these ranges. These alternative solutions can then be refined and selected according to the designers’ preferences and clients’ needs. This paper presents a model and tools for integrated flexible design that take into account the manufacturing variations as well as the design objectives for finding inherently robust solutions using QCSP transformation through interval analysis. In order to demonstrate the approach, an example of design of rigid flange coupling with a variable number of bolts and a choice of bolts from ISO M standard has been resolved and demonstrated

    A General Simulation Framework for Supply Chain Modeling: State of the Art and Case Study

    Full text link
    Nowadays there is a large availability of discrete event simulation software that can be easily used in different domains: from industry to supply chain, from healthcare to business management, from training to complex systems design. Simulation engines of commercial discrete event simulation software use specific rules and logics for simulation time and events management. Difficulties and limitations come up when commercial discrete event simulation software are used for modeling complex real world-systems (i.e. supply chains, industrial plants). The objective of this paper is twofold: first a state of the art on commercial discrete event simulation software and an overview on discrete event simulation models development by using general purpose programming languages are presented; then a Supply Chain Order Performance Simulator (SCOPS, developed in C++) for investigating the inventory management problem along the supply chain under different supply chain scenarios is proposed to readers.Comment: International Journal of Computer Science Issues online at http://ijcsi.org/articles/A-General-Simulation-Framework-for-Supply-Chain-Modeling-State-of-the-Art-and-Case-Study.ph

    A lean assessment tool based on systems dynamics

    Get PDF
    Lean manufacturing is synonymous with a set of practices used in the identification and elimination of waste related with the manufacturing system, and focusing on what creates value for the customer. Lean assessment tools enable an overall audit of the performance of lean practices, and so are able to identify lean improvements. The interactions between lean practices and their improvements are often latent and need to be investigated: a systems approach can be used to disclose these hidden interactions. In this article, system dynamics is used as a lean assessment tool to assess and improve lean performance for a print packaging manufacturing system

    Design and analysis of a reconfigurable discrete pin tooling system for molding of three-dimensional free-form objects

    Get PDF
    This paper presents the design and analysis of a new reconfigurable tooling for the fabrication of three-dimensional (3D) free-form objects. The proposed reconfigurable tooling system comprises a set of matrices of a closely stacked discrete elements (i.e., pins) arranged to form a cavity in which a free-form object can be molded. By reconfiguring the pins, a single tool can be used in the place of multiple tools to produce different parts with the involvement of much lesser time and cost. The structural behavior of a reconfigurable mold tool under process conditions of thermoplastic molding is studied using a finite element method (FEM) based methodology. Various factors that would affect the tool behavior are identified and their effects are analyzed to optimally design a reconfigurable mold tool for a given set of process conditions. A prototype, open reconfigurable mold tool is developed to present the feasibility of the proposed tooling system. Several case studies and sample parts are also presented in this paper

    Discrete Event Simulation Modelling for Dynamic Decision Making in Biopharmaceutical Manufacturing

    Get PDF
    With the increase in demand for biopharmaceutical products, industries have realised the need to scale up their manufacturing from laboratory-based processes to financially viable production processes. In this context, biopharmaceutical manufacturers are increasingly using simulation-based approaches to gain transparency of their current production system and to assist with designing improved systems. This paper discusses the application of Discrete Event Simulation (DES) and its ability to model the various scenarios for dynamic decision making in biopharmaceutical manufacturing sector. This paper further illustrates a methodology used to develop a simulation model for a biopharmaceutical company, which is considering several capital investments to improve its manufacturing processes. A simulation model for a subset of manufacturing activities was developed that facilitated ‘what-if’ scenario planning for a proposed process alternative. The simulation model of the proposed manufacturing process has shown significant improvement over the current process in terms of throughout time reduction, better resource utilisation, operating cost reduction, reduced bottlenecks etc. This visibility of the existing and proposed production system assisted the company in identifying the potential capital and efficiency gains from the investments therefore demonstrating that DES can be an effective tool for making more informed decisions. Furthermore, the paper also discusses the utilisation of DES models to develop a number of bespoke productivity improvement tools for the company

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities

    Internet of Things and Their Coming Perspectives: A Real Options Approach

    Get PDF
    Internet of things is developing at a dizzying rate, and companies are forced to implement it in order to maintain their operational efficiency. The high flexibility inherent to these technologies makes it necessary to apply an appropriate measure, which properly assesses risks and rewards. Real options methodology is available as a tool which fits the conditions, both economic and strategic, under which investment in internet of things technologies is developed. The contribution of this paper is twofold. On the one hand, it offers an adequate tool to assess the strategic value of investment in internet of things technologies. On the other hand, it tries to raise awareness among managers of internet of things technologies because of their potential to contribute to economic and social progress. The results of the research described in this paper highlight the importance of taking action as quickly as possible if companies want to obtain the best possible performance. In order to enhance the understanding of internet of things technologies investment, this paper provides a methodology to assess the implementation of internet of things technologies by using the real options approach; in particular, the option to expand has been proposed for use in the decision-making process

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore