6,792 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Design and practical implementation of a fractional order proportional integral controller (FOPI) for a poorly damped fractional order process with time delay

    No full text
    One of the most popular tuning procedures for the development of fractional order controllers is by imposing frequency domain constraints such as gain crossover frequency, phase margin and iso-damping properties. The present study extends the frequency domain tuning methodology to a generalized range of fractional order processes based on second order plus time delay (SOPDT) models. A fractional order PI controller is tuned for a real process that exhibits poorly damped dynamics characterized in terms of a fractional order transfer function with time delay. The obtained controller is validated on the experimental platform by analyzing staircase reference tracking, input disturbance rejection and robustness to process uncertainties. The paper focuses around the tuning methodology as well as the fractional order modeling of the process' dynamics

    A Robust Fuzzy Fractional Order PID Design Based On Multi-Objective Optimization For Rehabilitation Device Control

    Get PDF
    In this context, Fuzzy Fractional Order Proportional Integral Derivative (FOPID-FLC) controllers are emerged as efficient approaches due to their flexibility and ability to handle nonlinearities and uncertainties. This paper proposes the use of a FOPID-FLC controller for a two-degree-of-freedom (2-DOF) lower limb exoskeleton. Our proposal is based on an enhanced control approach that combines fuzzy logic advantages and fractional calculus benefits. Contrary to popular existing methods, that use the FLC to tune the FOPID  parameters, the FLC in this work is used to generate the system torque depending on patient morphology. Indeed, our fundamental contribution is to design and implement an enhanced FOPID-FLC that achieves an adequate optimal control based on system rules composed of optimal torques and input data. The fractional calculus is approximated using successive first order filters. Next, a multi-objective optimization is established for the tuning of each FOPID parameters. Finally, the FLC is used to adjust the torque depending on the kid's age. The effectiveness of the proposed controller in various scenarios is validated based on numerical simulations. Extensive analyses prove that the FOPID-FLC outperforms the FOPID with a 90\% of improvement in terms of error performance indices and 20\% of improvement for the control action. Moreover, the controller exhibits improved robustness against uncertainties and disturbances encountered in rehabilitation environments

    A field programmable gate array based modular motion control platform

    Get PDF
    The expectations from motion control systems have been rising day by day. As the systems become more complex, conventional motion control systems can not achieve to meet all the specifications with optimized results. This creates the necessity of fundamental changes in the infrastructure of the system. Field programmable gate array (FPGA) technology enables the reconfiguration of the digital hardware, thus dissolving the necessity of infrastructural changes for minor manipulations in the hardware even if the system is deployed. An FPGA based hardware system shrinks the size of the hardware hence the cost. FPGAs also provide better power ratings for the systems as well as a more reliable system with improved performance. As a trade off, the development is rather more difficult than software based systems, which also affects the research and development time of the overall system. In this paper a level of abstraction is introduced in order to diminish the requirement of advanced hardware description language (HDL) knowledge for implementing motion control systems thoroughly on an FPGA. The intellectual property library consists of synthesizable hardware modules specifically implemented for motion control purposes. Other parts of a motion control system, like user interface and trajectory generation, are implemented as software functions in order to protect the modularity of the system. There are also several external hardware designs for interfacing and driving various types of actuators

    An Inverse Dynamics Approach to Control Lyapunov Functions

    Get PDF
    With the goal of moving towards implementation of increasingly dynamic behaviors on underactuated systems, this paper presents an optimization-based approach for solving full-body dynamics based controllers on underactuated bipedal robots. The primary focus of this paper is on the development of an alternative approach to the implementation of controllers utilizing control Lyapunov function based quadratic programs. This approach utilizes many of the desirable aspects from successful inverse dynamics based controllers in the literature, while also incorporating a variant of control Lyapunov functions that renders better convergence in the context of tracking outputs. The principal benefits of this formulation include a greater ability to add costs which regulate the resulting behavior of the robot. In addition, the model error-prone inertia matrix is used only once, in a non-inverted form. The result is a successful demonstration of the controller for walking in simulation, and applied on hardware in real-time for dynamic crouching

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure
    corecore