9,522 research outputs found

    VLIT NODE Sensor Technology and Prefarm

    Get PDF
    Precision farming systems are based on a detailed monitoring of information and data that are necessary for successful decision-making in crop production. The system is designed for data collection from several resources. In past years an extensive research and development work has been done in the field of wireless sensor networks (WSN) in the world. When a wireless sensor network (WSN) is used for agricultural purposes, it has to provide first of all a long-reach signal. The present paper describes new long distance RFID based technology implementation - VLIT NODE.Wireless Sensor Network, Precision Agriculture, RFID., Research and Development/Tech Change/Emerging Technologies, Research Methods/ Statistical Methods, GA, IN,

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Introducing a new technology to enhance community sustainability: An investigation of the possibilities of sun spots

    Get PDF
    The introduction of the Sun SPOT, Small Programmable Object Technology, developed by Sun Microsystems has been depicted as providing a revolutionary change in cyber physical interaction. Based on Sun Java Micro Edition (ME), this sensor technology has the potential to be used across a number of discipline areas to interface with systems, the environment and biological domains. This paper will outline the potential of Sun SPOTs to enhance community sustainability. An action based research project was carried out to investigate the potential uses of these technologies and develop a prototype system as a proof of concept. The research will compare Sun SPOTs with similar technologies, provide an assessment of the technology, and propose a number of possible implementations of the technology to enhance community sustainability

    Design and Implementation of a Wireless Sensor Network for Smart Homes

    Full text link
    Wireless sensor networks (WSNs) have become indispensable to the realization of smart homes. The objective of this paper is to develop such a WSN that can be used to construct smart home systems. The focus is on the design and implementation of the wireless sensor node and the coordinator based on ZigBee technology. A monitoring system is built by taking advantage of the GPRS network. To support multi-hop communications, an improved routing algorithm based on the Dijkstra algorithm is presented. Preliminary simulations have been conducted to evaluate the performance of the algorithm.Comment: International Workshop on Mobile Cyber-Physical Systems (MobiCPS 2010), in conjunction with UIC2010, IEEE, Xi'an, China, 26 - 29 October, 201

    Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Get PDF
    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy

    A new wireless underground network system for continuous monitoring of soil water contents

    Get PDF
    A new stand-alone wireless embedded network system has been developed recently for continuous monitoring of soil water contents at multiple depths. This paper presents information on the technical aspects of the system, including the applied sensor technology, the wireless communication protocols, the gateway station for data collection, and data transfer to an end user Web page for disseminating results to targeted audiences. Results from the first test of the network system are presented and discussed, including lessons learned so far and actions to be undertaken in the near future to improve and enhance the operability of this innovative measurement approac

    ANTENNA FOR WIRELESS UNDERGROUND COMMUNICATION

    Get PDF
    Systems and methods are disclosed for an underground antenna structure for radiating through a dissipative medium, the antenna structure. The antenna structure includes a dielectric substrate, a feeding structure disposed on the substrate, and one or more electrical conductors. The one or more electrical conductors are disposed on the substrate, oriented, and buried within the dissipative medium. The electrical conductors are also adapted to radiate signals at a frequency in half-space adjacent to the dissipative medium. The adaptation includes a beamwidth state for one or more of the electrical conductors based at least in part on the relative permittivity of the dissipative medium
    • 

    corecore