5,200 research outputs found

    NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case Study

    Full text link
    Virtualization enables the sharing of a same wireless sensor network (WSN) by multiple applications. However, in heterogeneous environments, virtualized wireless sensor networks (VWSN) raises new challenges such as the need for on-the-fly, dynamic, elastic and scalable provisioning of gateways. Network Functions Virtualization (NFV) is an emerging paradigm that can certainly aid in tackling these new challenges. It leverages standard virtualization technology to consolidate special-purpose network elements on top of commodity hardware. This article presents a case study on NFV based gateways for VWSNs. In the study, a VWSN gateway provider, operates and manages an NFV based infrastructure. We use two different brands of wireless sensors. The NFV infrastructure makes possible the dynamic, elastic and scalable deployment of gateway modules in this heterogeneous VWSN environment. The prototype built with Openstack as platform is described

    Lightweight edge-based networking architecture for low-power IoT devices

    Get PDF
    Abstract. The involvement of low power Internet of Things (IoT) devices in the Wireless Sensor Networks (WSN) allow enhanced autonomous monitoring capability in many application areas. Recently, the principles of edge computing paradigm have been used to cater onsite processing and managing actions in WSNs. However, WSNs deployed in remote sites require human involvement in data collection process since internet accessibility is still limited to population dense areas. Nowadays, researchers propose UAVs for monitoring applications where human involvement is required frequently. In this thesis work, we introduce an edge-based architecture which create end-to-end secure communication between IoT sensors in a remote WSN and central cloud via UAV, which assist the data collection, processing and managing procedures of the remote WSN. Since power is a limited resource, we propose Bluetooth Low Energy (BLE) as the communication media between UAV and sensors in the WSN, where BLE is considered as an ultra-low power radio access technology. To examine the performance of the system model, we have presented a simulation analysis considering three sensor nodes array types that can realize in the practical environment. The impact of BLE data rate, impact of speed of the UAV, impact of distance between adjacent sensors and impact of data generation rate of the sensor node have been analysed to examine the performance of system. Moreover, to observe the practical functionality of the proposed architecture, prototype implementation is presented using commercially available off-the-shelf devices. The prototype of the system is implemented assuming ideal environment

    TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone

    Full text link
    The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make it smarter. A variety of applications now run simultaneously on an ARM-based processor. For example, devices on the edge of the Internet are provided with higher horsepower to be entrusted with storing, processing and analyzing data collected from IoT devices. This significantly improves efficiency and reduces the amount of data that needs to be transported to the cloud for data processing, analysis and storage. However, commodity OSes are prone to compromise. Once they are exploited, attackers can access the data on these devices. Since the data stored and processed on the devices can be sensitive, left untackled, this is particularly disconcerting. In this paper, we propose a new system, TrustShadow that shields legacy applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone technology and partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment for security-critical applications. This trusted environment is maintained by a lightweight runtime system that coordinates the communication between applications and the ordinary OS running in the normal world. The runtime system does not provide system services itself. Rather, it forwards requests for system services to the ordinary OS, and verifies the correctness of the responses. To demonstrate the efficiency of this design, we prototyped TrustShadow on a real chip board with ARM TrustZone support, and evaluated its performance using both microbenchmarks and real-world applications. We showed TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201
    corecore