131 research outputs found

    On the design and implementation of a high definition multi-view intelligent video surveillance system

    Get PDF
    This paper proposes a distributed architecture for high definition (HD) multi-view video surveillance system. It adopts a modular design where multiple intelligent Internet Protocol (IP)-based video surveillance cameras are connected to a local video server. Each server is equipped with storage and optional graphics processing units (GPUs) for supporting high-level video analytics and processing algorithms such as real-time decoding and tracking for the video captured. The servers are connected to the IP network for supporting distributed processing and remote data access. The DSP-based surveillance camera is equipped with realtime algorithms for streaming compressed videos to the server and performing simple video analytics functions. We also developed video analytics algorithms for security monitoring. Both publicly available data set and real video data that are captured under indoor and outdoor scenarios are used to validate our algorithms. Experimental results show that our distributed system can support real-time video applications with high definition resolution.published_or_final_versio

    Real-time data acquisition, transmission and archival framework

    Get PDF
    Most human actions are a direct response to stimuli from their five senses. In the past few decades there has been a growing interest in capturing and storing the information that is obtained from the senses using analog and digital sensors. By storing this data it is possible to further analyze and better understand human perception. While many devices have been created for capturing and storing data, existing software and hardware architectures are aimed towards specialized devices and require expensive high-performance systems. This thesis aims to create a framework that supports capture and monitoring of a variety of sensors and can be scaled to run on low and high-performance systems such as netbooks, laptops and desktop systems. The proposed architecture was tested using aural and visual sensors due to their availability and higher bandwidth requirements compared to other sensors. Four different portable computing devices were used for testing with a varied set of hardware capabilities. On each of the systems the same suite of tests were run to benchmark and analyze CPU, memory, network, and storage usage statistics. From the results it was shown that on all of these platforms capturing data from multiple video, audio and other sensor sources was possible in real-time. Performance was shown to scale based on several factors, but the most important were CPU architecture, network topology and data interfaces used

    TiFEE : an input event-handling framework with touchless device support

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Universidade do Porto. Faculdade de Engenharia. 201
    corecore