

Copyright

by

Adrianus Victor Hitijahubessy

2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UT Digital Repository

https://core.ac.uk/display/211350759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMPLEMENTATION OF MULTI-ALGORITHM CONTROLLERS

FOR PATH DETERMINATION IN MOBILE ROBOT SYSTEMS

by

Adrianus Victor Hitijahubessy, B.S.M.E.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

The University of Texas at Austin

MAY 2006

IMPLEMENTATION OF MULTI-ALGORITHM CONTROLLERS

FOR PATH DETERMINATION IN MOBILE ROBOT SYSTEMS

Approved by
Supervising Committee:

Dedication

To my parents for their continuous support, guidance, and prayers.

 v

Abstract

IMPLEMENTATION OF MULTI-ALGORITHM CONTROLLERS

FOR PATH DETERMINATION IN MOBILE ROBOT SYSTEMS

Adrianus Victor Hitijahubessy, M.S.E.

The University of Texas at Austin, 2006

Supervisor: Benito R. Fernandez

Recent advancements in control systems, such as the ones used in missile

technology in the military or autonomous vehicle development have motivated this study

in an attempt to explore various control algorithms and their implementation relevant

those applications. Both missile interceptor and autonomous vehicle technology require

precise and responsive control system to accurately determine the projectile path of

pursuer to strike a moving target or reach a static finish line.

The objective of this study is to investigate the performance of several control

techniques for a mobile robot to autonomously track and pursue a moving object.

Computer model is developed to numerically predict the path taken by the pursuer as it

tracks an object moving in regular or random manner. In the computer simulation, the

 vi

robot’s path is calculated using three different techniques: reactive controller, linear

estimation, and artificial neural network. Fitness of each method may be determined by

evaluating the controller against several factors, such as interception time, steady-state

positional error, steady-state time (settling time) and algorithm complexity, listed in

decreasing order of importance.

A working experimental model is developed to validate the controller selection

determined from the computer model simulation. In the experimental setting, the primary

inputs to the robot are visual images from cameras. The experiments are carried out with

the robot receiving visual inputs from two different perspectives, overhead and frontal

vision. Robust image processing technique becomes a topic of significant importance for

the system. To manipulate visual images in real-time from raw inputs to comprehensible

data, while maintaining fast computational time is a challenge that is addressed in this

study.

The results from computer simulations show that artificial neural network is a

more powerful control algorithm, capable of estimating the object’s path more accurately

than the other two controllers, resulting in smaller steady-state positional error. The

experimental results confirm this conclusion as artificial neural network outperforms the

reactive and linear controller by intercepting the object more quickly, i.e. shorter

interception time.

 vii

Table of Contents

List of Tables .. ix

List of Figures...x

Chapter 1: Introduction ...1
1.1 Application of Autonomous Control Systems (ACS)...............................1
1.2 Research Goals and Methodology ..2

Chapter 2: Control Algorithms and Computer Simulations7
2.1 Reactive Controller ...7
2.2 Linear Controller...11

2.2.1 Algorithm..11
2.2.2 Analysis of Linear Estimator Controller.....................................14

2.3 Artificial Neural Network Estimator ..15
2.3.1 Algorithm..16
2.3.2 ANN Training ...18
2.3.3 MLP algorithm with off-line EBP ..21
2.3.4 ANN Controller ..23

2.4 Matlab Simulation Results..28
2.4.1 Results for Reactive Controller with Varied Time-step31
2.4.2 Results for Linear Controller with Varied Time-step34
2.4.3 Results for ANN Controller with varied Time-step....................38
2.4.4 Comparison of Controllers Performance with Varied Paths.......41

Chapter 3: Implementation in Experimental Environments48
3.1 Experiment Overview ...49
3.2 Image Processing and Data Analysis and Interpretation51

3.2.1 Image Acquisition...52
3.2.2 Communication between Camera and LabVIEW.......................55
3.2.3 Image Processing Algorithm...57
3.2.4 Communication berween LabVIEW and Matlab59

 viii

3.2.5 Data Interpretation for Coordinate Determination......................60
3.2.5 Data Interpretation for Coordinate Determination......................60

3.2.5.1 Using Overhead Camera ...60
3.2.5.1 Using On-Board Camera...62

3.3 Control Algorithms in Matlab...65
3.3.1 Algorithm Description ..65
3.3.2 Commands Signal to Actuate Robot’s Servos66

3.4 Robot Software and Hardware System for Command Execution66
3.4.1 Input Commands from Matlab..67
3.4.2 Robot Hardware and Microprocessor ...67
3.4.3 Robot Servos Actuation ..69
3.4.4 Methods for Time Specification of Servos Rotation71

3.5 Experimental Results ..75
3.5.1 Experiments with Overhead Camera as Image Capture Device.78

3.5.1.1 Tracking Circular Pattern..78
3.5.1.2 Tracking Rectangular Pattern ...81

3.5.2 Experiments with On-board Camera as Image Capture Device .87

Chapter 4: Summary and Conclusions..94
4.1 Summary ...94
4.2 Future Directions ..100

Appendix A Matlab Source Code for ANN Multi-Layer Perceptron Training ..103

Appendix B Configuration of SureLink & QuickLink Wireless RF Modules ...108

Bibliography ..116

Vita…...118

 ix

List of Tables

Table 3.1: Technical specifications of overhead camera52

 x

List of Figures

Figure 1.1: Block Diagram representation of a closed-loop control system3

Figure 1.2: Illustration of pursuit algorithm of an estimator controller4

Figure 2.1: Flow chart of logic steps of a reactive controller algorithm10

Figure 2.2: Flow chart of logic steps of a linear controller algorithm..........................13

Figure 2.3: Generic architecture of artificial neural network16

Figure 2.4: ANN architecture with Multi-Layer Perceptron ..19

Figure 2.5: Unipolar logistic activation function ...20

Figure 2.6: ANN mapping between input and output of a coordinate data set24

Figure 2.7: Flow chart of logic steps of an ANN controller algorithm27

Figure 2.8: Variety of prey path patterns used for computer simulation......................29

Figure 2.9: Position plot of reactive controller with time-step 1.3[s]32

Figure 2.10: Error plot of reactive controller with time-step 1.3[s]32

Figure 2.11: Position plot of reactive controller with time-step 2.3[s]33

Figure 2.12: Error plot of reactive controller with time-step 2.3[s]34

Figure 2.13: Position plot of linear controller with time-step 1.3[s]35

Figure 2.14: Error plot of linear controller with time-step 1.3[s]...................................35

Figure 2.15: Position plot of linear controller with time-step 2.3[s]36

Figure 2.16: Error plot of linear controller with time-step 2.3[s]...................................37

Figure 2.17: Position plot of ANN controller with time-step 1.3[s]38

Figure 2.18: Error plot of ANN controller with time-step 1.3[s]39

Figure 2.19: Position plot of ANN controller with time-step 2.3[s]40

Figure 2.20: Error plot of ANN controller with time-step 2.3[s]40

Figure 2.21: Path and error plots of reactive controller with time-step 2.3[s]42

 xi

Figure 2.22: Path and error plots of linear controller with time-step 2.3[s]42

Figure 2.23: Path and error plots of ANN controller with time-step 2.3[s]43

Figure 2.24: Steady-state error comparison of controllers for a circular path................44

Figure 2.25: Steady-state error comparison of controllers for a rectangular path..........44

Figure 2.26: Steady-state error comparison of controllers for an infinity-shaped path..45

Figure 2.27: Steady-state error comparison of controllers following a random path.....46

Figure 3.1: Black-box representation of inputs and output to the control system........48

Figure 3.2: Schematic of hardware and software experimental setup..........................50

Figure 3.3: Creative NX Pro webcam that is used for overhead camera......................52

Figure 3.4: Q-See QSWMC 2.4 GHz Wireless Camera used as on-board camera.......54

Figure 3.5: DVD Maker USB2.0 Capture Box schematic ..55

Figure 3.6: Architecture of applications for image acquisition using camera and add-

on software for processing by LabVIEW and IMAQ Vision56

Figure 3.7: Snapshot of an original, untouched image...57

Figure 3.8: Filtration steps to remove noise and isolate green objects.........................58

Figure 3.9: Overhead view of the playground, as seen through the overhead camera.61

Figure 3.10: Plot of nonlinear relationship between object distance and pixel height...62

Figure 3.11: Schematic representation of relations between object’s relative distance

(D) and coordinate (x,y) from the robot ...63

Figure 3.12: Black-box model of input-output to predator robot...................................66

Figure 3.13: Hardware for RF communication between PC and Boe-Bot.....................67

Figure 3.14: Fully assembled Boe-Bot robot with BASIC Stamp microcontroller68

Figure 3.15: Timed motion of servo motor of the Boe-Bot ...69

Figure 3.16: Logic loop of PBasic program downloaded onto the robot’s

microcontroller...71

 xii

Figure 3.17: Representation of time delay incurred by wireless communication

between Matlab (PC) and PBasic (robot) ..73

Figure 3.18: Circular prey path as captured by overhead camera76

Figure 3.19: Rectangular prey path as captured by overhead camera76

Figure 3.20: Infinity-shaped prey path as captured by the overhead camera.................77

Figure 3.21: Plot of the paths of the reactive controller using overhead camera79

Figure 3.22: Error plot of reactive controller when using overhead camera..................79

Figure 3.23: Path plot of linear controller when using overhead camera.......................80

Figure 3.24: Error plot of linear controller when using overhead camera81

Figure 3.25: Path plot of ANN controller when using overhead camera82

Figure 3.26: Error plot of ANN controller when using overhead camera......................83

Figure 3.27: Path and error plots of reactive controller following a rectangular path ...84

Figure 3.28: Path and error plots of linear controller following a rectangular path.......85

Figure 3.29: Path and error plots of ANN controller following a rectangular path85

Figure 3.30: Playground’s setting for experiment with on-board camera......................88

Figure 3.31: Close-up images of the predator and prey in the “on-board camera”

experiment setting..89

Figure 3.32: Hardware needed for image acquisition using on-board camera...............90

Figure 3.33: Path and error plots of reactive controller following a circular path91

Figure 3.34: Path and error plots of linear controller following a circular path.............91

Figure 3.35: Path and error plots of ANN controller following a circular path92

Figure 4.1: Matlab simulation results for reactive, linear, and ANN controllers with

time-step 2.3[s] ..96

Figure 4.2: Real-world experimental results for reactive, linear, and ANN

controllers using overhead camera...99

Chapter 1 – Introduction

1.1. APPLICATION OF AUTONOMOUS CONTROL SYSTEMS

Autonomous Control System (ACS) is an independent control system that is

capable of executing desired tasks in unstructured environments without human guidance

in its operation [1]. An example of an application of ACS is in air defense where an anti-

ballistic missile (ABM) is employed to intercept ballistic or cruise missiles. The ballistic

missile follows a prescribed course which is generally fixed and not alterable, while

cruise missile has the capability to maneuver after launch by means of jet propulsion or

aerodynamics effect in general following the terrain at a prescribed altitude profile.

When deployed in air combat, surface-to-air missiles (SAMs) need to have the flexibility

to control and alter their pursuit path after released from ground launcher [2].

Another sample application is in the development of automatic guided vehicle

(AGV) systems, where vehicle autonomously maneuvers itself in a three-dimensional

environment to perform a desired task, for example an underwater ROVER [3]. The

controller has to perform in real-time using inputs from various sensors attached to the

vehicle. In 2004, the Defense Advanced Research Projects Agency (DARPA) launched

for the first time an open competition DARPA Grand Challenge that aimed to develop

fully autonomous vehicles capable of traveling across a 150-mile long desert [4]. The

vehicles were allowed to have both on-board sensors and GPS capability.

 - 1 -

1.2. RESEARCH GOALS AND METHODOLOGY

In the course of this study, the performance of several control techniques will be

investigated and their fitness analyzed when applied in a specific environment to simulate

the controlled dynamic of an anti-ballistic missile or autonomous vehicle system. The

system under study is a mobile robot whose task is to autonomously track and pursue a

moving object (target). The robot’s control system is desired to have the ability to:

1. gather information from the environment via sensors,

2. navigate from point A to B, where point B may be a stationary finish point, or

3. track or intercept another robot in motion, and

4. operate autonomously, i.e. without human intervention.

For robustness, it is also desired that the robot have the ability to learn. Learning will

enable to robot to adapt to surroundings and learn new strategies based on surrounding

inputs without outside assistance.

The main sensor for the pursuing robot is the camera as a sensor, which is

mounted overhead or on-board. The cameras are used to obtain positional information

about both the pursuing robot (predator), with overhead camera, and pursued object

(prey), with overhead and/or on-board cameras. The overhead camera is comparable to

GPS tracking capability of vehicles in the DARPA Grand Challenge competition, or

more appropriately called Local Positioning System (LPS) for a smaller-scale system. In

navigating from point A to B, the pursuit path is calculated deterministically using three

control techniques. In basic automatic controller, current positional error is calculated

and used to determine the magnitude of adjustment needed to reduce error. The error will

 - 2 -

be continuously monitored and fed back to controller which outputs correcting

commands to actuators until desired state is achieved [5]. This is essentially a closed-

loop control system. Block diagram representation is shown in Fig. 1 [6].

Controller Actuator

Sensor
Input

Error or
Actuating

signal
Disturbance

+

-

+
+

+
+

Output
Variable

Noise
(Sensor)

Figure 1.1. Block Diagram representation of a closed-loop control system.

The control techniques under investigation are reactive controller, linear

estimator, and artificial neural network estimator. In reactive controller, the pursuing

robot (predator) will intermittently initiate image capture from the camera sensor at

regular time-steps to obtain information from the field. The controller will calculate the

amount of reorientation and forward movement that the predator needs to perform in a

straight direction towards the prey. Reactive controller is the most simplistic among the

three and it does not require memory capability of the states of the predator or prey in the

previous time-steps. The linear estimator is more advanced than the reactive controller as

it takes the previous states as inputs to the control algorithm. Based on the current and

previous states, the controller estimates the velocity of the moving object and its position

in the next time-step. Instead of pursuing the object in a straight, direct path, linear

 - 3 -

estimator allows the robot to intercept the object in the next time-step. The following

figure illustrates the pursuit algorithm behind the linear controller.

Previous object position,
Pi-1 = (x,y)i-1

Current object
position, Pi = (x,y)i

Current robot
position, ri

ri+1

ri+2

ri+3Pi+1

Pi+2

Pi+3

Figure 1.2. Illustration of pursuit algorithm of an estimator controller.

The third controller incorporates artificial neural network (ANN) to estimate the

positional state of the prey in the next few time-steps. The ANN is modeled upon human

brain's interconnected network of neurons and their processing [7,8]. In order to use this

 - 4 -

control algorithm, the ANN must first be trained on a set of examples. During the

training period, the robot will observe and learn nonlinear movement patterns of the prey

and adjust its parameters to minimize the estimation error cost function. Upon

completion of training, it will be able estimate the position of the prey in the next several

time-steps with significant accuracy using its learned knowledge.

Selection of most suitable controller is done using several criteria, including

comparison of intercept time, steady-state positional error, i.e. final distance between

prey and predator at steady-state in the event that interception is not accomplished, and

steady-state time (settling time), i.e. the time it takes to reach steady-state.

Computational time is also of interest as it will introduce time delay which can be

considered as a disturbance to the system. Lastly, the controllers are also compared

based on their complexity, including the level of difficulty involved in understanding the

algorithm, programming the controller and implementation in the experiments.

The objectives of this study are:

1. To explore three control techniques -- reactive controller, linear estimator, and

artificial neural network estimator -- as they are applied in prey-predator setting of

mobile robots system,

2. To simulate the controllers as implemented in the prescribed scenario in both

computer and experimental environment.

3. To measure the fitness of each controller based on a set of goodness criteria.

In Chapter 2 of this thesis the details of the controllers -- algorithm architecture,

mathematical derivation, and performance analysis -- are presented as they are modeled

 - 5 -

in computer simulation. In Chapter 3, the control algorithms are integrated in a real-

world experimental environment, and software and hardware requirements are discussed

at great length, followed by conclusions in Chapter 4.

 - 6 -

 - 7 -

Chapter 2 – Control Algorithms and Computer Simulations

2.1. REACTIVE CONTROLLER

Reactive controller is possibly the most simplistic control algorithm that is

applicable in this type of mobile robot tracker setting. The basic concept is as follows:

1. The prey is roaming within vision proximity of predator.

2. The predator ‘sees’ the prey through the camera which refreshes at predefined

time-step value. At every time-step, the predator ‘opens its eyes’ and calculates

the required degrees of rotation and translational movement that it needs to

perform to reach the prey.

3. The predator rotates and moves forward within the available timeframe, before it

‘opens its eyes’ again and recalculates the new pursuit direction.

In essence, using reactive controller, the predator always moves towards the prey without

performing estimation calculations of where the prey might be in the future. This is

analogous to the behavior of animals with low-level brain power, or even in the case of

an infant as he/she attempts to follow a moving object. The infant will track a moving

object by rotating his/her head to keep it within his/her view window, and approaching

the object in a straightforward direction [9].

 The predator’s starting position is first initialized at random coordinate within the

window frame of the prey path. The prey is pre-programmed to follow certain paths

(unknown to the predator) or move in a random manner. Currently, available path

libraries are circular path, rectangular, infinity-shaped, and random paths. The path

dimension can be modified by altering the radius of circle or length and width of

rectangle. Noise is also added to simulate a more realistic experimental environment

with the presence of disturbance at sensors.

() (),
, , ii I prey i I

x y path x y noise
→ →

= +

In reactive controller, the predator ‘reacts’ in reflex to the positional state of prey at every

time-step. The desired predator state, i.e. () ,
,

i pred
x y , is the current prey state, i.e.

() (), ,
, ,

i pred i prey
x y x y=

Based on the current and desired state of predator, the errors -- positional (Δx,Δy) and

angular (Δα) -- can be calculated.

() () ()
()

, ,

,

, , ,
i pred i pred i pred

i pred

x y x y x y

arctan x yα

Δ Δ = −

Δ = Δ Δ
,

The movement sequence starts with re-orientation, followed by forward move. The time

required for rotation is

, ,
_

2i rotn i pred
rotation periodt α

π
= Δ ×

where rotation_period was experimentally determined from the predator robot and

represents the amount of time for the predator to perform a full revolution about its center

axis; its magnitude is the same whether the rotation is clockwise or counter-clockwise.

The remaining time available (if any) is used to move forward, which subsequently

displaces the predator closer to the desired coordinate.

 - 8 -

()()
()()

, ,

1, , ,1 ,

1, , ,1 ,

_

sin

cos

i forw i rotn

i pred i pred pred i forwi i pred

i pred i pred pred i forwi i pred

t time step t

x x V t

y y V t

α

α

+ + −

+ + −

= −

⎡ ⎤= + Δ ×⎣ ⎦
⎡ ⎤= + Δ ×⎣ ⎦

where Vpred is the forward speed of the predator robot as determined from experiment,

and Δα(i+1)-i,pred is the angular difference between the absolute orientation of the robot in

the next and current time-step. Upon completion of the movement sequence by predator,

the prey will have already advanced by a time-step and reached its next coordinate along

the path line. The tracking error is calculated as

() ()1 1, 1,
, ,i i prey i pred

error x y x y+ + +
= − ,

and logged for performance analysis of the controller. This (looping) procedure

continues indefinitely until the prey is intercepted, or steady-state error is achieved, i.e.

() (), ,

1

, ,
I prey I pred

I I

x y x y

or
error error tolerance−

≅

− ≤

The sequential steps of the reactive control algorithm are presented in the flow diagram in

Fig. 2.1. With this control algorithm, we can foresee that steady-state error is likely to be

the factor that terminates the mission as the predator is merely following without

capability to intercept, unless is Vpred >> Vprey.

 - 9 -

Obtain prey’s () ,
,

i prey
x y

from path array

Calculate predator’s
() ,

, ,
i pred

x y αΔ Δ Δ

Calculate predator’s
() ,

, ,
i pred

x y α

Predator’s desired state
is prey’s current state
() (), ,

, ,
i pred i prey

x y x y=

Calculate required
time for re-

orientation, ti,rotn

Calculate available
time for forward

move, ti,forw

Rotate

Move
Forward

Define predator‘s
starting position

1i i= +

if ti,rotn > 0

if ti,rotn = 0

if ti,forw > 0

if ti,forw = 0

Intercept?

Y

Stop

N

Steady-
state? Y

N

Figure 2.1. Flow chart of logic steps of a reactive controller algorithm.

 - 10 -

2.2. LINEAR CONTROLLER

 To reduce steady-state error, possibly allowing prey interception, the robot needs

to have the ability to forecast the prey state in the next time-step. With a linear estimator

controller, instead of pursuing the object by following, the robot estimates prey

coordinate in the next time-step and attempts to intercept it.

2.2.1. Algorithm

 The overall scheme of the linear estimator is very similar to the reactive

controller; the prey and predator positions are first initialized, the predator’s desired state

is determined, error correction takes place by rotation and forward movement. The main

difference is in the determination of predator’s desired state. With the linear estimator,

the predator observes the prey’s states (positions) in the current and previous time-steps,

and estimates the prey’s velocity ,î preyV (assuming it is constant).

() (), 1
,

, ,ˆ
_

i prey i prey
i prey

x y x y
V

time step
−

−
= ,

The prey’s coordinate in the next time-step is estimated by

() ()
() ()

,1, ,

, 1,

ˆˆ ˆ, ,

2 , ,
i preyi prey i prey

i prey i prey

_x y x y V time

x y x y
+

−

= + ×

= −

step

which becomes the predator’s desired state in the next time-step:

() ()1, 1,
ˆ ˆ, ,

i pred i prey
x y x y

+ +
=

 - 11 -

 - 12 -

The algorithm then continues in the same manner as reactive controller does,

exiting the closed-loop only when stopping criteria are met. The sequential steps of

linear estimator controller are presented in the flow diagram in Fig. 2.2.

 - 13 -

Figure 2.2. Flow chart of logic steps of a linear controller algorithm.

Calculate
predator’s

()

Calculate required
time for re-

orientation, ti,rotn

Calculate available
time for forward

move, ti,forw

Rotate

Move
Forward

1i i= +

if ti,rotn > 0

if ti,rotn = 0

if ti,forw > 0

if ti,forw = 0

Intercept?

Y

Stop

N

Steady-
state? Y

N

Obtain prey’s () ,
,

i prey
x y

from path array

Calculate predator’s
() ,

, ,
i pred

x y α Estimate prey’s next
state

()
() ()

1,
ˆ ˆ,

i prey
x y

+
=

Define prey’s
start position

Predator’s desired state
is prey’s next estimate state
() ()1 1,

ˆ ˆ, ,
i pred i prey

x y x y
+ +

=

Define predator’s
start position

2.2.2. Analysis of Linear Estimator Controller

The estimator controller calculates the speed of the object and estimates its

position a time-step later, with the assumption that the object’s speed is constant and the

path would be a line (linear path).

, 1,
ˆ ˆ
i prey i preyV V constant+= =

However, this presents a source of error to the system, as this assumption is likely to be

inaccurate. On one hand, the linear estimator pursues the object at the future time-step

and expects to intercept it rather than just follow its path. On the other hand, the

estimator’s accuracy is affected by the lack of validity of the assumption. When the

object is indeed traveling in a straight line, the linear estimator is expected to perform

well. However, when it makes a sharp turn, for example at a corner of a rectangular path,

linear estimator will tend to misguide the predator and cause a momentary overshoot as a

result of the predator’s momentum. A similar result is also expected when the prey

moves randomly. To obtain an optimum advantage from linear estimator while keeping

the error minimum, the time-step has to be kept relatively low. Large time-step causes

the robot to move towards a desired position, estimated to be the prey’s next coordinate,

over a longer period while the error remains uncorrected and accumulated. Overall, the

linear controller should improve the tracking performance of the reactive controller. The

ability to intercept the prey’s path will eventually depend on the predator’s speed as well.

 - 14 -

 - 15 -

2.3. ARTIFICIAL NEURAL NETWORK ESTIMATOR

 With the linear estimator, the controller runs into a problem from the

oversimplifying assumption of the prey’s path linearity resulting in inaccurate estimation.

To circumvent this issue while still taking the advantage that linear estimator offers, the

camera refresh rate can be increased, i.e. the time-step must be decreased, to reduce the

accumulation of estimation error. In essence, this becomes an optimization problem in

which the estimation accuracy and the time-step size compromise each other.

 The invalid linearity assumption is a predicament that the ANN estimator can

answer to, since the ANN has nonlinear estimator properties. Artificial neural networks,

or more commonly referred to as neural networks, are a computer architecture systems

modeled upon human brain's interconnected network of neurons [9]. It imitates the

brain's ability to sort out patterns and learn from trial and error, observing and

determining the relationships that exist within the presented data. Neural networks in

general have two layers of neurons: hidden layers and output layers. The hidden layers’

neurons have in general nonlinear and differentiable activation functions. A basic

representation of ANN architecture is given in following diagram (Fig. 2.3) [10].

h1

h2

h3

h4

h5

xi o

Figure 2.3. Generic architecture of artificial neural network. The network has an input
xi, two hidden layers (the 1st hidden layer with nodes h1, h2, h3, and the
second with nodes h4 and h5), and output o.

One way of interpreting this architecture is as follows: input data x is transformed into a

3-dimensional state by vector h1-3 which in turns is transformed into a 2-dimensional state

by vector h4-5, which is finally summed to generate the predicted output o. This forward

calculation through the network is called feedforward.

2.3.1. Algorithm

There are three different types of learning model for neural network:

reinforcement learning, unsupervised learning, and supervised learning [10,11]. In

reinforcement learning, the network is not presented with data input. There is a “judge”

that knows the cost function, but the network does not. The judge/critic gives feedback

in the form of reinforcement (value of the cost function, or good/bad, but no gradient

information is provided) [11]. The inputs are generated as the system interacts with the

 - 16 -

 - 17 -

environment. For every time-step i, the environment induces input xi to the system,

which in turn generates an output yi. The output is calculated by solving an optimization

problem which minimizes the cost function E. The network is “rewarded” with positive

or negative reinforcement signal to help determine the direction of learning in the

subsequent time-steps. As learning continues, a more solid relationship will be

established between x and y.

In unsupervised learning, input x is given and cost function E is determined from

a priori assumptions. However, the output targets are unknown. One way of solving

unsupervised learning is by time-series prediction where the known input data are fed

forward through the network to predict the outputs. After some time delay, more data are

obtained and used to calculate and “back-propagate” the error.

In this study, the learning method used is supervised learning, where the input X,

the target Y, and the cost function E to be minimized are given to the network. With this

learning model, the implementation of neural network algorithm will involve training, or

learning, and simulation phases. During the training phase, the network is presented with

a set of example pairs -- inputs and targets --, and its task is to generate inference of the

mapping of the example pairs. Having established the mapping relationship, the network

is then able to estimate the outputs of another given set of inputs with similar behavior.

In mobile robot tracking setting, the predator will be trained with numerous cycles of a

given path of the prey. It will observe and identify the “regular path”, and during

simulation, the predator will be able to calculate the estimated position of the prey in the

next time-step. The possibility of learning is probably the most interesting aspect of

 - 18 -

neural network that often makes it more favorable than others, for example the reactive

and linear controllers used in this study.

2.3.2. ANN Training

The class of neural networks explored in this study is the multi-layer perceptron

(MLP), where the computation is done is two steps: feed-forward and error back-

propagation (EBP) [8]. In the feed-forward step, inputs are passed through the network

and multiplied with the weights coefficients connecting the input layer and the hidden

layer. The MLP network with EBP described by Kecman [8] is used as the main

reference in this algorithm. The ANN architecture used in the context of this study is

shown in Fig. 2.4.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

V W

x1

x2

y1

y2

1̂x

2x̂

1ŷ

2ŷ

b1 = +1

b2 = +1

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

Figure 2.4. ANN architecture with Multi-Layer Perceptron (3 layers): input, hidden, and
output layers. The input layer acts as a buffer (linear activation function).
The hidden and output layers have sigmoidal activation functions.

 The input to the network is the positional state x and y of the prey for I time-steps,

where I is the number of previous pairs of prey position (x,y), including the current pair.

The input is represented by the following matrix:

 - 19 -

()()

()()

1

T

t I t

T

t I t

prey x

prey y

b

− →

− →

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

where t is the current time. The size of x is N, where N = 2I + 1. The input signal to

each hidden layer neuron is given by

1

J

k kj
j

u v
=

= ∑ x j

Each of the hidden layers neurons is a summing junction, where the weighted input

values are combined and passed to the activation function. The hidden layer is

augmented with a bias term b2 = +1. The activation function used in the hidden layer is

sigmoidal (squashing) activation function -- in our case, the unipolar logistic function [8].

Its mathematical equation is as follows

1
1 uh

e−=
+

and Fig. 2.5 shows the graph of this function:

Figure 2.5. Unipolar logistic activation function.
 - 20 -

The output layer sums the weighted values of the hidden layer output and passes the

results to its activation function, which is also the unipolar logistic function. The output

from the output layer matrix is as follows

()() ()

()() ()

1

1

T

t t K

T

t t K

prey x

prey y

+ → +

+ → +

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

o

where K is the number of coordinate pairs that are estimated by the network. The cost

function to be minimized is the sum-of-error-squares of the estimated outputs opk with

respect to the desired outputs dpk, and P is the number of data sets used for training:

()2

1 1

1
2

P K

pk pk
p k

E
= =

= −∑∑ d o

2.3.3. MLP algorithm with off-line EBP

 Without going through the lengthy derivations, the procedural summary of MLP

network with off-line EBP calculation is detailed as follows [8]:

Initialization

Given P measured data pairs for training:

, , 1,...,p pX p P⎡ ⎤= =⎣ ⎦x d

with input vector and desired output

 - 21 -

[]
[]

1 2

1 2

... 1

...

T
n

T
K

x x x

d d d

= +

=

x

d

Choose learning rate η and define maximum allowable error, Emax

Initialize weights ()1,p J I−V and (),p K JW

Feed-forward

1. Calculate the hidden layers nodes states and from them the outputs of the

network (output layer neurons):

() (),jp h jp kp o kpy f u o f u= =

2. Calculate the sum of cost function Ep for all the data pairs:

()2

1

1
2

K

p pk pk
k

pE E
=

= −∑ d o +

Off-line Back-propagation

3. Calculate output layer weight changes :kjwΔ

() ()'

1
, 1,..., , 1,...,

P

kj pk pk ok kp
p

w f u k K j J
=

Δ = − = =∑ d o

4. Using the chain-rule (EBP), calculate hidden layer weight changes :jnvΔ

()'

1 1
, 1,..., 1, 1,...,

P K

jn np hj jp okp kjp
p k

v f u w j J nδ
= =

Δ = = − =∑ ∑ x N

Parameters Update

5. Update the output layer weights wkj:

kj kj kjw w wη= + Δ

 - 22 -

6. Update the hidden layer weights vjn:

jn jn jnv v vη= + Δ

Stopping criteria

7. If p < P, go to step 3, otherwise proceed to step 11

8. One cycle of learning epoch is completed: p = P. If Ep < Emax, terminate

network training, otherwise go to step 3 for a new cycle with incremented

epoch value.

 This network has been coded in Matlab and the source listing can be found in

Appendix A. Prior to applying the code to the prey-predator system, it was first tested

with several benchmark problems, including the XOR problem, N-parity, and sin(x)sin(y)

[13]. The results from these benchmarking tests are also included in Appendix A.

2.3.4. ANN Controller

 Neural network’s ability to nonlinearly predict prey’s position in future time-steps

presents a promising improvement of performance by ANN controller compared to

reactive and linear estimator. If the system’s learning during training phase is well-

performed and mapping inference between inputs and desired outputs is well-established

(thus creating a high level of confidence on the estimator), during experiments, the

robot’s speed can be increased to allow much quicker response and possibly reduce the

time-to-intercept.

 - 23 -

 Prior to training, several neural network parameters need to be initialized,

including the learning rate η, maximum allowable error Emax, maximum epochs

MaxEpochs, and the number of neurons in each layer: input I, hidden H, and output O.

The available input array for the network contains (x,y) pairs of prey state from previous

time-steps. However, for robustness, instead of inputting the actual xi and yi values,

inputs to the network are modified to be the incremental change Δx and Δy values from

one time-step to the next.

() ()(), 1
, ,i i prey i prey

input x y x y
−

= −
,

Several input pairs from the current and previous time-steps are used to map several pairs

in the later time-steps, as shown in the Fig. 2.6.

Figure 2.6. ANN mapping between input and output of a coordinate data set.

ANN training is performed following the MLP algorithm explained in section 2.3.2 to

generate weight matrices V and W, which are saved for operation (simulation). With the
 - 24 -

weight matrices, during simulation -- for example as given in Fig. 2.6 -- the network will

be able to use the collected prey data up to the current time-step to estimate the output

matrix:

1 1

2 2

3 3

4 4

5 5

6 6

x y
x y
x y

input
x y
x y
x y

Δ Δ⎡ ⎤
⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥Δ Δ

= ⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥Δ Δ
⎢ ⎥
Δ Δ⎢ ⎥⎣ ⎦

,

4 4

5 5

6 6

7 7

8 8

.

x y
x y

output x y
x y
x y

Δ Δ⎡ ⎤
⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥= Δ Δ
⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥Δ Δ⎣ ⎦

Once the output matrix is generated, the prey’s coordinates can be mathematically

calculated. For example, prey coordinate in time-step t = 7 (at current time-step, t = 6)

from Fig. 2.6 is estimated by

() () ()1, ,
ˆ ˆ, , t tt prey t prey

,x y x y x
+

y= + Δ Δ

This then becomes the predator’s desired state:

() ()1, 1,
ˆ ˆ, ,

i pred i prey
x y x y

+ +
=

ANN offers a large degree of flexibility where the size of inputs and outputs are variable.

The time-step at which predator coordinate is estimated is also modifiable. For example,

if we desire to predict prey coordinate at t = 8, the estimate will be

() ()
8 8

2, ,
7 7

ˆ ˆ, , ,t tt prey t prey
t t

x y x y x
+

= =

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠
∑ ∑ yΔ

 Once the desired predator coordinate in the future time-step is determined,

reorientation and forward move commands are executed and the looping steps are

 - 25 -

 - 26 -

repeated again until the stopping criteria are satisfied. The sequential steps of ANN

estimator controller are presented in the flow diagram in Fig. 2.7.

Figure 2.7. Flow chart of logic steps of an ANN controller algorithm.

Obtain input values
()() ()1 ,

,
i i prey

x y
+ −

Calculate predator’s
() 1,

, ,
i pred

x y α
+

Δ Δ Δ

Calculate predator’s
() ,

, ,
i pred

x y α

Perform ANN Simulation
to estimate output batch of

()() ()1 ,
ˆ ˆ,

i i prey
x y

+ −

Assign values to
ANN parameters,
of neuron layers

Predator’s desired state
is prey’s next estimate state
()
() ()() ()

1,

, 1 ,

,

ˆ ˆ, ,
i pred

i prey i i prey

x y

x y x y
+

+ −

=

+

Perform ANN Training
to generate weights

Create prey array
()() ()1

,
i i

x y
+ −

 from (),
i

x y

Define predator’s
start position

1i i= +

Calculate ti,rotn

Calculate ti,forw

Rotate

Move
Forward

if ti,rotn > 0

if ti,rotn = 0

if ti,forw > 0

if ti,forw = 0

Intercept?

Y

Stop

N

Steady-
state? Y

N

 - 27 -

2.4. MATLAB SIMULATION RESULTS

Modeling with Matlab is performed to simulate the performance of each

controller in assisting the robot to pursue, and possibly intercept, moving object. The

simulations were carried out with the following parameters varied:

1. Type of controller: reactive, linear, ANN controller

2. Object path pattern: circular, rectangular, infinity-shaped, random

3. Time-step: 1.3 and 2.3 seconds

The different types of controllers are discussed in Sections 2.1-3 where each algorithm is

explained in details. The object moves at constant speed following several given paths:

circular, rectangular, infinity-shaped, and random. The paths are as shown in Fig. 2.8

below. For meaningful comparison and simulation consistency, the distance moved by

the object in every time-step has been ensured to be one unit foot (1 ft).

 (a) (b)

 - 28 -

(c) (d)

Figure 2.8. Variety of prey path patterns used for computer simulation: (a). circular, (b).
rectangular, (c). infinity-shaped, and (d). random.

In the simulations, noise is added to each path so as to create a more realistic test

environment, closer to what should be expected in an actual experiment.

 The time-step, i.e. the time available for the predator to perform its pursuit actions

-- re-orient and move forward -- before the prey takes the position given in the next array

element, is a parameter that can be varied. Larger time-step value allows more time for

the predator to chase after the prey. In essence, increasing time-step will have the same

effect as increasing the predator’s rotation and forward speed, or decreasing the prey’s

movement speed. Based on understanding of the controller’s algorithms, it is expected

that the predator will have better chance of intercepting the prey if it can move at a higher

speed.

 In these simulations, the rotation period (s/revolution) and horizontal speed (ft/s)

of the predator are obtained from the robot through real-time measurements.

 - 29 -

_ 5.9

_ 0.4625

secondsrot period
revolution

ftforward speed
s

=

=

The general characteristics of the hardware system used for the predator and prey are as

follows:

• Both the predator and prey are mobile robot systems with servo-powered wheels

to produce horizontal movement in the two-dimensional plane.

• The wheels are individually powered by the servos and the speed is variably

adjustable, thus able to bring about nonlinear movement to the robots.

• The rotation period is 5.9 s/rev and maximum forward speed is 0.4625 ft/s for

both the prey and predator.

• The sequence of events to facilitate pursuit by the predator is (a) re-orientation

and (b) straightforward move.

The predator’s system with an integrated controller is a sampled data system which are

subject to the above capabilities and limitations. In the pursuit of the prey, the predator’s

system is desired to have similar speed as the object. Furthermore, the sensor devices

need to have a high sampling rate, failure of which may result in misinterpretation of

data. The time-step has two competing effects towards the predator’s controller system:

it gives the robot more time to complete its pursuit between sightings, but it also limits

the number of sightings by robot. For successful experiments, the predator needs to have

a sufficiently high sampling rate, enough to capture the complete dynamic of the prey,

thus preventing incidents of false interpretation of prey’s position.

 - 30 -

The results presented in the following section compare the performance of each

controller when run at two different time-step values: 1.3[s] and 2.3[s]. In the first case,

when time-step is 1.3[s], the maximum distance that can be traveled by the predator is

when it is moving in a straightforward line without requiring reorientation of its direction.

()0.4625 1.3

0.60

1.3sdistance V timestep
ft s
s

ft

= ×

⎛ ⎞= ×⎜ ⎟
⎝ ⎠

=

In the same manner, when the time-step is 2.3[s], the maximum distance traveled is 1.06

ft. It has been mentioned earlier that the prey’s speed is always held constant at 1 ft/time-

step in all circumstances. The following sections show how speed is a significant factor

for the predator to be able to intercept the prey. When the predator is moving too slow,

regardless of controller type, it will never be able to capture the prey (when the prey

keeps moving away from the predator), although a better controller will be able to reduce

the steady-state error.

2.4.1. Results for Reactive Controller with Varied Time-step

The following figures (Fig. 2.9-10) present the results -- pursued path mapping

and error plot -- of the predator as it attempts to intercept a prey moving in an infinity-

shaped path. Time-step values used are 1.3[s] and 2.3[s]. Green circles indicate position

of the prey, while red asterisks for the predator. The blue solid straight lines show the

distance between predator and prey at any different time-steps.

 - 31 -

Figure 2.9. Position plot of reactive controller with time-step 1.3[s]. Note: green circles
indicate prey’s position at any given instant, while red asterisks indicate the
predator’s position. The blue solid straight lines show the distance between
predator and prey at any time-steps. Marked with the hexagon is when the
prey literally “runs into” the predator (given the prey’s direction).

Figure 2.10. Error plot of reactive controller with time-step 1.3[s]. As in Fig. 2.9, the red
hexagon shows where the prey runs into the predator.

 - 32 -

Using reactive controller to maneuver the robot with time-step 1.3[s] proves to be

insufficient for prey interception. From Fig. 2.9, it can be seen that the predator lags

behind, thus it always stays inside the prey’s path, never able to move quickly enough to

capture the prey. Given the prey’s path (clockwise at the bottom of the infinite-loop, the

prey literally “runs into” the predator (around 18 seconds). Fig. 2.10 shows the error to

be about ½’, the smallest during the simulation. In the 52nd time-step, the predator has

reached steady-state positional error of 5.47 ft as seen in Fig. 2.10. This error fluctuates

from 3.71 to 7.08. This performance, however, can be improved by increasing the time-

step, which in effect is the same as increasing the speed of predator, and the results are in

Fig. 2.11 & 2.12.

Figure 2.11. Position plot of reactive controller with time-step 2.3[s]. The hexagon
marks the area where the prey almost runs into the predator (given the
prey’s path and predator initial position). In this case, it “drives-by”. The
slower time-step allows the predator to get inside the path “faster” as
compared with the previous results.

 - 33 -

Figure 2.12. Error plot of reactive controller with time-step 2.3[s]. As in Fig. 2.11, the
red hexagon shows where the prey almost runs into the predator.

 Improvement in performance can clearly be seen from both figures. The resultant

path of the predator resembles that of the prey very closely (Fig. 2.11). The error plot

indicates that the steady-state distance error between the predator and prey is 1.71 ft, and

this is achieved in the 29th time-step, much quicker than the previous case. This is

evidently a significant improvement compared to when the time-step is 1.3[s], although

interception still does not occur.

2.4.2. Results for Linear Controller with varied Time-step

The following figures (Fig. 2.13-14) present the results -- pursued path mapping

and error plot -- of the predator as it attempts to intercept a prey moving in rectangular

path. Time-step values used are 1.3[s] and 2.3[s].

 - 34 -

Figure 2.13. Position plot of linear controller with time-step 1.3[s]. Marked with the red

hexagon is where the prey almost “runs into” the predator (given the prey’s
path and predator initial position).

Figure 2.14. Error plot of linear controller with time-step 1.3[s]. As in Fig. 2.13, the red

hexagon shows where the prey almost runs into the predator. Although the
error is very small at this point, it is considered as a “fluke” case due to the
prey’s and predator’s initial position.

 - 35 -

Using linear estimator controller to move the robot with time-step 1.3[s] also

proves to be insufficient for prey interception. Fig. 2.13 shows that the predator lags

behind the prey, with the predator always being inside the prey’s rectangular path. In the

74th time-step, the predator has reached steady-state positional error of 4.54 ft as seen in

Fig. 2.14. This error fluctuates from 3.98 to 5.15. Fig. 2.15 and 2.16 illustrate how the

performance can be improved by increasing the time-step, which in effect is the same as

increasing the speed of predator.

Figure 2.15. Position plot of linear controller with time-step 2.3[s].

 - 36 -

Figure 2.16. Error plot of linear controller with time-step 2.3[s].

 The resultant path of the predator resembles that of the prey very closely (Fig.

2.15), i.e. rectangular in this example. The error plot indicates that the steady-state

distance error between the predator and prey is 1.21 ft, and this is achieved in the 47th

time-step, much quicker than the previous case. An interesting observation that one can

make from the predator-prey path plot in Fig. 2.15 is how the corners of the rectangle is

curved outward. This is inline with the discussion in Section 2.2.2, which states that “at a

corner of a rectangular path, linear estimator will tend to misguide the predator and cause

a momentary error peak as a result of the predator’s momentum”.

 - 37 -

2.4.3. Results for ANN Controller with varied Time-step

The following figures (Fig. 2.17 & 2.18) present the path results and error plots of

the predator as it pursues a prey moving in circular path. Time-step values used are

1.3[s] and 2.3[s].

Figure 2.17. Position plot of ANN controller with time-step 1.3[s].

 - 38 -

Figure 2.18. Error plot of ANN controller with time-step 1.3[s].

Using ANN estimator controller to guide the robot with time-step 1.3[s] also does

not result in prey interception. Fig. 2.17 shows that the predator lags behind the prey,

with the predator’s path being inside the prey’s circular path. The key characteristic of

ANN estimator can be observed from the predator path, where it is moving in the

direction towards prey position in the next several time-steps. However, with time-step

setting being 1.3[s], predator’s speed has a greater effect in preventing prey interception.

In the 32nd time-step, the predator reaches steady-state positional error of 3.87 ft as seen

in Fig. 2.18. When predator’s speed is no longer a factor, as in the case when time-step is

increased to 2.3[s], the performance is significantly improved as observed in Fig. 2.19

and 2.20.

 - 39 -

Figure 2.19. Position plot of ANN controller with time-step 2.3[s].

Figure 2.20. Error plot of ANN controller with time-step 2.3[s].
 - 40 -

 - 41 -

 Improvement in performance is clearly observable from both figures; the resultant

path of the predator resembles that of the prey very closely (Fig. 2.19), and the error plot

indicates that the steady-state distance error between the predator and prey is 0.31 ft,

achieved in 8 time-steps. In the first few time-steps, the prey almost “runs into” the

predator in the first few time-steps. The pursuit direction of the predator is almost head-

on with the prey’s oncoming path, resulting in a sharp error reduction. The predator is

able to maintain the close proximity by trailing just inches behind the prey.

2.4.4. Comparison of Controllers Performance with Varied Paths

The previous section explores the effect of varying time-step on the performance

of robot controller. Association has been developed between improved performance, i.e.

reduced steady-state time and steady-state error, and larger time-step size, i.e. higher

robot velocity. From previous results, it was apparent that ANN controller is the best

controller as it reduces the system’s steady-state error to the smallest value, relative to the

other two controllers. However, prey’s path was not held constant from one controller to

another. In this section, the same path will be used to analyze the different controllers,

and in the end, the collected results will be tabulated and graphed to present the overall

performance.

 The following figures (2.21-23) present the error plot and path of the prey and

predator with time-step size of 2.3[s], as the prey moves in continuous rectangular

pattern.

 (a) (b)

Figure 2.21. Path and error plots of reactive controller with time-step 2.3[s].

(a) (b)

Figure 2.22. Path and error plots of linear controller with time-step 2.3[s].

 - 42 -

(a) (b)

Figure 2.23. Path and error plots of ANN controller with time-step 2.3[s].

The error plots indicate substantial reduction in steady-state error when ANN

controller is used, instead of reactive or linear estimator controller. At the 14th time-step,

the error is minimally reduced to 0.01 ft, as seen from Fig. 2.2.3-(b). However, this is

regarded as a coincidence, as the very low error is not due to the controller itself, but the

initial positions and directions of the prey and predator that cause them to almost “run-

into” each other. The error soon increases and reaches steady-state at the 51st time-step

with average error value being 0.80 ft, fluctuating between 0.62 and 0.98 ft.

Fig. 2.23-(a) highlights one main feature of ANN estimator where it is able to

predict the behavior of the prey around corners and accurately guide the robot to make

the turns. ANN is well-suited to solve nonlinear problems such as in this case, and it is

much better than linear estimator which assumes the prey velocity to be constant, thus

resulting in corner errors as seen in Fig. 2.22-(a). The advantage of ANN estimator is

also observed when simulated with other prey paths.
 - 43 -

 The following plots (Fig. 2.24-26) illustrate the comparison of steady-state errors

attained by the controllers when the object is following specific paths.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Reactive Linear ANN

St
ea

dy
-S

ta
te

 E
rr

or
 (

ft
)

Timestep = 1.3s

Timestep = 2.3s

Figure 2.24. Steady-state error comparison of controllers for a circular path.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Reactive Linear ANN

St
ea

dy
-S

ta
te

 E
rr

or
 (

ft
)

Timestep = 1.3s

Timestep = 2.3s

Figure 2.25. Steady-state error comparison of controllers for a rectangular path.

 - 44 -

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Reactive Linear ANN

St
ea

dy
-S

ta
te

 E
rr

or
 (

ft
)

Timestep = 1.3s

Timestep = 2.3s

Figure 2.26. Steady-state error comparison of controllers for an infinity-shaped path.

 From the steady-state plots of circular, rectangular, and infinity-shaped paths, it

can be deduced that the ANN estimator is consistently better than the reactive controller

and linear estimator in all the different simulation settings. ANN controller’s better

performance relative to other controllers is a result of its ability to accurately predict

nonlinear behavior of the object. Furthermore, its estimation precision is not limited to

just one time-step ahead, but, for all theoretical purposes, is boundless. Linear estimator

is also better than reactive controller in all settings because of its ability to predict

object’s coordinate in the next time-step, although somewhat inaccurately if compared to

ANN’s estimation. The advantage of larger time-step which is concluded in the

beginning of Section 2.4 is also shown in the plots. The red lines, which correspond to

 - 45 -

simulations with time-step 2.3[s], are always below the blue lines where time-step is

1.3[s].

The advantage of estimator as controllers is only pronounced when the object

follows a certain behavior, linear or nonlinear. As such, estimator controller is not a

suitable tool to assist to robot when the object is moving randomly. The following graph

(Fig. 2.27) shows result inconsistency of steady-state error values of the three different

controllers when the robot is tracking a random path; no controller is specifically better

than others.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Reactive Linear ANN

St
ea

dy
-S

ta
te

 E
rr

or
 (

ft
)

Timestep = 1.3s

Timestep = 2.3s

Figure 2.27. Steady-state error comparison of controllers following a random path.

Considering other fitness criteria, such as ease of programming and

implementation, reactive controller is likely to be the most suitable controller to be used

 - 46 -

 - 47 -

to track a random object. The breakdown of ANN controller is due to its inability to

learn the behavior of the object, which is expected, as the path is indeed random.

Chapter 3 – Implementation in Experimental Environments

To recreate the experiments from computer simulation setting to the real

environmental setting, several aspects need to be considered, including sensor input

acquisition, input processing, control algorithm, output data transmission (truncation) and

command execution time. In the previous chapter, simulation with Matlab was simplified

in a black-box sense, where the control algorithm takes in predefined inputs, process the

data, and execute the command mathematically (Figure 3.1).

Predator Movement

Prey Position

Control Algorithm
({reactive|linear|ANN}

calculates predator’s
desired state and determine

necessary actions)
Predator Position

Figure 3.1. Black-box representation of inputs and output to the control system used in
this study. In the computer simulation setting, the inputs are the prey’s
position from the path array and predator’s position from the control
system’s output. The predator’s output is calculated by [(x,y)i+1 = (x,y)i +
Vi*time_step]. In the real-world experimental environment, the inputs are
the predator’s position (from overhead camera) and the prey’s position
(from overhead and/or on-board cameras), while the output is command data
sent to the robot to perform error correction actions.

 - 48 -

3.1. EXPERIMENT OVERVIEW

In the real experiment, obtaining the prey position input, or rather prey’s relative

position from the predator, is a much more complicated task. It entails image acquisition

from the camera using suitable hardware, image processing to extract essential data, and

data transfer to the platform that manages the control algorithm. The control algorithm

structure is very similar to the one used in the Matlab simulation, detailed in sections 2.1-

3. To enable predator movement, output data from the controller is transferred to the

predator’s hardware for interpretation and for the servos to be actuated. The schematic

below (Figure 3.2) summarizes the experimental setup in a concise manner.

 - 49 -

Figure 3.2. Schematic of hardware and software experimental setup in the laboratory.
Vision of the field (containing the prey and/or predator) is obtained via
overhead or on-board camera (wireless). Image data are transmitted back to
the PC and processed by LabVIEW. LabVIEW extracts necessary
information and passes the data to Matlab via ActiveX server application.
Matlab performs control algorithm calculation and sends instruction via
wireless RF communication to the predator’s servos to move accordingly.

The predator’s primary inputs from the environment are visual images obtained from

cameras (see Fig. 3.2). Through experiments, the predator’s performance is compared

when on-board or overhead camera is used as the vision sensor. In the application, the

use of overhead camera will resemble a setting where the predator has GPS capability or

is able to communicate with satellite to track the prey’s position. This is also in close

Matlab

LabVIEW

ActiveX

PC

Overhead
USB Camera

Predator

PreyRF comm.

2.4 GHz Wireless
USB Camera

 - 50 -

resemblance with the Matlab simulation. The use of the on-board camera mimics the

situation in the real application where the predator may be equipped with sensors, such as

IR sensor, heat sensor, or camera to track the prey’s position.

The visual data are acquired by data acquisition software, LabVIEW [14], and

processed by image filtering LabVIEW-add-on software, IMAQ Vision [15], to

determine the positional state of prey. By communicating via ActiveX, LabVIEW passes

the state information to Matlab, a numerical computing environment and programming

language created by Mathworks, which serves as the main platform for data processing in

the control system [16]. Matlab determines the desired predator’s position in the next

time-step and determines the action needed by predator. An action command is sent to

robot’s servos via RF signal and captured by the RF receiver on the robot.

3.2. IMAGE PROCESSING AND DATA ANALYSIS AND INTERPRETATION

To accurately determine the relative position of prey from predator in real-time

and have the data ready for input to the control system, the following needs to be

accomplished:

1. Image acquisition: capture continuous streams of images using compatible

cameras.

2. Image processing: filter raw images, cancel noise, and extract useful information.

3. Data transfer: communicate data streams from image acquisition device to image

processing software and to the control system software.

 - 51 -

4. The system must be calibrated with the robot scale and the accuracy determined.

3.2.1. Image Acquisition

Vision of the field is obtained via cameras; there are two alternatives for the

camera positioning during the experiment: overhead and on-board. The overhead camera

is mounted above ground and it provides an overall view of the robot’s field

(playground). The on-board camera is mounted on the predator robot and it acquires

visuals in front itself. In real applications of autonomous robot, the system may receive

input from sensors attached to the robot (IR sensor, heat sensor, light detector) or from

independent sensor units (external speed tracker, GPS system).

The overhead camera, installed 10 ft above ground, connects to the PC through

the Universal Serial Bus (USB) port. The USB port provides serial bus standard for

devices connection from one to another. The overhead camera used in the experiment is

the Creative NX Pro webcam (Fig. 3.3), and its specifications are listed in Table 3.1 [17].

Figure 3.3. Creative NX Pro webcam that is used for overhead camera.

 - 52 -

Table 3.1. Technical specifications of overhead camera.

Video resolution: 640 x 480 VGA

Video format: RGB-24

PC interface: USB port

Frame rate: 30 fps

Image filtering: automatic & manual exposure control and color balance

Field-of-view: 40 degrees +/- 5%

The camera was selected for its sufficiently high video resolution and suitable video

format, necessary to ensure fine image quality captured by the camera. High frame rate

of 30 fps is also needed to reduce time delay and ensure real-time data processing.

Automatic exposure control and color balance option allows less filtering to be done by

the image processing software, thus reducing computation time. Lastly, 40o field-of-view

allows optimal capture of the 5 x 7 ft field below the camera.

The on-board camera presents certain challenging requirements for hardware

selection as it requires wireless functionality. The main challenge was to interface the

camera with the image processing software -- LabVIEW and IMAQ Vision -- for real-

time analysis. LabVIEW and IMAQ Vision are software products by National

Instruments [14,15], and special drivers are required for the wireless cameras to be

recognized by these software.

The device used as on-board camera is a surveillance-type camera, Q-See

QSWMC 2.4 GHz Wireless Camera (see Fig. 3.4), which is DirectShow compatible [18].

 - 53 -

This surveillance camera receives power either from 9V battery or power outlet. It is

small and compact enough (1” x 1” x 0.75”) to be mounted on the robot without adding

substantial weight (47g). The maximum resolution is 640 x 480 and the camera is also

capable of performing raw image processing, such as exposure control and color balance.

Figure 3.4. Q-See QSWMC 2.4 GHz Wireless Camera used as on-board camera.

A 4-channel receiver captures the transmitted data from the camera and outputs

the image in Composite Video format (NSTC) [19], which is typical format for television

input. DVD Maker USB2.0 Capture Box by Kworld converts the Composite Video data

to MPEG format and connects to the PC through USB port [20].

 - 54 -

Figure 3.5. DVD Maker USB2.0 Capture Box schematic showing the inputs and outputs
of the adapter and interfacing capability with other devices.

3.2.2. Communication between Camera and LabVIEW

Each image in the streams captured by the camera device undergoes a series of

image processing steps within LabVIEW. To pass the images from the camera to

LabVIEW, NI-IMAQ for USB Cameras add-on software is used. This software provides

the ability to use USB cameras that have DirectShow filters with the LabVIEW and

IMAQ Vision [21]. The cameras may operate at various resolutions and frame rates,

depending on camera capabilities, and NI-IMAQ for USB Cameras will acquire and set

properties using the camera manufacturer driver and DirectShow functions. NI-IMAQ

for USB Cameras supports the following application development environments for PC

(Windows 2000/XP):

• LabVIEW 7.0 or later with IMAQ Vision 7.1 or later

• NI Vision Assistant 7.1 or later.

 - 55 -

NI Vision Assistant, another software product by National Instruments, is a configurable,

interactive prototyping application, which allows for machine vision software

development without programming [22]. Figure 3.6 describes the architecture of

application of NI-IMAQ for USB Cameras as it relates to the camera, LabVIEW, IMAQ

Vision, and Vision Assistant.

Camera Manufacturer
with

DirectShow Filter

NI-IMAQ for USB Cameras

IMAQ DirectShow
Library Vision Assistant

LabVIEW and
IMAQ Vision

Figure 3.6. Architecture of applications for image acquisition using camera and add-on
software for processing by LabVIEW and IMAQ Vision.

3.2.3. Image Processing Algorithm

NI Vision Assistant software is used to create a LabVIEW-compatible script

containing sequential steps to filter noise from the image and eventually determine

 - 56 -

object’s position with desired accuracy. The main difficulty encountered while

programming the LabVIEW algorithm with Vision Assistant was the enormous number

of variables that have to be taken into account. Many factors affect image quality and the

robot’s ability to distinguish objects in an image. Figure 3.7 shows a snapshot of the

original image as captured by the camera.

Figure 3.7. Snapshot of an original, untouched image, showing four different markers
(paired shapes of different sizes) with different colors.

The primary image operation is exposure control which applies brightness,

contrast, and gamma correction to each color plane separately to remove initial noise in

the raw image. Other important functionalities of IMAQ Vision used in this experiment

include the followings:

1. IMAQ Color Subtract: subtracts a color constant from an image

2. IMAQ Color Threshold: applies a threshold to the three planes of an RGB

image and places the result into an 8-bit image

 - 57 -

3. IMAQ Remove Particle: eliminates or keeps particles in an 8-bit binary image

resistant to a specified number of erosions. The particles that are kept are

exactly the same shape as those found in the original source image.

4. IMAQ Convex Hull: draws the convex hull for each particle in the image

5. IMAQ Particle Analysis: returns the number of particles detected in a binary

image and a 2D array of requested measurements about the particle.

Figure 3.8 below shows the transformation sequence of the raw image in Figure 3.7 to

processed images as the image undergoes filtering steps by IMAQ Vision.

Figure 3.8. Filtration steps to remove noise and isolate green objects in the image.
Shown from left to right are: original image after noise removal; red objects
filtered out; final frame, blue objects filtered out (only green left).

Although Vision Assistant provides tremendous assistance in the programming of

image processing steps, extensive experiments are still required to produce a robust and

fault-proof image filtering application that would work in varying environmental

conditions. It is worth-mentioning that at the preliminary stage of research, other

approaches of image processing methods were also pursued. One successful approach

was to use binary B/W camera, instead of RGB webcam, where the object was

 - 58 -

recognized by associating its identity with its pixel area. The use of RGB webcam,

however, increases the number of observable robots by at least threefold, since it allows

pure color (RGB) identification.

3.2.4. Communication between LabVIEW and Matlab

After each completion of image processing LabVIEW, IMAQ Particle Analysis

outputs measurement values of requested parameters about the object, such as object

pixel area, object dimension (width and height), and object coordinate within the image.

These parameter values are essential inputs to the control algorithm which runs in Matlab

application. For Matlab to receive these data from LabVIEW, ActiveX technology needs

to be incorporated. ActiveX is a distributed object system and protocol used to manage

compound documents and data transfer between application [23], which is accomplished

via Object Linking and Embedding (OLE).

LabVIEW software has integrated ActiveX Automation functionality that allows

other programs to use and control the LabVIEW VI. Commands and data can be sent to

different applications in a single format by means of invoking and getting or setting

properties. Matlab can access LabVIEW VI through its ActiveX Server, whereby an

Application Object exports the properties of LabVIEW [23]. Matlab command used to

initialize this is

lvserv=actxserver('LabVIEW.Application');

From this Application Object, a VI Object is refered to export the properties and methods

of a VI:

 - 59 -

vi=invoke(lvserv,'GetViReference','file_destn\filename.vi');

Matlab also has direct control to remotely instruct the specified LabViEW VI to be

opened and run:

vi.FPWinOpen=1;

vi.Run([true]);

The most important Matlab command line is the invoke command to acquire data input

from LabVIEW VI of a specific parameter in LabVIEW.

variable = invoke(vi, 'GetControlValue','parameter_in_VI');

3.2.5. Data Interpretation for Coordinate Determination

3.2.5.1. Using Overhead Camera

 The image data from LabVIEW are generally ready for processing and

manipulation in Matlab. Using IMAQ Particle Analysis VI, LabVIEW is capable of

determining the pixel coordinate (x,y) of objects seen through the camera. When

overhead camera is used, the predator is identified by placing a marker (two circular,

colored papers -- red -- of different sizes) on the robot. The smaller paper is situated “in

front” of the larger one, given the robot’s direction; size differentiation is necessary to

allow determination of robot orientation. The prey is identified with another marker (a

green circular piece of paper) on its top. Fig. 3.9 shows a snapshot of the predator and

prey in the field, with their respective identification markers.

 - 60 -

Figure 3.9. Overhead view of the playground, as seen through the overhead camera.
The predator is shown with two red markers, and the prey with a green
marker on its top.

 From the pixel coordinate of each object outputted by LabVIEW, the real-world

coordinates of prey and predator are as follows:

()
()

()
() ()

,
,

_ , ,

,

,
,

1 , ,
2,

green pixel
prey real

C

red small pixel red_large pixel

predator real
C

x y
x y

k

x y x y
x y

k

=

⎡ ⎤+⎣ ⎦
=

where kC is the calibration coefficient which indicates the number of pixels that

corresponds to the length in foot in real-world measurement. For the overhead camera,

kC = 85 pixel/ft.

 - 61 -

3.2.5.1. Coordinate Determination using On-Board Camera

 Coordinate determination using on-board camera is accomplished by performing

perspective calculation to the images viewed by the robot. The depth of an object in an

image, i.e. its distance from the camera, directly relates to the apparent dimension of the

object. For an ideal camera with zero distortion, object’s distance will be linearly

proportional to the width or height of object as seen by the camera. However, since the

camera is far from ideal, nonlinear calibration has to be performed to determine the

distance of an object from the camera. This is done by taking snapshots of the object,

which is placed at a predefined distance and incrementally retreat away from the camera.

The distance from the camera and pixel height value pairs are tabulated, and

mathematical relationship is derived. The plot in Fig. 3.10 shows the nonlinear

relationship between the object’s distance and pixel height.

Object Distance vs. Object Pixel Height

D = 445.22*H-1.0619

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 100 200 300 400 500

Figure 3.10. Plot of nonlinear relationship between object distance and pixel height.

 - 62 -

This relationship is approximated by the following exponential function:

-1.0619D = 445.22 H⋅

To visualize how object distance (D) and object coordinate (x,y) relate to one another, the

following diagram (Fig. 3.11) is presented to provide a better illustration.

D y

x

Figure 3.11. Schematic representation of relations between object’s relative distance (D)
and coordinate (x,y) from the robot.

The value of xreal can be calculated as follows:

()320 real
real pixel

pixel

Hx x
H

⎛ ⎞
= − ×⎜ ⎟⎜ ⎟

⎝ ⎠

where xpixel is the x-coordinate output from LabVIEW which specifies the object’s

horizontal distance from the left wall; 320 is half of the window width size in pixel. Hpixel

is LabVIEW output and Hreal is object’s real height in foot length. Once xreal is

calculated, yreal is given by

 - 63 -

()2 2
real realy D x= −

 When both the object and robot are moving, the determination procedure of

prey’s relative coordinates from predator becomes more complex. Coordinate reference

will continuously change from time-step to time-step as the robot rotates and moves

forward. Given relative coordinate set (x1,y1,D1,α1) of the object in time-step 1, upon

robot’s rotation by a magnitude of θ while the object remains static, the estimated relative

object coordinate in time-step 2, as viewed by the robot will be

2 1

2 1

2 2

2 2
2 2

ˆ
ˆ

ˆ ˆˆ sin

ˆˆ ˆ

D D

x D

y D x

2

2

α α θ

α

= −

=

= ×

= −

After rotation, the robot will move forward by a distance yr, and as a result, the estimated

position of the robot in the coordinate frame of the camera will be:

2 2

2 2

ˆ ˆ
ˆ ˆ

r

r r

x x
y y y

=
= −

Based on the estimated position of the static object and the object coordinate from the

captured image in time-step 2 (x2,y2), the actual distance moved by prey is

,1 2 2 2

,1 2 2 2

ˆ

ˆ
obj r

obj r

x x x

y y
−

− y

Δ = −

Δ = −

Finally, in the original coordinate frame, the corrected object coordinate is given by

 - 64 -

()
()

()

()

()

2, 1 ,1 2

1 2 2

1 2 1 1

2, 1 ,1 2

1 2 2

22
1 2 1 1 1

22
1 2 1 1 1

ˆ

sin

ˆ

sin

sin

corr obj

r

corr obj

r

r

r

x x x

x x x

x x D
y y y

y y y

y y D D y

y y y D D

α θ

α θ

α θ

−

−

= + Δ

= + −

= + − −

= + Δ

= + −

⎛ ⎞= + − − − −⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

= + + − − −⎡ ⎤⎣ ⎦

where (x1,y1,D1,α1) and (x2,y2) are the object’s relative coordinates from the robot in time-

steps 1 and 2, respectively. θ and yr are the angle of rotation and forward distance moved

by the robot as part of its pursuit routine.

3.3. CONTROL ALGORITHMS IN MATLAB

3.3.1. Algorithm Description

 The general algorithms and procedures coded in Matlab for the experiments are

very similar to the control algorithms detailed in the previous chapter, section 2.1-3.

However, in the real experiment, instead of acquiring prey and predator coordinates

mathematically, these parameters are inputted from the image acquisition system. The

controller determines the desired predator position, i.e. the direction of pursuit of the

predator, and calculates the time needed to perform rotation and forward move. Matlab

then sends commands to the robot to actuate its servos for the prescribed length of time,

before looping back to trigger input data from the camera and LabVIEW.

 - 65 -

3.3.2. Commands Signal to Actuate Robot’s Servos

 The commands sent to actuate the servos are transmitted wirelessly via RF signal,

the details of which are discussed in the next section. In brief, the RF transmitter is

connected to the PC via serial port, and Matlab directly communicates with that specific

port. To initialize the port for recognition by Matlab, a parameter is assigned as object

handler for the serial port using Matlab’s serial command. The baudrate can be

selected from 1200 to 115k. Subsequently, fprintf command is used to write a string

of character and send it to the receiver on the robot’s end. The analysis of this data by the

robot is a topic of discussion in the next section.

3.4. ROBOT SOFTWARE AND HARDWARE SYSTEM FOR COMMAND EXECUTION

 This section provides detailed descriptions of the robot software and hardware

necessary to carry out the experiments. In its operation, the robot obtains certain input

from the controller and processes the inputs to bring about the output.

Robot’s
Microprocessor

Input command from
Matlab via RF

Robot servos
actuation

Figure 3.12. Black-box model of input-output to predator robot used in this experiment.

 - 66 -

3.4.1. Input Commands from Matlab

 One of the most important aspects of the experiment is the wireless

communication between the Matlab application in the computer and the on-board

program in the robot. The wireless communication device used is a set of SureLink 900

MHz RF Module and QuickLink Demo Board [24], also developed by Parallax Inc.,

which is compatible with the robot. Fig. 3.13 shows the SureLink Module slotted into the

QuickLink Demo Board unit, which is connected to the PC via serial cable. The

configuration of the wireless device is included in Appendix B.

Figure 3.13. Hardware for RF communication between PC and Boe-Bot.

3.4.2. Robot Hardware and Microprocessor

 The robot used in this experiment is Boe-Bot, a simple mobile robot kit developed

by Parallax Inc., with a BASIC Stamp microcontroller as its processing unit. The Boe-

Bot is a highly customizable mobile unit that runs off of 9V battery power. The base

 - 67 -

model comes with the Board of Education (BOE) Rev. C carrier board, the BASIC Stamp

2px microcontroller (see Fig. 3.14), and two servomotors. Power input into board is

regulated by a three-position switch: position 0 sets the power to off, position 1 supplies

power to all but the servo pins, and position 2 supplies power to the whole board. On the

left edge of the board is a DB-9 serial port that allows the microcontroller to

communicate with a computer. The BASIC Stamp 2px microcontroller module is an

extremely fast chip that allows the Boe-Bot to perform relatively complex decision-

making capabilities. The figure below shows a complete, assembled Boe-Bot kit with

BASIC Stamp inset.

Figure 3.14. Fully assembled Boe-Bot robot with BASIC Stamp microcontroller.

The programming language used within Boe-Bot is PBasic [25]. It is very similar in

many regards to the BASIC programming language and requires no compiler.

 - 68 -

3.4.3. Robot Servos Actuation

 The string input from Matlab is processed within PBasic to determine rotation

speed of each servo. Depending upon the string characters, the servos are actuated by a

certain speed in a certain direction. The servos are controlled by PBasic’s pulsout

command which delivers high signals to the servos for a specified length of time. The

following command line

Do

 Pulsout 12, 650

 Pause 20

Loop

delivers a high signal to the servo assigned to Pin 12 for a time duration of 2 x 650 μs

(i.e. 1.3 ms), pauses for 20 ms and repeats the loop. The resulting motion is a continuous

clockwise rotation of the specified servo with full speed range of approximately 60 RPM.

When coded in a FOR loop, simple calculation can determine the number of iterations

necessary for the servo to rotate for a specific number of seconds. Fig. 3.15 illustrates

servos timed motion in a timeline.

Figure 3.15. Timed motion of servo motor of the Boe-Bot [25].

 - 69 -

The logic loop of PBasic programs for servos actuation downloaded onto the

BASIC Stamp microcontroller starts with the servos being idle. Next, the microcontroller

invokes for input data from the pin which is assigned to communicate with the wireless

device. If no actuation command is sent by Matlab at that moment, the servos will

remain idle. Otherwise, the input data will be processed to determine rotation speed and

direction. The expected data is a string character input with a double-digit number which

will be decomposed to two single-digit numbers. The number on the left determines the

rotation of the left servo and number on the right for the right servo. The program then

passes through an IF loop to assign time duration value for the rotation of each servo.

Servos rotation will take place continuously until a new input is received by the RF

receiver, where the routine above will be repeated to determine the new rotation speed

and direction. The logic loop of PBasic program is illustrated in the flow diagram in Fig.

3.16.

 - 70 -

Start Program

Left_value = 0
Right_value = 0

L_servo = Left_value
R_servo = Right_value

Pulsout command to
actuate servos

Invoke Matlab input
Any new input?

Yes No

Input = XY
Left_value = X
Right_value = Y

Figure 3.16. Logic loop of PBasic program downloaded onto the robot’s microcontroller.

3.4.4. Methods for Time Specification of Servos Rotation

 The control algorithm in Matlab determines the necessary action that the robot

needs to perform in order to pursue the object. This action is defined by the rotation

characteristics of the servos -- rotation direction and duration -- each performed in a

 - 71 -

specific length of time. To control the time duration for each action, two approaches are

explored, each one with its shortcomings.

 The first method to control the time duration of rotation is by using pause

command in Matlab. After the actuation command is transmitted wirelessly to Boe-Bot,

Matlab application is paused for the calculated period of time, until the next command is

sent again. To instruct the robot to rotate for 1s and move forward for 2s, the Matlab

command lines will be

rotate
pause(1)
move_forward
pause(2)
stop

This method would be flawless and fault-proof if command data is transmitted and

executed instantaneously. However, experiment showed that for every successful

command sent from Matlab to the Boe-Bot, there is a time delay of approximately 0.16s.

As a result, instead of rotating for 1s, the robot actually rotates for 1.16s, similarly for the

forward move. Although it does not result in accumulated errors, as desired destination is

re-calculated at every time-step, this overshoot cause significant error in each motion of

the robot, impeding its capability to intercept the object. The diagram in Figure 3.17

shows the time delay of RF communication between Matlab and Boe-Bot.

 - 72 -

rotate move_forward stop

0.16s 0.16s 0.16s

pause(1) pause(2)

Robot rotates Robot moves
forward

Robot stops

Robot
action

Matlab
command

1s 2s

Figure 3.17. Representation of time delay incurred by wireless communication between
Matlab (PC) and PBasic (robot).

To get around this issue, the duration of each rotation and forward move is scaled back

by 0.16s. Although the error is not completely eliminated, its magnitude is now

substantially reduced to several hundreths of a second.

 Alternatively, the time duration of robot movement can be directly controlled by

adjusting the elements in the PBasic Pulsout command. Section 3.4.3 describes how

time duration of servos can be determined by specifying the number of iterations N of the

FOR loop. However, PBasic lacks the capability for program interruption, implying that a

Pulsout command has to be completely performed before the BASIC Stamp

microcontroller can invoke the next input values from Matlab. Since Matlab timeline

cannot be precisely synchronized with the BASIC Stamp, it becomes a huge

programming ordeal, if possible at all, to ensure that the robot receives the input

whenever one is sent from Matlab.

 - 73 -

 For experiment purposes, using Matlab pause command while scaling back the

pause period to account for RF communication time delay should work adequately. The

other problem is the fact that the PC is not running an RTOS (Real-Time Operating

Systems). This makes the execution of any instruction non-deterministic, i.e., depending

on background tasks, the execution time varies. In our setup, the PC is running with

minimum background tasks to avoid overloading the processor.

 - 74 -

3.5. EXPERIMENTAL RESULTS

Experiment in a real environment setting is performed to verify the assertions

regarding the performance of the controllers. From the simulations, we expect the

controller with the ANN and linear estimators the perform better than the reactive

controller, as the formers are able to predict the object’s position in the next time-step (or

many time-steps ahead), while the latter is only capable of “reacting” to the real-time

position of the object and conduct its pursuit in that direction. Since the ANN is a

nonlinear estimator, capable of learning the behavior or movement pattern of the object

after subjected to training, the ANN controller is expected to determine the path better

hence outperforming the linear controller. The experiments were carried out with the

following variations:

1. Type of controller: {reactive, linear, or ANN}

2. Camera device: {overhead or on-board)

3. Object path pattern: {circular or rectangular}

In these experiments, we are only analyzing object paths of circular and rectangular

shapes. This is partly due to the tight confine of the lab which limits floor space for

experimental use. Object paths such as circles and rectangles will maximize the

utilization of floor area, as opposed to using infinity-shaped path, where turns are sharper,

thus not allowing much room for movement for the predator. The robot used as the

moving object is also a Boe-Bot, but without control access or communication with the

 - 75 -

PC. The microcontroller in the robot has been programmed to govern the paths of the

object. The pursued paths are as shown in Figures 3.18-20.

Figure 3.18. Circular prey path as captured by overhead camera. The effect of some

noise from the playground terrain or servos is clearly seen.

Figure 3.19. Rectangular prey path as captured by overhead camera. Notice the timing

errors and noise in the sharp corners.

 - 76 -

Figure 3.20. Infinity-shaped prey path as captured by the overhead camera. Notice the
shift of paths due to noise from the environment (terrain or Boe-Bot’s
servos)

These paths are obtained by letting the prey run with movement routine downloaded onto

its BASIC Stamp. As it moves around following the pre-programmed paths, the

overhead camera captures the images. LabVIEW and the IMAQ Vision tools acquire and

process these images to determine the position of the object continuously. It can be

inferred from the plots that the movement of the object is not noise-free. Circle paths

tend to shift over time, straight lines are not perfectly straight, and rotation angles when

making turns -- in rectangular pattern -- are not precise either. This inconsistent behavior

of servos and variation in slip/friction and timing is observed throughout the experiments

in both the prey and predator motion.

 - 77 -

3.5.1. Experiments with Overhead Camera as Image Capture Device

3.5.1.1. Tracking Circular Pattern

The color identification tag of the markers placed on top of both the prey and

predator is approximately 8” in diameter. As such, the closest distance that they can get

to each other is roughly 8” before colliding and stopping their movement. This

constrains the error tolerance to about 8”. Such large error tolerance value becomes a

factor that makes interception a common occurrence, regardless of which control

algorithm is in use. As a result, for performance analysis, the fitness criterion used is

interception time. For an “apples-to-apples” comparison of the experiment results, they

must have the same (or similar) initial conditions before these results can be used for

performance analysis. If the initial conditions are varied, one experiment may falsely

suggest a better performance than others, i.e. shorter interception time, although the

difference may have been caused by small initial errors. The chosen condition is when

the initial error is +/- 2ft.

Fig. 3.21-22 present the results – mapping of pursued path and error plot -- of the

predator as it attempts to intercept the prey which is moving in a circular pattern. The

predator exhibits the reactive controller in this first result. Green circles indicate position

of the prey, while red asterisks for the predator. The prey moves in clockwise direction

and so does the predator as it attempts to chase the prey.

 - 78 -

Figure 3.21. Plot of the paths of the reactive controller when using overhead camera with
the predator robot (red) pursuing the prey (green) which moving in circular
pattern. Shown with a diamond is the initial condition of the prey.

Figure 3.22. Error plot of reactive controller when using overhead camera.

Intercepted!

 - 79 -

Prey interception is achieved when the error magnitude is approximately 0.7 ft (8

inches). From Fig. 3.22, the interception time is 14[s]. Another point for discussion is

the initial error in this experiment which is larger than the prescribed 2ft. Considering the

difficulties involved in ensuring initial distance error between the prey and predator, this

experiment’s result is used for analysis although its initial error magnitude is 2.4ft. From

the error plot at t = 10-11[s], there is a noticeable jump in error value. This is the point in

the path plot where the predator “has just realized” that the prey is making a circular turn.

The surprise effect renders the predator to make a rather sharp turn, and as predator re-

orients to correct its direction, the prey keeps moving away and thus error is increased.

With linear estimator controller, the interception time is expected to be reduced as

linear controller is predicted to be a better controller (see Figures 3.23-24).

Figure 3.23. Path plot of linear controller when using overhead camera with the robot
(red) pursuing the object (green) which moving in circular pattern.

 - 80 -

Figure 3.24. Error plot of linear controller when using overhead camera.

Predictably, the linear controller improves the robot performance as interception

time is reduced to 10[s]. This is due to controller’s ability to predict where the object

would be in the next time-step. This characteristic of linear controller is exhibited in the

path plot where the robot evidently approaches the object not by moving directly towards

it, but towards the coordinate one time-step ahead of the object, before finally making the

interception. The error plot shows an initial hump of the error; this is because the linear

estimator algorithm works by estimating the speed of the prey, which is done by

comparing the prey current and previous position. As such, the predator is actually not

moving in the first time-step. This can be improved by using reactive controller for the

first time-step, instead of staying put. Although not visible in the path plot, there are two

Intercepted!

 - 81 -

overlapping points at the initial position of predator. As a result, the error increases

sharply in the first time-step because the predator is stationary while the prey is moving

away from it.

 The last controller under study is the ANN controller which is hypothesized (from

the simulation results) to be a better estimator and hence a better controller than both

reactive and linear controller. The implementation of ANN controller to intercept

circular path is illustrated in Figures 3.25 and 3.26.

Figure 3.25. Path plot of ANN controller when using overhead camera with the robot
(red) pursuing the object (green) which moving in circular pattern. The
initial position of the prey is marked with the red diamond.

 - 82 -

Figure 3.26. Error plot of ANN controller when using overhead camera for object
moving in circular pattern. Interception is achieved in 8[s].

Prior to experimental simulation, the ANN controller first has to be trained with a

set of data set of prey coordinates when moving in circular pattern as shown in Fig. 3.17.

After successful training, mapping relationship between the input and output data is

generated and used for simulation. The ANN controller is more superior to the reactive

and linear controller as deduced from the significant reduction in interception time. Path

determination and estimation of the prey in the future time-step are calculated with

enough precision, and interception takes place in just 8[s]. Similar to the linear

controller’s error plot, the initial error hump is also observed when ANN controller is

used. This sharp increase in error is caused by the wait time that the robot has to undergo

to gather data for path estimation. Once the robot moves, its direction is governed by the

Intercepted!

 - 83 -

nonlinear neural network algorithm that precisely estimates the future coordinates of the

prey, more precise than the linear estimator does. As a result, prey interception is

accomplished in a shorter time period.

3.5.1.2. Tracking Rectangular Pattern

A variation to the initial experiment is introduced by using a different prey’s path.

Fig. 2.27-29 show the path and error plots results when the object moves in a rectangular

pattern, and the robot’s pursuit algorithm is varied from reactive to linear and to ANN

controllers. As in the case for circular path experiments, the pursuit runs with rectangular

path is conducted for each controller. The initial condition used to select the most

suitable results for comparison is initial error magnitude of +/-3.5ft.

Figure 3.27. Path and error plots of reactive controller following a rectangular path

 - 84 -

Figure 3.28. Path and error plots of linear controller following a rectangular path

Figure 3.29. Path and error plots of ANN controller following a rectangular path

From the path plot of the reactive controller in Fig. 2.27, the inconsistency of

prey’s servos can be observed at the upper portion of the rectangle, where it tapers

downwards instead of moving horizontally to the right. Nonetheless, the reactive

controller is able to cope with this problem. The predator closely follows the prey’s tail,

about 1[s] behind, before finally intercepting the prey at t = 14[s].

 - 85 -

The results for the linear estimator are given in Fig. 2.28. This controller helps

the predator intercept the prey in 13[s], a little quicker than the reactive controller.

Again, this is due to the nature of linear controller that estimates the next position of the

prey by linearly extrapolating from the prey’s current and previous coordinates. To

accommodate this, however, the controller will first have to wait for one time-step and

the robot stay motionless so as obtain knowledge of the object’s speed. This results in an

increased error in the first second as the object is moving away from the stationary robot.

This error is further increased in the subsequent time-steps due to inconsistent robot

servos, where the forward move is unexpectedly halted prior to completion. This

occurrence can be observed in the path plot. Nonetheless, despite the erroneous servos

behavior, linear controller still successfully intercepts the prey in a shorter time than

reactive controller does.

Better performance is achieved with ANN controller -- shown in Fig. 2.29 -- as

the interception time is reduced to 10[s]. The input data set used for training by the

neural network is the coordinate matrix of prey in Fig 2.19. The initial error build-up is

also observed in the error plot, a characteristic for estimator controller. The initial error

in this experiment is larger than that when using reactive and linear controller:

approximately 4ft, as opposed to 3.5ft and 3ft for reactive and linear controller,

respectively. Robot servos inconsistencies also take place during the experiments,

specifically at t = 5[s], as seen from the path plot. Nonetheless, despite the initial error

build-up, larger initial error magnitude, and servos flaws, the ANN controller still

prevails and intercepts the prey more quickly than the other two controllers.

 - 86 -

3.5.2. Experiments with On-board Camera as Image Capture Device

As far as the control algorithms are concerned, the experiments are identical in

nature when overhead or on-board camera is used as the image acquisition device. The

only difference is in the hardware setup of the camera itself. Upon successfully selecting

a compatible wireless camera, the camera is mounted on the robot by means of metal

frames. The key installation aspect to note is that the camera lens has to be vertically

aligned with the center of rotation of the robot. This is to prevent robot’s vertical vision

line from shifting as the robot rotates. In Section 3.2.5.1., the determination method of

object coordinates for continuously-changing coordinate frame has been established. In

the mathematical derivation, it is assumed that robot rotation only introduces angular

displacement, not translational.

For successful image processing, the object has to be placed in front of a

background of contrasting color. This is accomplished by draping the surrounding

background wall with matte, black cloth. Due to camera’s sensitivity to light reflection

and over-exposure, ceiling lights have to be turned off. Fig. 3.30 shows the playground’s

setting with the predator and prey in the field.

 - 87 -

Figure 3.30. Playground’s setting for experiment with on-board camera, shown with the
predator (red markers) and prey (green marker) in the field. The black cloth
draped against the wall is to ensure a dark background, as seen by the
predator through the on-board camera.

Spotting flashlights and night-vision headlight are mounted on the predator as the light

source (Fig. 3.31-a). The prey itself is enclosed with colored paper, which is cut to

consistent height (Fig. 3.31-b).

(a)

 - 88 -

(b)

Figure 3.31. Close-up images of the predator and prey in the “on-board camera”
experiment setting. (a) The predator is shown fully-equipped with the RF
antenna, flashlights, night-vision headlight, and the wireless on-board
camera. (b) The prey is hidden under the cover during the experiment. The
predator identifies the prey as a yellow object, and its relative position is
determined using the algorithm detailed in Section 3.2.5.1.

Upon image filtering, the relative (x,y) position of the object is related to the height and

position of the colored paper (Section 3.2.5.1), as seen by the predator through the

camera vision window. Figure 3.32 shows the various hardware components used to

facilitate the use of on-board camera as image capture device.

 - 89 -

Figure 3.32. Hardware needed for image acquisition using on-board camera. Shown in
the picture are (from left to right) the flashlights and headlight, DVD Maker
USB2.0 Capture Box, Q-See 4-Channel Receiver, and Q-See 2.4 GHz
Wireless Camera (bottom).

The implementation of the on-board camera as image input source proves to be a

challenging task. The field-of-view of the camera is +/- 47 degrees, which becomes a

major source of limitation to the functionality of the camera. To work around this

limitation, the experiment is conducted more slowly, i.e. with prey’s and predator’s

speeds reduced by half. As detailed above, and similar to the experimental setting where

the overhead camera was used as the image capture device, various hardware difficulties

entails the experiment with the on-board camera. As such, the results presented in this

section are the most comprehensible ones amongst all the conducted experiments. The

 - 90 -

predator will be controlled to track the prey which moves in circular pattern, and the

results are presented in Figures 3.33-35.

Figure 3.33. Path and error plots of reactive controller following a circular path.

Figure 3.34. Path and error plots of linear controller following a circular path.

 - 91 -

Figure 3.35. Path and error plots of ANN controller following a circular path.

Throughout these experiments, the time-step size is 2[s], instead of 1[s] as in the

overhead camera experiments. The chosen initial error value for an experiment result to

be accepted for analysis is 1ft. For the reactive controller, however, the result used has

an initial error of 3.1ft, significantly greater than the accepted value. Compared to other

results, however, this is by far the most comprehensible set of data for the reactive

controller. From Fig. 3.33, the interception time is determined to be 22[s], although this

information is of questionable use, as far as performance analysis is concerned. The path

plot in Fig. 3.33 depicts a typical behavior of reactive controller, where it trails the object

one time-step behind; the robot aims to be where the prey is a time-step earlier.

The results for the linear and ANN controller have many similarities as far as the

path taken by the predator in its pursuit to intercept the prey. The initial errors in both

experiments are around 1ft, rendering them acceptable for an “apples-to-apples” (equal

basis) analysis. The interception time for the linear controller is 18[s] (Fig. 3.34) while

that for the ANN controller is 14[s] (Fig. 3.35). This improved performance of the ANN

 - 92 -

controller is due to its ability to learn to estimate the nonlinear behavior of the prey path

during the training phase. Although the path plots in Figures 3.34 and 3.35 are generally

similar, the estimation in the former result is less accurate in predicting the prey’s

position, as inferred from the path plots and error fluctuations in the error plot of the

linear controller.

 - 93 -

 - 94 -

Chapter 4 – Summary and Conclusions

4.1. SUMMARY

This study investigated the performance of several control techniques for a mobile

robot (predator) to autonomously track and pursue a moving object (prey). The predator-

robot’s path was calculated using three different techniques: reactive controller, a

predictive controller with linear estimation, and a predictive controller using an artificial

neural network (ANN) estimator. The derivations and architecture of each control

algorithm are detailed in Chapter 2. A computer model was developed to predict the path

taken by the predator as it tracks the prey moving using different behaviors (paths).

In the setting of predator-prey pursuit environment, the pursuer requires a robust

controller to guide its path by determining its direction in real-time, until interception is

accomplished. Motivated by various applications of such technology, this study explores

different control algorithms and determines the fittest controller that is most suitable for

use in pursuit environment. Fitness of each method was based on the interception time.

The reactive controller “reacts” to the current position of the prey and guides the

robot to move in that direction (discussed in Section 2.1). The predictive controller with

linear estimator (discussed in Section 2.2) estimates the velocity of the prey and its

position in the next time-step, then uses this as the target position. The predictive

controller based on the ANN estimator generates a nonlinear model of object’s behavior

and accurately estimates the future position(s) of the prey, based on the object positions

 - 95 -

several time-steps earlier. The specific type of neural network used in this study is a

multi-layer perceptron with supervised learning algorithm, discussed in Section 2.3.

Computer modeling and simulations were performed in Chapter 2 to predict the

behavior and performance of each controller. A number of simulation parameters, such

as prey path and time-step, were varied to observe the performance of the controllers in

different environments. The prey is simulated following a circular, rectangular, infinity-

shaped, and random path. Two time-step values were chosen, in one, the predator is

slower than the prey, and in the other, their speeds are approximately equal. In all of the

computer simulations, no controller is able to intercept the object in a real sense that

distance error is reduced to zero due to the computational delay to react and the lack of

sufficient speed to catch the prey. At steady-state, the predator attained an error

magnitude which is either constant or regularly fluctuating. For performance analysis

purposes, the fitness criterion chosen was the steady-state error magnitude. With this

criterion, the ANN controller proves to be the best controller, regardless of the simulation

setting. The following figures are reproduction of the simulation results from Chapter 2

when the controllers are used to guide the robot to pursue an object following a

rectangular path.

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.1. Matlab simulation results for reactive, linear, and ANN controllers with
time-step 2.3[s].

 - 96 -

 - 97 -

The results above are for the simulations where time-step is 2.3[s], which

corresponds to the robot having approximately equal speed as the object. The ANN (-

based) controller is shown to perform better than the other two as the steady-state error

magnitude is decreased rapidly in 10 seconds, and it attains a steady-state error behavior

at the 12th time-step. This improvement in error reduction was achieved by the ANN

controller because an ANN is a nonlinear estimator capable of learning the behavior of

the prey’s movement. The linear estimator, although superior to the reactive controller,

falls short when compared to the ANN controller in accurately estimating the future

position of the prey, especially when the prey makes sharp turns at corners. This

occurrence is notable in Fig. 4.1-(c) where the predator curves out slightly every time it

turns a corner of the rectangle.

In Chapter 3, the computer models are validated through implementation of the

control algorithms in a real-world environment. To facilitate experimental simulations,

various tasks need to be accomplished. These included developing an image acquisition

and processing system, where the required hardware and software need to be fully

integrated and able to function in real-time to provide information from the field to the

robot. The hardware setup include:

• The predator and prey robots: mobile robots manufactured by Parallax Inc.,

augmented with radio transmitters. The robots communicate with a PC (Dell

Inspiron I5160, Intel Pentium 4 CPU 3.06 GHz, 1.00 GB RAM) that controls the

prey and predator robots behavior.

 - 98 -

• The LPS (Local Positioning System). An overhead camera vision system that

provides feedback to the robots about their local positions and to the performance

evaluation system.

• An on-board camera in the predator robot. Using on-board camera, coordinate

frame correction algorithm needs to be performed to calibrate each calculation to

the true coordinate reference of the field.

The image processing software used in the experiments are LabVIEW and IMAQ

Vision, used with NI-IMAQ for USB Cameras add-on software for the camera to be

recognized by LabVIEW. The image processing algorithm allows for a robust object

identification and position determination. The coordinate data from LabVIEW are passed

as system inputs to Matlab via ActiveX server application. The necessary rotation and

position corrections are estimated, and action commands are transmitted to the robots via

the RF communication. The robot itself needs to be built, tested, and programmed to

receive and execute the wireless signal from PC. The “brain” of the robot is an integrated

microcontroller that is programmed in PBasic computing language. Any movements

made by the robot (and the object) will be captured by the camera and used as input data

to the system again. This algorithm loops continuously while the supporting hardware

(camera, Boe-Bots, RF transmitter and receiver, PC) and software (Matlab, LabVIEW,

IMAQ Vision, PBasic) operate simultaneously, until interception is accomplished.

During the experimental simulations, several parameters were varied, including

the controller’s type, prey path, and camera position. For analysis on equal basis, the

initial condition of the experiments needed to be standardized; in the experiments, the

chosen initial condition is the distance error between prey and predator. Fig. 4.2 shows

the results from the experiment, as the robot pursues the rectangular path of the object.

(a) (b)

(c) (d)

(e) (f)

Figure 4.2. Real-world experimental results for reactive, linear, and ANN controllers
using overhead camera.

 - 99 -

 - 100 -

Overall, through these experiments, we can conclude that the ANN controller is

the best controller as it achieves the simulation objective, i.e. prey path interception,

within the shortest amount of time. Detailed analysis of the results is presented in

Section 3.5. This conclusion, however, is only true given two conditions:

1. Data sets are available for training the neural network

2. The prey behavior stays within the set of patterns used for training

These conditions are generally fulfilled in this experiment as the network is always

trained prior to being simulated with a new path, and all the paths have certain patterns

inherent to themselves that can be recognized by the network. The random path that is

simulated in the computer is not experimented in the real-world scenario. However,

when random path is included, the reactive controller will likely be the favored

controller. Although the reactive controller may not bring about a better performance,

considering the simplicity of its algorithm and its low computational load, it will be able

to perform the computation much faster than the linear and ANN estimator controllers,

thus more suitable in a fast-paced simulation of random pursuit of object.

4.2. FUTURE DIRECTIONS

While predictive controller with ANN estimator proves to be the best controller

for use in the pursuit environment, as shown by the results in this study, its applicability

in real-world scenario -- for example, anti-ballistic missile technology -- is questionable

as training phase may not be available prior to deployment. To retain the superiority of

 - 101 -

neural network estimator while enhancing its applicability, the class of ANN algorithm --

supervised learning -- may be replaced by one that does not require training, for example

the reinforcement learning model discussed in Section 2.3.1. In its operation when

training is no longer required, there is a possibility

After determination of the pursuit direction, the robot follows two movement

steps: reorientation and forward move. This error correction routine is not the most time-

efficient, as the steps are performed sequentially. As a result, when the robot is rotating,

its error steadily increases as the object moves away. An improvement to the system can

be achieved by combining the two movements together. Instead of sending action

command to the servos to rotate with an equal, opposite angular velocity to perform

rotation, followed by equal angular velocity to move forward, the servos can be

controlled to rotate asymmetrically by adjusting the timing of the voltage pulses sent to

each servo. The action will use maximum speed in the wheel opposite to the desired turn

and the other wheel adjusted to turn the desired angle and then go full speed. This will

result in a curved, one-step maneuver of the robot, much like the path of a vehicle as it

moves along a curved road. This scheme will entail a design of a sub-controller to

govern the pursuit maneuver of the robot. A sub-optimal controller solution can be

incorporated in this system, with time-to-intercept being the parameter to be minimized

in the cost function.

For future works, hardware upgrade is an area that has several rooms for

improvement. The Boe-Bot servos, in particular, are very inconsistent and unreliable at

times. Replacing these with ones with encoders is likely to bring about improvement.

 - 102 -

Multiple cameras can be installed on the robot to give a wider field-of-view to the robot.

The wireless communication between the PC and Boe-Bot can also be replaced with

BlueTooth communication instead of RF. BlueTooth technology has the potential of

reducing or eliminating time delay between the PD and BoeBot.

 - 103 -

Appendix A

Matlab Source Code for ANN Multi-Layer Perceptron Training

MLP.m

clear all
clc

% input & output initialization
M = circ;
inbatch = 9; % number of elements per input batch
outbatch = 4; % number of elements per output batch
out_est_count = 2; % number of useful estimated output values
% index different between input & output
inout_diff = out_est_count + inbatch - outbatch;
% index increment between timestep
input_incr = 2;

% input & output assignment using M
for i = 1:30
 in = i + (i-1)*(input_incr-1);
 out = in + inout_diff;
 input(i,:) = [M(in:(in+inbatch-1),1)' M(in:(in+inbatch-1),2)'];
 output(i,:) = [M(out:(out+outbatch-1),1)' M(out:(out+outbatch-
1),2)'];
end

% reduce input & output values

% NN parameter initialization
I = inbatch*2;
H = 20;
O = outbatch*2;
eta = 0.001;
MaxEpochs = 50000;

% NN training
[e,epoch,W1,W2,o2]=MLP_sim (M,I,H,O,eta,MaxEpochs,input,output);

% NN simulation
input_sim = input + rand(size(input))*.05; % noise added
P = size(input_sim,1);
a = [input_sim,ones(P,1)];
h1 = a*W1;
h2 = logsig(h1);
b = [h2,ones(P,1)];

 - 104 -

o1 = b*W2;
o2 = o1

% i2x is input values for NN
for i = 1:30
 i2x(((i-1)*inbatch+1):i*inbatch,1) = input_sim(i,1:inbatch)';
 i2x(((i-1)*inbatch+1):i*inbatch,2)=
input_sim(i,inbatch+1:inbatch*2)';
end

% o2x is output values from NN, i.e. estimated prey position
for i = 1:30
 o2x(((i-1)*outbatch+1):i*outbatch,1) = o2(i,1:outbatch)';
 o2x(((i-1)*outbatch+1):i*outbatch,2) = o2(i,outbatch+1:outbatch*2)';
end

MLP_sim.m

function [e,epoch,W1,W2,o2] =
MLP_sim(M,I,H,O,eta,MaxEpochs,input,output)
% M is the matrix with inputs and outputs together
% I is the number of inputs
% H is the number of neurons
% O is number of outputs
% MaxEpochs = 5000 maximum number of epochs

% Initialization
W1 = rand([I+1 H]); % I+1 for bias' weight
W2 = rand([H+1 O]); % H+1 for bias' weight
P = size(input,1);
epsilon = 0.001;
epoch = 1;
e = ones(P,O);

while (sum(e.^2) > epsilon) & (epoch < MaxEpochs);

 dW1 = zeros(size(W1));
 dW2 = zeros(size(W2));

 a = [input,ones(P,1)];
 h1 = a*W1;
 h2 = logsig(h1);

 b = [h2,ones(P,1)];
 o1 = b*W2;
 o2 = o1;

 e = o2 - output;

 do2_do1 = ones(P,size(output,2)); % f'ok(ukp)

 - 105 -

 dh2_dh1 = dlogsig(h1,h2); % f'hj(ujp)

 dop = e.*do2_do1; % ekp*f'ok(ukp)
 dWjp = (dop'*b)'; % del_wkj

 Wjp = dop*W2(1:H,:)'; % summation K
 dVji = a'*(dh2_dh1.*Wjp); % del_vji

 dW1 = dW1 - dVji;
 dW2 = dW2 - dWjp;

 W1 = W1 + eta*dW1;
 W2 = W2 + eta*dW2;

 epoch = epoch + 1;

end

 - 106 -

Algorithms INPUTS OUTPUTS BEP OUTPUTS

XOR 0 0 0 0.010
 0 1 1 0.985
 1 0 1 0.986
 1 1 0 0.021

N-Parity 0 0 0 0 0.002
 0 0 1 1 0.998
 0 1 0 0 0.021
 0 1 1 0 0.022
 1 0 0 1 1.003
 1 1 0 0 0.005
 1 1 1 1 0.995

sin(x)sin(y) -1.5 -1.5 1.0 1.002
 -1.5 -1.0 0.0 0.022
 -1.5 -0.5 -1.0 -0.996
 -1.5 0.0 0.0 0.022
 -1.5 0.5 1.0 1.130
 -1.5 1.0 0.0 0.021
 -1.5 1.5 -1.0 -0.996
 -1.0 -1.5 0.0 0.021
 -1.0 -1.0 0.0 0.022
 -1.0 -0.5 0.0 0.005
 -1.0 0.0 0.0 0.021
 -1.0 0.5 0.0 0.022
 -1.0 1.0 0.0 0.005
 -1.0 1.5 0.0 0.022
 -0.5 -1.5 -1.0 -0.996
 -0.5 -1.0 0.0 0.022
 -0.5 -0.5 1.0 1.002
 -0.5 0.0 0.0 0.005
 -0.5 0.5 -1.0 -0.996
 -0.5 1.0 0.0 0.005
 -0.5 1.5 1.0 1.002
 0.0 -1.5 0.0 0.010
 0.0 -1.0 0.0 0.021
 0.0 -0.5 0.0 0.021
 0.0 0.0 0.0 0.022
 0.0 0.5 0.0 0.005
 0.0 1.0 0.0 0.010
 0.0 1.5 0.0 0.021

 - 107 -

 0.5 -1.5 1.0 0.991
 0.5 -1.0 0.0 0.005
 0.5 -0.5 -1.0 -0.996
 0.5 0.0 0.0 0.005
 0.5 0.5 1.0 0.991
 0.5 1.0 0.0 0.005
 0.5 1.5 -1.0 -0.996
 1.0 -1.5 0.0 0.022
 1.0 -1.0 0.0 0.005
 1.0 -0.5 0.0 0.010
 1.0 0.0 0.0 0.021
 1.0 0.5 0.0 0.010
 1.0 1.0 0.0 0.021
 1.0 1.5 0.0 0.010
 1.5 -1.5 -1.0 -0.996
 1.5 -1.0 0.0 0.005
 1.5 -0.5 1.0 0.991
 1.5 0.0 0.0 0.005
 1.5 0.5 -1.0 -0.996
 1.5 1.0 0.0 0.003
 1.5 1.5 1.0 0.971

Appendix B

Configuration of SureLink & QuickLink Wireless RF Modules

 The most important aspect of our experiment proved to be the communication

between the Boe-Bot and the computer running our MATLAB applications. The final

experiment required us to be able to communicate wirelessly, however we first needed to

understand the basics of simple wired communication. Therefore, we first set about

getting the Boe-Bot and the computer to communicate using DB-9 serial chords.

Figure 1. A DB-9 serial cable has 9 pins on its head

Table 1. A table defining the task of each pin on a DB-9 serial cable

 - 108 -

 - 109 -

 The Boe-Bot uses RS-232 serial communication, which uses the DB-9 serial cable

to transmit data back and forth. The Figure above shows how the DB-9 cable is designed,

and the Table above shows the specific task each pin is assigned in serial

communications.

 Yan-Fang Li, in his Matlab-Based Graphical User Interface Development for

Basic Stamp 2 Microcontroller Projects, says “serial communication is a low-level

protocol used for data communication between two or more devices. As the name

implies, serial communication uses a data port to send/receive data in a serial manner,

i.e., one bit at a time.” Therefore, it is required that the communicating devices must

operate at the same communication rate, or baudrate. For the serial communication

portion we set the baudrate to 9600 bps.

 To establish communication between the Boe-Bot and MATLAB, some basic

programming commands must be used in both PBASIC and MATLAB.

PBASIC Commands:

SERIN Rpin,baudmode,{Timeout,Tlabel},[InputData]

 This function allows the Basic Stamp 2 to receive data through the serial

connection. Rpin is a variable that specifies the I/O pin where the data will be received.

For wired communication, this pin will always be set as 16. But, for wireless

communication it can be any value from 0-15, dependant on where the Rx pin is plugged

in. Baudmode defines at what baudrate the communication will operate at. The Basic

Stamp 2 can handle baudrates up to 50,000 bps. For the serial communication we used a

baudrate of 9600, but once we started working with the Surelink wireless antenna, we

 - 110 -

began to use a baudrate of 38400. Timeout gives a time, in milliseconds, for which the

program will wait for data to arrive through the serial connection. Tlabel tells the

program where to go in the event that a timeout is reached and SERIN is aborted.

InputData is a series of variables and formatters that organize the incoming data.

SEROUT Tpin,Baudmode,[OutputData]

 This function allows the Basic Stamp 2 to transmit data to another device. Tpin is

like Rpin from SERIN, in that it defines the pin in which data will be sent out of the

Stamp. For serial communication, this is again set to 16, and for wireless it can be

defined as any value from 0-15. Baudmode sets the baudrate at which the data is sent. To

insure steady communication this must be equal to the value from SERIN. OutputData is

a series of variables and formatters of all data that is being sent to another device.

MATLAB Commands:

ser_obj = serial(‘COM Port’,’baudrate’,baudrate)

This command defines a serial object ser_obj, as a specific serial port operating at

a specified baudrate. The terminator for the file communication, as well as the timeout

value can be defined by adding .terminator or .timeout to the end of ser_obj.

fopen(path)/fclose(path)

 These commands are used mostly in file communications to open or close a

specific file. However, they can also be used to open or close the COM port defined by

ser_obj.

 - 111 -

freeserial(serial)

 This command frees the specified serial port so that it can be used by other

programs.

[a,b,c] = fscanf(ser_obj,format)

 This command reads in data from the COM port specified by ser_obj. The

variable a reads in the actual value, the variable b reads the size of the data, and the

variable c stores the default error message. The format of the data in a can be changed by

changing the format command. The format can range from a character format to a double

format, to ASCII values.

fprintf(ser_obj,format,data)

 This command sends data to the COM port specified by ser_obj. Once again, the

format of the data being sent can be altered by changing the format modifier.

 After we built serial communications protocols, we began to work on wireless

communications using the Surelink wireless antenna. The first thing we had to do was to

configure the Surelink and to integrate it into the Boe-Bot.

Figure 2. A Surelink RF Antenna, with pin numbers shown

Table 2. Table showing the specific tasks of each pin in the Surelink RF Module

 - 112 -

Table 3. Table defining the different jumper positions for PIN3 and PIN4 depending upon the specified
baudrate

Table 4. Table defining the jumper positions for PIN5 and PIN6 depending upon the specified RF Channel

 The Surelink RF antenna is a highly versatile wireless communications antenna. It

has 15 pins on it, and each of these pins has a specific task in wireless communications.

These tasks are defined in Table 3. For the task of communicating between the Boe-Bots

and the computers, we needed six Surelink antennas. After each of the antennae were

formatted into cable link mode using the Surelink Control program provided with the

 - 113 -

antennae, the Surelink Modules were ready to be set up. One each was plugged into the

three Boe-Bot’s breadboards, with circuits designed for power and communications. The

other three were inserted into Quicklink Demo Boards and attached by USB-to-Serial

adapters to each computer. The set up of the jumpers on the Quicklink Demo Board is

defined in Tables 4 and 5. The jumper settings are dependent upon the baudrate and RF

channel that the Surelink Antenna is operating on.

Figure 3. A Quicklink Demo Board that is used in our experiment

Figure 4. How the Surelink Antenna and the Quicklink Demo Board are used together for wireless
communications

 - 114 -

Figure 5. A circuit diagram for the Surelink RF Antennae that were plugged into the Boe-Bot

 We found that the software portion of the protocol for wireless communications

was remarkably similar to that of the serial communications. All of the same commands

were used in PBASIC and MATLAB, with changes being made only to the Tpin and

Rpin, and baudrate values on the PBASIC side, and the baudrate values only on the

MATLAB side. The Tpin and Rpin were no long 16, but 1 and 0 respectively for our

robots. Also, we increased the baudrate to 38400 bps because this would insure much

faster decision making abilities for the robot, since data is being sent to and from the

computer much faster.

 - 115 -

 - 116 -

Bibliography

[1] Kai, W. O., Seet, G., Siang, K. S., “Sharing and Trading in a Human-Robot System”,
Cutting Edge Robotics, Advanced Robotic Systems, 2005, pp467-496.

[2] Pike, J., “Special Weapons Primer”, Federation of American Scientists,
http://www.fas.org/nuke/intro/missile/basics.htm

[3] Chou, J. H., “Automatic Guided Vehicle”, International IEEE/IAS Conference,
Industrial Automation and Control: Emerging Technologies, May 1995, pp241-
245.

[4] “Testing American Ingenuity in Autonomous Vehicle Design”, Defense Advanced
Research Projects Agency (DARPA), http://www.darpa.mil/grandchallenge/

[5] Van de Vegte, J., Feedback Control Systems, 3rd ed., Prentice Hall, UK, 1993.

[6] Nise, N. S., Control Systems Engineering. 3rd ed., Wiley, New York, 2000.

[7] Dayan, P., Abbott, L. F., Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems, 1st ed., The MIT Press, Cambridge,
MA, 2001.

[8] Kecman, V., Learning and Soft Computing: Support Vector Machines, Neural
Networks, and Fuzzy Logic Models, The MIT Press, Cambridge, MA, 2001.

[9] Peggy, T., “Science and Technology - Artificial Intelligence”, Thomson Gale
Corporation, http://www.scienceclarified.com/scitech/Artificial-Intelligence/

[10] Gurney, K., An Introduction to Neural Networks, Routledge, London, 1997.

[11] Sutton, R. S., Barto, A. G., Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

[12] Genevieve Orr, “Neural Networks”, Willamette University,
http://www.willamette.edu/~gorr/classes/cs449/intro.html

[13] McInroy, J. E., Wilamowski, B. M., “Bipolar Pattern Association Using A Recurrent
Winner Take All Network”, International Conference on Neural Networks
(ICNN), 1997, vol. 2, pp1231-1234.

http://www.fas.org/nuke/intro/missile/basics.htm
http://www.darpa.mil/grandchallenge/
http://www.scienceclarified.com/scitech/Artificial-Intelligence/
http://www.willamette.edu/%7Egorr/classes/cs449/intro.html

 - 117 -

[14] “Measurement and Automation Software”, National Instruments,
http://www.ni.com/software/

[15] “Machine Vision”, National Instruments, http://www.ni.com/vision/

[16] “Matlab and Simulink for Technical Computing”, The MathWorks,
http://www.mathworks.com/

[17] “Creative Webcam NX Pro”, Creative WorldWide, http://www.creative.com/-
products/product.asp?category=218&subcategory=219

[18] “Q-See 2.4G Mini Wireless Camera”, Digital Peripheral Solutions Inc.,
http://www.qps-inc.com

[19] “Composite Video”, http://en.wikipedia.org/wiki/Composite_video

[20] “DVD Maker USB 2.0”, http://www.kworld.com.tw/en/product/editing/-
002/dvd_maker_usb2.0.htm

[21] “NI-IMAQ for USB Cameras User Guide”, National Instruments, January 2005.

[22] “Vision Assistant: Interactive Software for Vision Application”, National
Instruments, http://www.alliancevision.com/us/products/software_ni/-
vision_assistant.htm

[23] Lee-Johnson, C. P., “The Development of a Control System for an Autonomous
mobile Robot” University of Waikato, 2004.

[24] “SureLink 900 MHz RF Module (#30065), QuickLink Demo Board (#30066)”,
Parallax Inc., Rev 1.3, October 2004.

[25] Lindsay, A., Robotic with the Boe-Bot, Parallax Inc., Ver. 2.2, 2004.

http://www.ni.com/software/
http://www.ni.com/vision/
http://www.mathworks.com/
http://www.creative.com/-products/product.asp?category=218&subcategory=219
http://www.creative.com/-products/product.asp?category=218&subcategory=219
http://www.qps-inc.com/
http://en.wikipedia.org/wiki/Composite_video
http://www.kworld.com.tw/en/product/editing/-002/dvd_maker_usb2.0.htm
http://www.kworld.com.tw/en/product/editing/-002/dvd_maker_usb2.0.htm
http://www.alliancevision.com/us/products/software_ni/-vision_assistant.htm
http://www.alliancevision.com/us/products/software_ni/-vision_assistant.htm

The vita has been removed from the reformatted version of this document.

	0.pdf
	
	IMPLEMENTATION OF MULTI-ALGORITHM CONTROLLERS
	FOR PATH DETERMINATION IN MOBILE ROBOT SYSTEMS
	by
	Adrianus Victor Hitijahubessy, B.S.M.E.
	Thesis
	MASTER OF SCIENCE IN ENGINEERING
	The University of Texas at Austin
	MAY 2006
	
	
	IMPLEMENTATION OF MULTI-ALGORITHM CONTROLLERS FOR PATH DETERMINATION IN MOBILE ROBOT SYSTEMS
	
	
	
	
	
	
	
	
	
	
	
	Dedication
	Abstract
	IMPLEMENTATION OF MULTI-ALGORITHM CONTROLLERS FOR PATH DETERMINATION IN MOBILE ROBOT SYSTEMS
	 Table of Contents
	 List of Tables
	 List of Figures

	1.pdf
	1.1. Application of Autonomous Control Systems
	1.2. Research Goals and Methodology

	2a.pdf
	2.1. Reactive Controller
	2.2. Linear Controller
	 2.3. Artificial Neural Network Estimator

	2bz.pdf
	2.4. Matlab Simulation Results

	3a.pdf
	3.1. Experiment Overview
	3.2. Image Processing and Data Analysis and Interpretation
	3.3. Control Algorithms in Matlab
	3.4. Robot Software and Hardware System for Command Execution

	3b.pdf
	3.5. Experimental Results

	4.pdf
	4.1. Summary
	4.2. Future Directions

	5.pdf
	Appendix A
	Appendix B
	 Bibliography
	
	Vita
	

