8 research outputs found

    A Hybrid Approach to Cognition in Radars

    Get PDF
    In many engineering domains, cognition is emerging to play vital role. Cognition will play crucial role in radar engineering as well for the development of next generation radars. In this paper, a cognitive architecture for radars is introduced, based on hybrid cognitive architectures. The paper proposes deep learning applications for integrated target classification based on high-resolution radar range profile measurements and target revisit time calculation as case studies. The proposed architecture is based on the artificial cognitive systems concepts and provides a basis for addressing cognition in radars, which is inadequately explored for radar systems. Initial experimental studies on the applicability of deep learning techniques under this approach provided promising results

    The body schema: neural simulation for covert and overt actions of embodied cognitive agents

    Get PDF
    This brief commentary on the general topic of ‘body schema’ is focused on its computational role, as an internal model that integrates proprioceptive information, for allowing embodied cognitive agents to carry out the neural simulation of covert and overt actions in a unitary manner. The discussion takes inspiration from the vintage but still valid seminal observation by Marr and Poggio that, in order to understand cognitive agents, both human and artificial, we should consider them as Generalized Information Processing Systems, to be analyzed along three levels: computational, algorithmic, and implementation. Accordingly, the body schema concept is briefly analyzed along this line, with the purpose of outlining a cognitive architecture that links embodied cognition with motor control through the body schema

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book
    corecore