3,203 research outputs found

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    CAF: Cluster Algorithm and A-Star with Fuzzy Approach for Lifetime Enhancement in Wireless Sensor Networks

    Get PDF
    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version

    Lifetime centric load balancing mechanism in wireless sensor network based IoT environment

    Get PDF
    Wireless sensor network (WSN) is a vital form of the underlying technology of the internet of things (IoT); WSN comprises several energy-constrained sensor nodes to monitor various physical parameters. Moreover, due to the energy constraint, load balancing plays a vital role considering the wireless sensor network as battery power. Although several clustering algorithms have been proposed for providing energy efficiency, there are chances of uneven load balancing and this causes the reduction in network lifetime as there exists inequality within the network. These scenarios occur due to the short lifetime of the cluster head. These cluster head (CH) are prime responsible for all the activity as it is also responsible for intra-cluster and inter-cluster communications. In this research work, a mechanism named lifetime centric load balancing mechanism (LCLBM) is developed that focuses on CH-selection, network design, and optimal CH distribution. Furthermore, under LCLBM, assistant cluster head (ACH) for balancing the load is developed. LCLBM is evaluated by considering the important metrics, such as energy consumption, communication overhead, number of failed nodes, and one-way delay. Further, evaluation is carried out by comparing with ES-Leach method, through the comparative analysis it is observed that the proposed model outperforms the existing model

    Energy Efficient Communication Protocols for Wireless Sensor Networks

    Get PDF
    The popularity of Wireless Sensor Networks have increased tremendously due to the vast potential of the sensor networks to connect the physical world with the virtual world. Since these devices rely on battery power and may be placed in hostile environments replacing them becomes a tedious task. Thus, improving the energy of these networks becomes important.The thesis provides methods for clustering and cluster head selection to WSN to improve energy efficiency. It presents a comparison between the different methods on the basis of the network lifetime . It proposes a modified approach for cluster head selection with good performance and reduced computational complexity .In addition it also proposes BFO as an algorithm for clustering of WSN which would result improved performance with faster convergence

    Energy sink-holes avoidance method based on fuzzy system in wireless sensor networks

    Get PDF
    The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink
    corecore