268 research outputs found

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Dynamic Joint Passivization for Bipedal Locomotion

    Get PDF

    Force and impedance control for hydraulically driven hexapod robot walking on uneven terrain

    Get PDF
    A variety approach of multi-legged robot designs, especially on a large scale design with hydraulically driven actuators exist, but most of it still unsolved and used primitive techniques on control solutions. This made this area of research still far from demonstrating the scientific solutions, which is more towards developing and optimizing the algorithm, control technique and software engineering for practical locomotion (flexibility and reliability). Therefore in this thesis,the study is done to propose two categories of solution for statically stable and hydraulically driven hexapod robot, named COMET-IV, which are dynamic walking trajectory generation and force/impedance control implementation (during body start patching), in order to solve the stability problems (horizontal) that encountered when walking on extremely uneven terrains.Only three sensors are used for control feedback; potentiometers (each leg joint), pressure sensors (hydraulic cylinders) and attitude sensor (center of body). For dynamic walking trajectory generation, the fixed/determined of tripod walking trajectory is modified with force threshold-based, named as environment trailed trajectory (ETT),on each first step of foot during support phase (preliminary sensing uneven terrain surfaces). Moreover,the proposed dynamic trajectory generation is then upgraded with capability of omni-directional walking with a proposed center of body rotational-based method. The instability of using the ETT module alone and with proposed hybrid force/position control in the previous progress, during body patching on walking session is then solved using the proposed pull-back position-based force control (PPF). PPF controller is derived from the ETT module itself and supported by proposed compliant (switching) mechanism, logical attitude control and dynamic swing rising control. The limitation of PPF controller applied with ETT module for walking on uneven terrain contains extreme soft surface makes the study narrowed to the impedance control approaches as a replacement of PPF controller. Three new adaptive impedance controller are designed and proposed: Optimal single leg impedance control based on body inertia, Optimal center of mass—based impedance control based on body inertia and Single leg impedance control with self-tuning stiffness. To reduce the hard swinging/shaking of the robot's body in motion that arise after applying the proposed impedance controllers, fuzzy logic control via Takagaki-Sugeno-Kang (TSK) model is proposed to be cascaded on the input feedback of the controller.The study has verified the effectiveness of both categories of control unit (dynamic trajectory,force controller and impedance controllers) combination throughout several experiments of COMET-IV walking on uneven/unstructured terrains

    Walking trajectory control for a biped robot

    Get PDF
    A not trivial problem in bipedal robot walking is the instability produced by the violent transition between the different dynamic walk phases. In this work an dynamic algorithm to control a biped robot is proposed. The algorithm is based on cubic polynomial interpolation of the initial conditions for the robot’s position, velocity and acceleration. This guarantee a constant velocity an a smooth transition in the control trajectories. The algorithm was successfully probed in the bipedal robot “Dany walker” designed at the Freie Universität Berlin, finally a briefly mechanical description of the robot structure is presented

    Straight-Leg Walking Through Underconstrained Whole-Body Control

    Full text link
    We present an approach for achieving a natural, efficient gait on bipedal robots using straightened legs and toe-off. Our algorithm avoids complex height planning by allowing a whole-body controller to determine the straightest possible leg configuration at run-time. The controller solutions are biased towards a straight leg configuration by projecting leg joint angle objectives into the null-space of the other quadratic program motion objectives. To allow the legs to remain straight throughout the gait, toe-off was utilized to increase the kinematic reachability of the legs. The toe-off motion is achieved through underconstraining the foot position, allowing it to emerge naturally. We applied this approach of under-specifying the motion objectives to the Atlas humanoid, allowing it to walk over a variety of terrain. We present both experimental and simulation results and discuss performance limitations and potential improvements.Comment: Submitted to 2018 IEEE International Conference on Robotics and Automatio

    Mechanism and Control of Anthropomorphic Biped Robots

    Get PDF

    SISTEM KENDALI JALAN ROBOT HUMANOID PADA BIDANG TIDAK RATA MENGGUNAKAN LQR

    Get PDF
    AbstrakPengembangan robot humanoid memiliki keunggulan yaitu mobilisasi di lingkungan manusia yang baik karena strukturnya yang mirip manusia. Robot humanoid harus mampu berjalan seimbang pada bidang yang tidak rata. Bidang yang tidak rata menyebabkan adanya perubahan pola berjalan pada robot dan menybabkan robot terjatuh. Berbagai penelitian mengemukakan bahwa robot humanoid akan stabil berjalan ketika COM atau ZMP dari robot tetap berada di area telapak kaki. Kondisi tersebut dapat diwujudkan dengan menanamkan sistem kendali pada robot humanoid.Berbagai penelitian telah dilakukan untuk mendesain sistem kendali untuk robot humanoid ketika berjalan. Kendali LQR dan strategi pengenalan bidang dapat digunakan untuk menstabilkan robot humanoid namun terbatas pada permukaan bidan tertentu dan respon sistem yang tidak konsisten. Pada setiap variasi bentuk bidang jalan, robot akan memerlukan perlakuan yang berbeda.Pada penelitian ini akan dirancang kendali LQR dan strategi pengenalan bidang jalan untuk robot humanoid ketika berjalan pada bidang tidak rata. Metode LQR dipilih karena performa yang robust. Metode ini diharapkan dapat memberikan kemampuan robot humanoid untuk mengubah nilai umpan balik sistem kendali sesuai dengan keadaan robot sehingga robot dapat berjalan pada bidang tidak rata tanpa terjatuh

    Motion Planning and Control for the Locomotion of Humanoid Robot

    Get PDF
    This thesis aims to contribute on the motion planning and control problem of the locomotion of humanoid robots. For the motion planning, various methods were proposed in different levels of model dependence. First, a model free approach was proposed which utilizes linear regression to estimate the relationship between foot placement and moving velocity. The data-based feature makes it quite robust to handle modeling error and external disturbance. As a generic control philosophy, it can be applied to various robots with different gaits. To reduce the risk of collecting experimental data of model-free method, based on the simplified linear inverted pendulum model, the classic planning method of model predictive control was explored to optimize CoM trajectory with predefined foot placements or optimize them two together with respect to the ZMP constraint. Along with elaborately designed re-planning algorithm and sparse discretization of trajectories, it is fast enough to run in real time and robust enough to resist external disturbance. Thereafter, nonlinear models are utilized for motion planning by performing forward simulation iteratively following the multiple shooting method. A walking pattern is predefined to fix most of the degrees of the robot, and only one decision variable, foot placement, is left in one motion plane and therefore able to be solved in milliseconds which is sufficient to run in real time. In order to track the planned trajectories and prevent the robot from falling over, diverse control strategies were proposed according to the types of joint actuators. CoM stabilizer was designed for the robots with position-controlled joints while quasi-static Cartesian impedance control and optimization-based full body torque control were implemented for the robots with torque-controlled joints. Various scenarios were set up to demonstrate the feasibility and robustness of the proposed approaches, like walking on uneven terrain, walking with narrow feet or straight leg, push recovery and so on
    corecore