52 research outputs found

    Robotic Manipulation and Capture in Space: A Survey

    Get PDF
    Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit

    Design and Operational Elements of the Robotic Subsystem for the e.deorbit Debris Removal Mission

    Get PDF
    This paper presents a robotic capture concept that was developed as part of the e.deorbit study by ESA. The defective and tumbling satellite ENVISAT was chosen as a potential target to be captured, stabilized, and subsequently de-orbited in a controlled manner. A robotic capture concept was developed that is based on a chaser satellite equipped with a seven degrees-of-freedom dexterous robotic manipulator, holding a dedicated linear two-bracket gripper. The satellite is also equipped with a clamping mechanism for achieving a stiff fixation with the grasped target, following their combined satellite-stack de-tumbling and prior to the execution of the de-orbit maneuver. Driving elements of the robotic design, operations and control are described and analyzed. These include pre and post-capture operations, the task-specific kinematics of the manipulator, the intrinsic mechanical arm flexibility and its effect on the arm's positioning accuracy, visual tracking, as well as the interaction between the manipulator controller and that of the chaser satellite. The kinematics analysis yielded robust reachability of the grasp point. The effects of intrinsic arm flexibility turned out to be noticeable but also effectively scalable through robot joint speed adaption throughout the maneuvers. During most of the critical robot arm operations, the internal robot joint torques are shown to be within the design limits. These limits are only reached for a limiting scenario of tumbling motion of ENVISAT, consisting of an initial pure spin of 5 deg/s about its unstable intermediate axis of inertia. The computer vision performance was found to be satisfactory with respect to positioning accuracy requirements. Further developments are necessary and are being pursued to meet the stringent mission-related robustness requirements. Overall, the analyses conducted in this study showed that the capture and de-orbiting of ENVISAT using the proposed robotic concept is feasible with respect to relevant mission requirements and for most of the operational scenarios considered. Future work aims at developing a combined chaser-robot system controller. This will include a visual servo to minimize the positioning errors during the contact phases of the mission (grasping and clamping). Further validation of the visual tracking in orbital lighting conditions will be pursued

    Task space control for on-orbit space robotics using a new ROS-based framework

    Get PDF
    This paper proposes several task space control approaches for complex on-orbit high degrees of freedom robots. These approaches include redundancy resolution and take the non-linear dynamic model of the on-orbit robotic systems into account. The suitability of the proposed task space control approaches is explored in several on-orbit servicing operations requiring visual servoing tasks of complex humanoid robots. A unified open-source framework for space-robotics simulations, called OnOrbitROS, is used to evaluate the proposed control systems and compare their behaviour with state-of-the-art existing ones. The adopted framework is based on ROS and includes and reproduces the principal environmental conditions that eventual space robots and manipulators could experience in an on-orbit servicing scenario. The architecture of the different software modules developed and their application on complex space robotic systems is presented. Efficient real-time implementations are achieved using the proposed OnOrbitROS framework. The proposed controllers are applied to perform the guidance of a humanoid robot. The robot dynamics are integrated into the definition of the controllers and an analysis of the results and practical properties are described in the results section

    Singularity Maps of Space Robots and their Application to Gradient-based Trajectory Planning

    Get PDF
    We present a numerical method to compute singularity sets in the configuration space of free-floating robots, comparing two different criteria based on formal methods. By exploiting specific properties of free-floating systems and an alternative formulation of the generalized Jacobian, the search space and computational complexity of the algorithm is reduced. It is shown that the resulting singularity maps can be applied in the context of trajectory planning to guarantee feasibility with respect to singularity avoidance. The proposed approach is validated on a space robot composed of a six degrees-of-freedom (DOF) arm mounted on a body with six DOF

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints

    Collision Detection and Isolation for Free-Floating Space Robots

    Get PDF
    open2noopenCavenago, F.; Massari, M.Cavenago, F.; Massari, M

    Modeling and Control of a Flexible Space Robot to Capture a Tumbling Debris

    Get PDF
    RÉSUMÉ La conquĂȘte spatiale des 60 derniĂšres annĂ©es a gĂ©nĂ©rĂ© une grande quantitĂ© d’objets Ă  la dĂ©rive sur les orbites terrestres. Leur nombre grandissant constitue un danger omniprĂ©sent pour l’exploitation des satellites, et requiert aujourd’hui une intervention humaine pour rĂ©duire les risques de collision. En effet, l’estimation de leur croissance sur un horizon de 200 ans, connue sous le nom de “syndrĂŽme de Kessler”, montre que l’accĂšs Ă  l’Espace sera grandement menacĂ© si aucune mesure n’est prise pour endiguer cette prolifĂ©ration. Le scientifique J.-C. Liou de la National Aeronautics and Space Administration (NASA) a montrĂ© que la tendance actuelle pourrait ĂȘtre stabilisĂ©e, voire inversĂ©e, si au moins cinq dĂ©bris massifs Ă©taient dĂ©sorbitĂ©s par an, tels que des satellites en fin de vie ou des Ă©tages supĂ©rieurs de lanceur. Parmi les nombreux concepts proposĂ©s pour cette mission, la robotique s’est imposĂ©e comme une des solutions les plus prometteuses grĂące aux retours d’expĂ©rience des 30 derniĂšres annĂ©es. La Station Spatiale Internationale (ISS) possĂšde dĂ©jĂ  plusieurs bras robotiques opĂ©rationnels, et de nombreuses missions ont dĂ©montrĂ© le potentiel d’un tel systĂšme embarquĂ© sur un satellite. Pour deux d’entre elles, des Ă©tapes fondamentales ont Ă©tĂ© validĂ©es pour le service en orbite,et s’avĂšrent ĂȘtre similaires aux problĂ©matiques de la dĂ©sorbitation des dĂ©bris. Cette thĂšse se concentre sur l’étape de capture d’un dĂ©bris en rotation par un bras robotique ayant des segments flexibles. Cette phase comprend la planification de trajectoire et le contrĂŽle du robot spatial, afin de saisir le point cible du dĂ©bris de la façon la plus dĂ©licate possible. La validation des technologies nĂ©cessaires Ă  un tel projet est quasiment impossible sur Terre, et requiert des moyens dĂ©mesurĂ©s pour effectuer des essais en orbite. Par consĂ©quent, la modĂ©lisation et la simulation de systĂšmes multi-corps flexibles est traitĂ©e en dĂ©tails, et constitue une forte contribution de la thĂšse. À l’aide de ces modĂšles, une validation mixte est proposĂ©e par des essais expĂ©rimentaux, en reproduisant la cinĂ©matique en orbite par des manipulateurs industriels contrĂŽlĂ©s par une simulation en temps rĂ©el. En rĂ©sumĂ©, cette thĂšse est construite autour des trois domaines suivants : la modĂ©lisation des robots spatiaux, le design de lois de contrĂŽle, et leur validation sur un cas test. Dans un premier temps, la modĂ©lisation de robots spatiaux en condition d’apesanteur est dĂ©veloppĂ©e pour une forme “en Ă©toile”.----------ABSTRACT After 60 years of intensive satellite launches, the number of drifting objects in Earth orbits is reaching a shifting point, where human intervention is becoming necessary to reduce the threat of collision. Indeed, a 200 year forecast, known as the “Kessler syndrome”, states that space access will be greatly compromised if nothing is done to address the proliferation of these debris. Scientist J.-C. Liou from the National Aeronautics and Space Administration (NASA) has shown that the current trend could be reversed if at least five massive objects, such as dead satellites or rocket upper stages, were de-orbited each year. Among the various technical concepts considered for debris removal, robotics has emerged, over the last 30 years, as one of the most promising solutions. The International Space Station (ISS) already possesses fully operational robotic arms, and other missions have explored the potential of a manipulator embedded onto a satellite. During two of the latter, key capabilities have been demonstrated for on-orbit servicing, and prove to be equally useful for the purpose of debris removal. This thesis focuses on the close range capture of a tumbling debris by a robotic arm with light-weight flexible segments. This phase includes the motion planning and the control of a space robot, in order to smoothly catch a target point on the debris. The validation of such technologies is almost impossible on Earth and leads to prohibitive costs when performed on orbit. Therefore, the modeling and simulation of flexible multi-body systems has been investigated thoroughly, and is likewise a strong contribution of the thesis. Based on these models, an experimental validation is proposed by reproducing the on-orbit kinematics on a test bench made up of two industrial manipulators and driven by a real-time dynamic simulation. In a nutshell, the thesis is built around three main parts: the modeling of a space robot, the design of control laws, and their validation on a test case. The first part is dedicated to the flexible modeling of a space robot in conditions of weightlessness. A “star-shaped” multi-body system is considered, meaning that the rigid base carries various flexible appendages and robotic arms, assumed to be open mechanical chains only. The classic Newton-Euler and Lagrangian algorithms are brought together to account for the flexibility and to compute the dynamics in a numerically efficient way. The modeling step starts with the rigid fixed-base manipulators in order to introduce the notations, then, dĂ©tails the flexible ones, and ends with the moving-base system to represent the space robots

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • 

    corecore