51 research outputs found

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Ferroelectric Field Effect Transistor for Memory and Switch Applications

    Get PDF
    Silicon technology has advanced at exponential rates both in performances and productivity through the past four decades. However the limit of CMOS technology seems to be closer and closer and in the future we might see an increasing number of hybrid approaches where other technologies add to the CMOS performance, while maintaining a back-bone of CMOS logic. Ferro-electricity in ultra-thin films has been investigated as a credible candidate for nonvolatile memory thanks to the bistability of polarization. 1 transistor (1T) ferroelectric memory cells have been proposed and experimentally studied in order to reduce the size of 1T-1C (1Transistor-1Capacitor) design with consequent advantages in terms of size, read-out operation and costs. More recently ferroelectrics have been proposed by Salahuddin and Datta as dielectric materials in order to lower the 60mV/dec limit of the subthreshold swing (SS) in silicon Metal Oxide Semiconductor Field Effect Transistors, MOSFETs. The objective of this thesis is to study the ferroelectric transistor performance for both memory and switch application. For this purpose different Ferroelectric Field Effect Transistors, Fe-FETs, structures have been designed, fabricated and characterized. An organic ferroelectric polymer, vinylidene fluoride trifluorethylene, P(VDF-TrFE), of 100nm and 40nm thickness has been successfully integrated into the gate stack of bulk and SOI MOSFET and, later, on a Tunnel FET, TFET, structure. The 1T ferroelectric FET memory cells have shown a programming time in the order of ms at 9V as programming voltage. The retention of a few seconds, however, is the main limiting factor for the usage of this device for NV-memory applications. The retention failure mechanisms have been studied and investigated for future improvement. For the first time this work experimentally demonstrates that a subthreshold swing lower than 60mv/dec can be achieved in a ferroelectric transistor thanks to the voltage amplification arising from the ferroelectric material. This unique finding has been first measured in a 40nm P(VDF-TrFE)/10nm SiO2 gate stack MOSFET and then, confirmed, in a 100nm P(VDF-TrFE)/10nm SiO2 gate MOSFET with an intermediate contact between the two dielectrics. This internal node contact allows the study of the voltage amplification due to the ferroelectric material. Finally a temperature study of the performance of a ferroelectric Fully Depleted Silicon on Insulator, FD SOI, transistor has been done. A model based on Landau's theory has been carried out and it has been experimentally validated for both the subthreshold and the strong inversion regions. It has been demonstrated for the first time that, because of the divergence of the ferroelectric permittivity at the Curie temperature, Tc, a ferroelectric transistor has a maximum and a minimum, respectively of its transconductance and subthreshold swing, at Tc

    Robustness Analysis of Controllable-Polarity Silicon Nanowire Devices and Circuits

    Get PDF
    Substantial downscaling of the feature size in current CMOS technology has confronted digital designers with serious challenges including short channel effect and high amount of leakage power. To address these problems, emerging nano-devices, e.g., Silicon NanoWire FET (SiNWFET), is being introduced by the research community. These devices keep on pursuing Mooreâs Law by improving channel electrostatic controllability, thereby reducing the Off âstate leakage current. In addition to these improvements, recent developments introduced devices with enhanced capabilities, such as Controllable-Polarity (CP) SiNWFETs, which make them very interesting for compact logic cell and arithmetic circuits. At advanced technology nodes, the amount of physical controls, during the fabrication process of nanometer devices, cannot be precisely determined because of technology fluctuations. Consequently, the structural parameters of fabricated circuits can be significantly different from their nominal values. Moreover, giving an a-priori conclusion on the variability of advanced technologies for emerging nanoscale devices, is a difficult task and novel estimation methodologies are required. This is a necessity to guarantee the performance and the reliability of future integrated circuits. Statistical analysis of process variation requires a great amount of numerical data for nanoscale devices. This introduces a serious challenge for variability analysis of emerging technologies due to the lack of fast simulation models. One the one hand, the development of accurate compact models entails numerous tests and costly measurements on fabricated devices. On the other hand, Technology Computer Aided Design (TCAD) simulations, that can provide precise information about devices behavior, are too slow to timely generate large enough data set. In this research, a fast methodology for generating data set for variability analysis is introduced. This methodology combines the TCAD simulations with a learning algorithm to alleviate the time complexity of data set generation. Another formidable challenge for variability analysis of the large circuits is growing number of process variation sources. Utilizing parameterized models is becoming a necessity for chip design and verification. However, the high dimensionality of parameter space imposes a serious problem. Unfortunately, the available dimensionality reduction techniques cannot be employed for three main reasons of lack of accuracy, distribution dependency of the data points, and finally incompatibility with device and circuit simulators. We propose a novel technique of parameter selection for modeling process and performance variation. The proposed technique efficiently addresses the aforementioned problems. Appropriate testing, to capture manufacturing defects, plays an important role on the quality of integrated circuits. Compared to conventional CMOS, emerging nano-devices such as CP-SiNWFETs have different fabrication process steps. In this case, current fault models must be extended for defect detection. In this research, we extracted the possible fabrication defects, and then proposed a fault model for this technology. We also provided a couple of test methods for detecting the manufacturing defects in various types of CP-SiNWFET logic gates. Finally, we used the obtained fault model to build fault tolerant arithmetic circuits with a bunch of superior properties compared to their competitors

    Electronic Nanodevices

    Get PDF
    The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10 nm technologies. The new phenomena and issues as well as the technological challenges of the fabrication and manipulation at the nanoscale have spurred an intense theoretical and experimental research activity. New device structures, operating principles, materials, and measurement techniques have emerged, and new approaches to electronic transport and device modeling have become necessary. Examples are the introduction of vertical MOSFETs in addition to the planar ones to enable the multi-gate approach as well as the development of new tunneling, high-electron mobility, and single-electron devices. The search for new materials such as nanowires, nanotubes, and 2D materials for the transistor channel, dielectrics, and interconnects has been part of the process. New electronic devices, often consisting of nanoscale heterojunctions, have been developed for light emission, transmission, and detection in optoelectronic and photonic systems, as well for new chemical, biological, and environmental sensors. This Special Issue focuses on the design, fabrication, modeling, and demonstration of nanodevices for electronic, optoelectronic, and sensing applications

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today “3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement
    • …
    corecore