124 research outputs found

    Anechoic audio and 3D-video content database of small ensemble performances for virtual concerts

    Get PDF
    International audienceThis paper presents the details related to the creation of a public database of anechoic audio and 3D-video recordings of several small music ensemble performances. Musical extracts range from baroque to jazz music. This work aims at extending the already available public databases of anechoic stimuli, providing the community with flexible audiovisual content for virtual acoustic simulations. For each piece of music, musicians were first close-mic recorded together to provide an audio performance reference. This recording was followed by individual instrument retake recordings, while listening to the reference recording, to achieve the best audio separation between instruments. In parallel, 3D-video content was recorded for each musician, employing a multiple Kinect 2 RGB-Depth sensors system, allowing for the generation and easy manipulation of 3D point-clouds. Details of the choice of musical pieces, recording procedure, and technical details on the system architecture including post-processing treatments to render the stimuli in immersive audiovisual environments are provided

    Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments

    Get PDF
    Immersive Virtual Reality (IVR) is a simulated technology used to deliver multisensory information to people under different environmental conditions. When IVR is generally applied in urban planning and soundscape research, it reveals attractive possibilities for the assessment of urban sound environments with higher immersion for human participation. In virtual sound environments, various topics and measures are designed to collect subjective responses from participants under simulated laboratory conditions. Soundscape or noise assessment studies during virtual experiences adopt an evaluation approach similar to in situ methods. This paper aims to review the approaches that are utilized to assess the ecological validity of IVR for the perception of urban sound environments and the necessary technologies during audio–visual reproduction to establish a dynamic IVR experience that ensures ecological validity. The review shows that, through the use of laboratory tests including subjective response surveys, cognitive performance tests and physiological responses, the ecological validity of IVR can be assessed for the perception of urban sound environments. The reproduction system with head-tracking functions synchronizing spatial audio and visual stimuli (e.g., head-mounted displays (HMDs) with first-order Ambisonics (FOA)-tracked binaural playback) represents the prevailing trend to achieve high ecological validity. These studies potentially contribute to the outcomes of a normalized evaluation framework for subjective soundscape and noise assessments in virtual environment

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF

    The Plausibility of a String Quartet Performance in Virtual Reality

    Get PDF
    We describe an experiment that explores the contribution of auditory and other features to the illusion of plausibility in a virtual environment that depicts the performance of a string quartet. ‘Plausibility’ refers to the component of presence that is the illusion that the perceived events in the virtual environment are really happening. The features studied were: Gaze (the musicians ignored the participant, the musicians sometimes looked towards and followed the participant’s movements), Sound Spatialization (Mono, Stereo, Spatial), Auralization (no sound reflections, reflections corresponding to a room larger than the one perceived, reflections that exactly matched the virtual room), and Environment (no sound from outside of the room, birdsong and wind corresponding to the outside scene). We adopted the methodology based on color matching theory, where 20 participants were first able to assess their feeling of plausibility in the environment with each of the four features at their highest setting. Then five times participants started from a low setting on all features and were able to make transitions from one system configuration to another until they matched their original feeling of plausibility. From these transitions a Markov transition matrix was constructed, and also probabilities of a match conditional on feature configuration. The results show that Environment and Gaze were individually the most important factors influencing the level of plausibility. The highest probability transitions were to improve Environment and Gaze, and then Auralization and Spatialization. We present this work as both a contribution to the methodology of assessing presence without questionnaires, and showing how various aspects of a musical performance can influence plausibility

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Virtual reconstructions of the Théâtre de l'Athénée for archeoacoustic study

    Get PDF
    International audienceThe French ECHO project studies the use of voice in the recent history of theater. It is a multidisciplinary project which combines the efforts of historians, theater scientists, and acousticians. In the scope of this project an audiovisual simulation was created which combines auralizations with visualizations of former Théâtre de l'Athénée configurations issue from a series of renovations, enabling researchers to realistically perceive theater performances in foregone rooms. Simulations include the room, 2 actors on stage, and an audience. To achieve these simulation, architectural plans were studied from archives providing various details of the different theater configurations, from which the corresponding visual and room acoustic geometrical acoustics (GA) models were created. The resulting simulations allow for 360°audio-visual presentations at various positions in the theater using commercial standard hardware

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Visualisation and auralisation for perception-driven decision supports in planning: A comparative review

    Get PDF
    Visualisation and auralisation are among the essential technologies for perception-driven decision support in landscape planning and soundscape planning, respectively. By making proposed developments and environmental changes visible and audible, they allow decision-makings based on perceptual experience, providing a “common language” that all the stakeholders are capable of using to communicate and to exchange ideas. While they share common function and criteria when used for decision support in planning, they are not in parallel developments and have been approached differently regarding their applications. This chapter comparatively reviews the developments and applications of visualisation and auralisation for perception-driven decision support in planning, aiming to provide technological and methodological insights into the two interconnected yet somewhat independent subjects. This led to indications for new developments and optimized applications in the near future. The chapter addresses three issues: validity, contents to present, and ways to present
    corecore