6 research outputs found

    Quantifying Mineral-Ligand Structural Similarities: Bridging the Geological World of Minerals with the Biological World of Enzymes

    Get PDF
    Metal compounds abundant on Early Earth are thought to play an important role in the origins of life. Certain iron-sulfur minerals for example, are proposed to have served as primitive metalloenzyme cofactors due to their ability to catalyze organic synthesis processes and facilitate electron transfer reactions. An inherent difficulty with studying the catalytic potential of many metal compounds is the wide range of data and parameters to consider when searching for individual minerals and ligands of interest. Detecting mineral-ligand pairs that are structurally analogous enables more relevant selections of data to study, since structural affinity is a key indicator of comparable catalytic function. However, current structure-oriented approaches tend to be subjective and localized, and do not quantify observations or compare them with other potential targets. Here, we present a mathematical approach that compares structural similarities between various minerals and ligands using molecular similarity metrics. We use an iterative substructure search in the crystal lattice, paired with benchmark structural similarity methods. This structural comparison may be considered as a first stage in a more advanced analysis tool that will include a range of chemical and physical factors when computing mineral-ligand similarity. This approach will seek relationships between the mineral and enzyme worlds, with applications to the origins of life, ecology, catalysis, and astrobiology

    NETWORK INFERENCE DRIVEN DRUG DISCOVERY

    Get PDF
    The application of rational drug design principles in the era of network-pharmacology requires the investigation of drug-target and target-target interactions in order to design new drugs. The presented research was aimed at developing novel computational methods that enable the efficient analysis of complex biomedical data and to promote the hypothesis generation in the context of translational research. The three chapters of the Dissertation relate to various segments of drug discovery and development process. The first chapter introduces the integrated predictive drug discovery platform „SmartGraph”. The novel collaborative-filtering based algorithm „Target Based Recommender (TBR)” was developed in the framework of this project and was validated on a set of 28,270 experimentally determined bioactivity data points involving 1,882 compounds and 869 targets. The TBR is integrated into the SmartGraph platform. The graphical interface of SmartGraph enables data analysis and hypothesis generation even for investigators without substantial bioinformatics knowledge. The platform can be utilized in the context of target identification, drug-target prediction and drug repurposing. The second chapter of the Dissertation introduces an information theory inspired dynamic network model and the novel “Luminosity Diffusion (LD)” algorithm. The model can be utilized to prioritize protein targets for drug discovery purposes on the basis of available information and the importance of the targets. The importance of targets is accounted for in the information flow simulation process and is derived merely from network topology. The LD algorithm was validated on 8,010 relations of 794 proteins extracted from the Target Central Resource Database developed in the framework of the “Illuminating the Druggable Genome” project. The last chapter discusses a fundamental problem pertaining to the generation of similarity network of molecules and their clustering. The network generation process relies on the selection of a similarity threshold. The presented work introduces a network topology based systematic solution for selecting this threshold so that the likelihood of a reasonable clustering can be increased. Furthermore, the work proposes a solution for generating so-called “pseudo-reference clustering” for large molecular data sets for performance evaluation purposes. The results of this chapter are applicable in the lead identification and development processes

    The modular structure of brain functional connectivity networks: a graph theoretical approach

    Get PDF
    Complex networks theory offers a framework for the analysis of brain functional connectivity as measured by magnetic resonance imaging. Within this approach the brain is represented as a graph comprising nodes connected by links, with nodes corresponding to brain regions and the links to measures of inter-regional interaction. A number of graph theoretical methods have been proposed to analyze the modular structure of these networks. The most widely used metric is Newman's Modularity, which identifies modules within which links are more abundant than expected on the basis of a random network. However, Modularity is limited in its ability to detect relatively small communities, a problem known as ``resolution limit''. As a consequence, unambiguously identifiable modules, like complete sub-graphs, may be unduly merged into larger communities when they are too small compared to the size of the network. This limit, first demonstrated for Newman's Modularity, is quite general and affects, to a different extent, all methods that seek to identify the community structure of a network through the optimization of a global quality function. Hence, the resolution limit may represent a critical shortcoming for the study of brain networks, and is likely to have affected many of the studies reported in the literature. This work pioneers the use of Surprise and Asymptotical Surprise, two quality functions rooted in probability theory that aims at overcoming the resolution limit for both binary and weighted networks. Hereby, heuristics for their optimization are developed and tested, showing that the resulting optimal partitioning can highlight anatomically and functionally plausible modules from brain connectivity datasets, on binary and weighted networks. This novel approach is applied to the partitioning of two different human brain networks that have been extensively characterized in the literature, to address the resolution-limit issue in the study of the brain modular structure. Surprise maximization in human resting state networks revealed the presence of a rich structure of modules with heterogeneous size distribution undetectable by current methods. Moreover, Surprise led to different, more accurate classification of the network's connector hubs, the elements that integrate the brain modules into a cohesive structure. In synthetic networks, Asymptotical Surprise showed high sensitivity and specificity in the detection of ground-truth structures, particularly in the presence of noise and variability such as those observed in experimental functional MRI data. Finally, the methodological advances hereby introduced are shown to be a helpful tool to better discern differences between the modular organization of functional connectivity of healthy subjects and schizophrenic patients. Importantly, these differences may point to new clinical hypotheses on the etiology of schizophrenia, and they would have gone unnoticed with resolution-limited methods. This may call for a revisitation of some of the current models of the modular organization of the healthy and diseased brain
    corecore