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ABSTRACT 

 
The application of rational drug design principles in the era of network-pharmacology 

requires the investigation of drug-target and target-target interactions in order to design 

new drugs. The presented research was aimed at developing novel computational 

methods that enable the efficient analysis of complex biomedical data and to promote the 

hypothesis generation in the context of translational research. The three chapters of the 

Dissertation relate to various segments of drug discovery and development process.  

 

The first chapter introduces the integrated predictive drug discovery platform 

„SmartGraph”. The novel collaborative-filtering based algorithm „Target Based 

Recommender (TBR)” was developed in the framework of this project and was validated 

on a set of 28,270 experimentally determined bioactivity data points involving 1,882 

compounds and 869 targets. The TBR is integrated into the SmartGraph platform. The 

graphical interface of SmartGraph enables data analysis and hypothesis generation even 

for investigators without substantial bioinformatics knowledge. The platform can be 

utilized in the context of target identification, drug-target prediction and drug 

repurposing. 

 

The second chapter of the Dissertation introduces an information theory inspired 

dynamic network model and the novel “Luminosity Diffusion (LD)” algorithm. The 

model can be utilized to prioritize protein targets for drug discovery purposes on the basis 

of available information and the importance of the targets. The importance of targets is 

accounted for in the information flow simulation process and is derived merely from 

network topology. The LD algorithm was validated on 8,010 relations of 794 proteins 



 ix 

extracted from the Target Central Resource Database developed in the framework of the 

“Illuminating the Druggable Genome” project. 

 

The last chapter discusses a fundamental problem pertaining to the generation of 

similarity network of molecules and their clustering. The network generation process 

relies on the selection of a similarity threshold. The presented work introduces a network 

topology based systematic solution for selecting this threshold so that the likelihood of a 

reasonable clustering can be increased. Furthermore, the work proposes a solution for 

generating so-called “pseudo-reference clustering” for large molecular data sets for 

performance evaluation purposes. The results of this chapter are applicable in the lead 

identification and development processes. 
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Introduction 
 
 
As a child, I always felt very lucky because I was convinced the time I grow up all those 

serious illnesses, like cancer and HIV infection, will be curable. I believe, similar 

promises were alluring many of those involved in drug discovery research over the past 

decades. Still, in spite of paradigm shifts in drug discovery and drug design and advances 

in biomedical and computational technology some of these illnesses just seem to remain 

unconquerable. Nevertheless, the promises were great and they constitute the foundation 

of modern drug discovery to date. Therefore, it is important to first provide a basic 

overview of the standing of related disciplines before presenting the results of my 

research. After the overview, I propose a future direction that could be the key toward 

conquering unconquered illnesses. This direction constitutes the framework of my Thesis. 

 

Overview of the State-of-the-Art of Drug Discovery Related Disciplines 

With the help of computers and algorithms the concept of so-called rational drug design 

manifested in the discipline of computer aided drug design. The gate was opened to 

model and simulate interactions between small molecules and their known or potential 

target proteins. Considering the tremendous opportunity brought by the wide availability 

of computer clusters of hundreds of cores (CPUs), the revolution of the internet and the 

start of the era of Big Data, one could anticipate that designing successfully a drug for a 

known target is a common accomplishment of the trade. Truth is, the low success rate of 

successful clinical trials tells a different story.  
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Undoubtedly, one of the biggest scientific accomplishments in the history of science was 

the sequencing of human genome. The results provided insight into our genetic blueprint. 

It seemed reasonable to expect that the mechanistic explanation of many illnesses will be 

revealed once the sequence of the human DNA will become known. Fortunately, the 

process of DNA sequencing is becoming more and more time and cost efficient. 

Consequently, genetic research has become accessible for researchers worldwide. Still, it 

remains a significant challenge to date to translate genetic information into clinical 

treatment. 

 

Advances in molecular biology led to the emergence of so-called high-throughput 

screening (HTS) assays. This technology makes it possible to test a huge number of 

compounds for certain biological activity. Novel organic synthetic approaches, such as 

combinatorial chemistry, provided the means for synthesizing large and diverse 

molecular collections (libraries). Compounds that stand out in these screening 

experiments in terms of activity are selected to be subjects of further investigations. 

Similarly to DNA sequencing, the technology of HTS is more and more accessible for 

research groups. Moreover, it could be considered as the primary experimental technique 

in drug discovery.  

 

Another important discipline related to drug discovery is the systems biology. This field 

investigates the roles and relations of proteins in cellular regulatory processes. The 

processes and related proteins are organized into so-called biological pathways. This 
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organization and the emergence of high throughput gene expression assays enabled the 

efficient and cost effective analysis of pathway perturbations. The importance of systems 

biology was recognized in the field of drug discovery and pharmacology and eventually 

converged in a paradigm shift. 

 

The classical view of designing a selective drug molecule for a target protein was 

overthrown by the paradigm of polypharmacology. This paradigm recognized that the 

action of a drug molecule is typically not limited to its intended target protein. 

Unfortunately, the unwanted effects of drug molecules are not even limited to the off-

targets that the drug molecules interact directly with.  In fact, the effects of drug 

molecules might propagate toward proteins indirectly through biological pathways. This 

recognition gave rise to the dawn of network pharmacology. 

 

The discipline of network pharmacology elevated the complexity of the already 

complicated landscape of analyzing relations between drugs and targets to a whole new 

level. It can be understood that one might consider this landscape as yet another obstacle 

towards efficiently designing drugs. To me, on the contrary, it opened up a new horizon 

to unexplored strategies that might lead us to the leap from rational drug design to “drug 

engineering”. My vision towards drug engineering was inspired by one of my professors 

from Hungary, Dr. Gábor Náray-Szabó, who set forth the desired future of drug 

discovery. He thought that one day designing a drug should be comparable to “designing 

a bridge” where the precise computations need to lead to a definitive result. I truly 
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believe that the discipline of complex network theory can reveal the path to this 

destination. 
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Complex Network Theory in the Service of Drug Discovery 

 

There are a couple of reasons why many of the clinical trials fail. Besides lack of 

efficacy, one of the most common causes is the adverse reactions, i.e. side-effects, caused 

by the drug candidate. Furthermore, a “one-drug-fits-all” approach might fail in the case 

of many diseases and conditions. Unfortunately, this is obvious in the case of cancer 

treatments. Therefore, novel treatments that take into account the individual genetic 

abnormalities of cancer patients seem to be a better alternative. This approach provides 

the underpinning for the direction of personalized medicine. 

 

Interestingly, a network theoretic approach might provide solution for the above 

highlighted issues; a.) reducing the side effects and b.) developing personalized 

treatments. Considering that the process of drug discovery begins at target identification, 

this step will determine inherently the outcome of the resultant treatment. The common 

approach of targeting a single drug target could be easily the cause of the failure of many 

clinical trials. However, despite complicating the landscape of drug discovery network 

pharmacology opened the gate toward developing multi-target therapies. Unfortunately, 

as we live in the dawn of this paradigm, the number and efficiency of available methods 

that can manage this complexity is limited, at best. My thesis addresses these needs by 

providing network theory based solutions for the entire cross-section of drug discovery 

workflow starting from target selection through lead identification and optimization to 

drug repurposing. Moreover, some of the proposed methods can be directly used to 

develop strategies for multitarget therapies. 
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The significance of multitarget therapies lies in the potential of reducing side-effects and 

of providing effective therapies in the case of cancer treatment. While these aims might 

seem detached at the first sight they are actually strongly connected. The common ground 

is the exploitation of biological pathways with the help of network theoretic methods to 

achieve a synergistic effect. 

 

In order to reduce side effects of drugs the following multitarget approach can provide a 

solution. With the help of artificial intelligence, e.g. machine learning, it might be 

possible to identify “secondary drug targets” that should be targeted as well to mitigate 

the side-effects of the drug targeting the “primary drug target”. Furthermore, additional 

secondary targets could be targeted that could enhance the efficacy of the primary 

target’s drug. This scenario could also allow for decreasing the dose of the applied 

“primary” and “secondary” drugs. The reduction of dosage is a common strategy to 

mitigate side-effects, e.g. in the case of “non-drowsy” antihistamines. 

 

A strategy for personalized cancer treatment could be derived in an analogous manner to 

the one outlined above. Naturally, the selection of the targets in the case of such 

treatments should depend on the careful analysis of the tumor genome and the implicated 

biological pathways. With the help of intelligent combination of activators and inhibitors 

targeting various members of single or multiple pathways might lead to superior effect in 

comparison “traditional” treatments. It can be easily seen that computational methods can 
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provide a tremendous help in identifying “points of intervention” in the vast search-space 

that might be translated to successful treatments. 

 

Network theory provides a natural platform to analyze the complex relations of targets in 

biological pathways. These relations can be represented by a network consisting of nodes 

and edges. The nodes represent biological targets and the (directed) edges the regulatory 

relations between them. For instance, an edge between two nodes represent that the two 

targets are in regulatory relation with each other. Furthermore, the direction of the edge 

informs us which protein regulates the other one. Moreover, various attributes can be 

assigned to the nodes and the edges. For instance, an edge can represent inhibition or 

activation between targets with the help of such an attribute.  

 

The nodes of the network can also represent, for instance, drug compounds or small 

molecules. This allows for the creation of various networks. The first chapter of the 

Thesis investigates so-called molecular similarity networks in which the nodes represent 

small molecules and the edges the similarity relation between the molecules.  

 

As it is discussed in the two other chapters of the Thesis, more complex networks can be 

created. That is, a network can be created in which a node can represent either a target or 

a drug, or additional, different kinds of objects. Accordingly, the edges between pairs of 

objects can convey different meaning in the function of the types of the end-nodes. These 

network are referred-to as multipartite networks. Multipartite networks allow for adding 

as many layers of objects and relations between them as the research topic demands. On 
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one hand, this incredible flexibility is of great help in designing efficient and useful 

models for the analysis of biomedical data. On the other hand, it is easy to see why 

computational methods are of the essence to deal with this complexity. 

 

In the three chapters of the Thesis I provide use-case scenarios regarding how network 

based methods can be applied with rigor in practice in various phases of the drug 

discovery workflow. I truly hope, that by the end of the Thesis my confidence in the 

practical use of network based methods in the context of personalized medicine will be 

shared by the Dear Reader. 
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Central Hypothesis 

 

 

 

 Hypothesis: 

 

With the use of network inference based methods it is possible 

to design multitarget therapies in a systematic manner. 
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Chapter 1 
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Devising a therapeutic treatment starts by identifying biological processes whose 

malfunction might be implicated in the machinery of the disease. The cause of the 

malfunction can be of various origins. Nevertheless, it is possible to classify these causes 

into two main categories. In the case of a viral or bacterial infection the physiological 

function of the human body is corrupted by the pathogen. On the other hand, certain 

diseases are the consequences of broken communication between biological players in 

the human body. Accordingly, the strategy of intervention is either targeted toward the 

pathogen or toward the patient. 

 

This chapter focuses on the latter strategy, i.e. when the communication between certain 

biological players of the patient is broken. The ideal case would be, of course, to reinstate 

the normal order of communication between the players. This is, however, is quite a 

challenge. Nevertheless, the behavior of certain players might be corrected with the use 

of a small-molecule drug or an antibody. Although antibody based therapies achieved 

significant successes to date, e.g. in breast cancer treatment, their discussion is beyond 

the scope of my Thesis. Usually, the role of the drug is to increase or decrease the activity 

of a malfunctioning biological player. In some cases, however, the role of the drug is to 

supply the human body with an analog of an indigenously synthesized substance that is in 

scarcity or not present in the human body due to a corrupted biological process. In this 

sense, drugs are useful in overriding the actual function of a biological player. In the 

context of drug discovery these biological players are referred-to as drug target proteins. 
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As it can be seen, devising a therapy starts at first identifying the point of intervention, 

i.e. the drug target protein. Identifying the potential drug target protein is by no means 

obvious. If it is assumed that at some point a potent drug molecule will be identified for 

the selected target, there is no guarantee that the drug will prove useful over the clinical 

trials. This is the case when the drug candidate will fail due to lack of efficacy. 

Unfortunately, this scenario is not even the worst. The worst scenario is if a drug 

candidate turns out to cause severe adverse reactions or to be lethal.  

 

In pre-network-pharmacology era drugs were typically designed to target a single protein. 

However, network-pharmacology driven drug discovery might offer solution to devise 

more careful strategies for selecting points of intervention. The key towards such 

strategies is provided by the so-called biological pathways. These pathways can be 

thought of as a blueprint of communication lines between the biological players, i.e. 

proteins. In an ideal case, certain targets are pinpointed that are responsible for the broken 

communication. However, in a network-pharmacology view it is no longer necessary to 

identify a single protein that will be in the center of the subsequent drug discovery 

process. On the contrary, one might decide to target multiple proteins for a number of 

reasons. I provide some of the most important reasons in the following ones. 

 

Synergy. It is known, that the dosage of all drug is in correlation with their toxicity and 

the magnitude of possible adverse reactions, or also referred-to as side-effects. Therefore, 

careful selection of targets might enable for targeting multiple proteins with lower 

dosages of drugs in the hope of achieving a synergistic effect. 
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Redundant signaling. The lack of efficacy is amongst the most common reasons 

attributed for the failure of a drug candidate. Analyzing biological pathways from a 

network topology point of view might help us find mechanical explanation for the lack of 

efficacy. There are a couple of reasons why redundant, or parallel, communication lines 

exist in the biological processes. One reason is to assure robustness of processes. It is 

enough to think for a moment about how vulnerable our organism would be if the failure 

of a single protein could lead to the collapse of a process. On the other hand, processes 

like apoptosis (the programmed self-destruction of the cell) require a signal that leaves no 

doubt for the cell whether to commit to the process or not. In order to assure certain 

buffering effect to compensate for random errors a great deal of parallelism is present in 

the apoptotic pathway, let alone the concurrent and internal feedback regulatory signaling 

routes. The redundancy in this sense can be exploited in two different ways. Let us 

consider a protein A that is identified as a target protein for its role in disease machinery. 

This protein might also have a role in transmitting a signal from a protein B to protein C. 

If there exists a protein D that plays a redundant role with protein A, i.e. transmits signal 

from protein B to C, then targeting protein A with a drug will not destroy the 

communication line between protein B and C. This scenario will support the selection of 

protein A as a drug target. On the other hand, in some cases it might be desirable to target 

both protein A and D to make sure that the communication between protein B and C is 

destroyed. Such a scenario could be useful in designing strategies in the field of cancer 

treatment. 
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This chapter describes a computational platform in details that allows for exploring 

regulatory relations between potential drug target proteins in a user-friendly manner. The 

manual exploration of the data provides a unique opportunity for biomedical researchers 

to analyze regulatory relations of proteins. The built-in bioinformatics features of the 

platform with the help of effective network visualization can reveal synergistic and 

redundant aspects of targeting proteins of choice.  

 

Furthermore, the platform provides a great help in predicting indirect effects of a drug 

molecule. That is, the modified activity of the drug’s intended target protein might affect 

other proteins that are in regulatory relations with the target protein at hand. This feature 

can be useful in predicting potential side-effects or in finding mechanistic explanations 

for known side-effects. Finally, the computational platform allows for conducting 

research oriented on the alternate use of existing drugs, i.e. drug-repurposing. 
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Hypothesis:  

 

Network inference based methods can be used to generate hypotheses for 

drug-target interactions and pathway perturbations. 
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Abstract 

It has long been recognized that the effect of drug molecules is rarely limited 

to their intended targets. This is the consequence of polypharmacology and 

the interaction between the drug target proteins themselves in regulatory 

biological pathways. Modern drug design is on one hand, therefore, 

challenged with a more complex drug-target interaction landscape that 

evolves through all stages of the discovery, research and development phases. 

On the other hand network pharmacology has opened the path for novel, e.g 

multi-target drug therapies. Few computational tools implement network 

pharmacology concepts into drug discovery workflows that can be used 

efficiently and with ease. Here we prototype “SmartGraph”, an integrative 

predictive drug discovery platform that provides a proof-of-concept solution 

for these needs. SmarGraph integrates a predictive engine, a bioactivity 

knowledge base and regulatory protein network information. One of the 

components of the predictive engine is the novel Target Based Recommender 

algorithm, which is introduced in detail. The algorithm was validated on 

28,270 experimentally determined bioactivities involving 1,882 compounds 

and 869 targets. The SmartGraph platform facilitates the hypothesis 

generation process of biomedical and clinical researchers without requiring 

them to have a substantial background in bioinformatics and/or 

cheminformatics. 
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Introduction 

The effects and clinical uses of drug molecules are rarely associated only with their 

intended targets and indications, making it imperative to associate drugs, targets, clinical 

outcomes and side effects within an integrated network [1]. Specifically for drug-target 

interactions (DTIs), network pharmacology (NP) [2] opens the possibility of evaluating 

potential DTIs in the context of their complex biological and chemical setting. Adopting 

and utilizing NP-based workflows in everyday research remains a challenging task, yet 

one that is likely to lead to more realistic scenarios. The aim of the current study is to 

offer biomedical researchers an easy-to-use app, one that can facilitate various steps of 

the drug discovery process without requiring in-depth expertise in bioinformatics and 

chemoinformatics. Target and off-target identification, lead and chemical probe 

discovery as well as drug repurposing are among the major activites that could be 

supported with this approach. A rational design workflow that integrates NP needs to take 

into account multiple interactions between a drug molecule and its intended (target, or 

“on-target”) and non-intended (“off-target”) interaction partners. For the purpose of this 

analysis, we consider proteins to be the key DTI partners. Due to multiple pathway 

relations between proteins, e.g., in signal transduction or biochemical and regulatory 

pathways, the effects of a drug molecule might ripple to proteins that are not in direct 

contact with the drug in question. Such perturbations may also alter the gene-expression 

profile of cells. While the complex nature of this interaction-landscape demands novel 

and integrated approaches in drug discovery it also opens the way towards devising new 

therapeutic strategies, e.g., multitarget therapies. Therefore it is of critical to develop 

means of analyzing such complex relationships.  Here we introduce SmartGraph, a 
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prototype platform that addresses several challenges related to NP-driven drug discovery. 

First, the platform is built on high quality bioactivity data and biological pathway 

information derived from the CARLSBAD [3] and KEGG [3, 4] databases, respectively. 

Next, CARLSBAD chemical patterns are utilized to analyze similarities in molecular 

recognition abilities of proteins and to predict potential new targets for small molecules. 

Finally, the SmartGraph platform provides a network visualization interface for exploring 

complex relationships. Since the predictive feature of SmartGraph contributes greatly to 

the novelty of this study, we provide a short overview of related works found in prior art.  

The SmartGraph predictive engine can be thought of as a two-part system: The two 

components complement each other, by processing the relationships between compound-

target, and compound-pattern pairs. The main difference in predictions is the nature of 

their output. One of the two methods operates on the basis of high-level network relations 

that are introduced later in the text. The predictions computed by this component are 

somewhat binary in nature. That is, predictions appear in the form of implicating certain 

compound-target pairs that might participate in a high-activity DTIs. The second 

predictive component augments these predicted interaction between drugs and targets by 

adding a quantitative bioactivity value. Quantitative bioactivity values are predicted with 

the help of a novel algorithm introduced and described later. This algorithm, referred-to 

as the target based recommender (TBR) belongs to the family of so-called recommender 

algorithms. Examples in prior art can be found that utilize recommender algorithms for 

predicting interactions between drugs and targets such as in the works of Yamanishi et 

al. [6] and Cheng et al. [7]. While the present study is related to the aforementioned 

examples, a couple of differences are highlighted below.  
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First, the target based recommender algorithm defines similarity between targets in a 

novel manner with the help of chemical pattern and compound relations. In this sense, the 

similarity coefficient between a pair of targets reflects their tendency to recognize similar 

chemical structures. Second, the above-mentioned studies discuss two approaches of 

recommender algorithms. One of these approaches is an information theoretic approach 

that analyzes the spread of information in (bipartite) networks [7-10]. The algorithms of 

the other approach are related to the so-called collaborative filtering methods [11, 12]. 

The here-described TBR algorithm belongs to the latter approach.  

The current study has two objectives: First, we intended to investigate whether the novel 

TBR algorithm is able to improve the performance of DTI predictions by incorporating 

chemical patterns in the prediction process. To this end, the TBR algorithm was 

compared to two widely-used recommender algorithms, the user-based and the item-

based collaborative filtering method [12]. Since the TBR algorithm has a better 

performance on the data set at hand, it was integrated into SmartGraph. The second 

objective was to create a user friendly graphical interface that provides access to the 

predictive and analytic features of the NP-based platform to researchers without a 

background in bioinformatics and/or cheminformatics.  
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Materials and Methods 

Collaborative Filtering Methods 

Recommender algorithms [8, 12-14] have become widely popular in a variety of health 

sciences related scientific domains, such as “personal health record systems” [15], 

drug-target interaction prediction [15, 16] and protein-protein docking [18], to name but a 

few. These algorithms aim to predict novel associations between two sets of entities, 

often users and items, and to predict certain quantitative properties of the new 

associations. Hence recommender algorithms can be thought of as a family of link-

prediction algorithms from a network inference point of view. Two examples of such 

algorithms belong to the family of collaborative-filtering methods, and are of special 

interest for this study.  

Collaborative filtering methods operate with the help of an observation matrix that 

records observed preferences of users for a set of items. This matrix is often called the 

rating matrix. Quite often, rating matrix rows represent the items and the columns the 

users. The aim of collaborative filtering methods is to predict the preference between 

users and items for which no associations are present in the original rating matrix. These 

methods can be divided into two main categories: item-based and user-based 

collaborative filtering methods. Both approaches operate on the basis on computing 

predictions utilizing a similarity matrix. The main difference between these two 

approaches is how the similarity matrix is derived from observations. The introduction of 

these approaches in detail is beyond the scope of the current study, and have been 

summarized elsewhere [11, 12]. A short introduction of the item-based collaborative 
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filtering (“IBCF”) [12] algorithm is provided in order to facilitate understanding of the 

new recommendation algorithm introduced here. Furthermore, a short description of 

another CF method, the so-called user-based collaborative filtering (“UBCF”) [12] 

algorithm is also provided.  

Item-Based Collaborative Filtering 

The IBCF algorithm derives a similarity matrix by computing the correlation between the 

rows of the rating matrix. Rows of the rating matrix represent items in our study. In a 

following step, typically, the k-nearest-neighbor (kNN) list of each item is computed. 

Similarity of the items is generally computed using the Pearson correlation or the Cosine 

similarity coefficients of the rating matrix row vectors. Using the kNN lists and the rating 

matrix it is possible to estimate the preferences of a user for items for which the user has 

no data in the rating matrix. Predicting a rating between a user and a user-unrated item is 

done by computing the weighted average of the ratings of the user at hand for items that 

are in the kNN list of unrated item. These ratings are weighted by the similarity between 

respective items. Here we use the “recommenderlab” [12] implementation of the IBCF 

algorithm, which provides functions to compute both the Pearson correlation and the 

Cosine similarity coefficients.  

User-Based Collaborative Filtering 

Related to the IBCF algorithm, UBCF computes predictions on the basis of the similarity 

of the users as opposed to the similarity of the items. Accordingly, a similarity matrix of 

the users is computed from the column-vectors of the rating matrix by applying either the 
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Pearson correlation coefficient or the Cosine similarity. Next, the kNN lists of users are 

determined. Predictions are computed in a manner similar to the one described above for 

IBCF. In order to predict the rating of a user for an item, ratings of other users in the kNN 

list of the user at hand are averaged. When computing the average, individual ratings are 

weighted according to the similarity between users in question. The implementation of 

the UBCF algorithm was provided by the recommederlab [12] for this study.  

Target-Based Recommender Algorithm 

Here we describe TBR, the target-based recommender algorithm, in more detail. Based 

on the IBCF algorithm, the TBRits input is an analog of the rating matrix. Its prediction 

mechanism is that of IBCF. The major difference between IBCF and TBR is the manner 

in which the similarity matrix is computed.  

TBR predicts potential new targets by utilizing CARLSBAD, a database that integrates 

high quality bioactivity and chemotype data. Stored in CARLSBAD, chemotype relations 

are pre-computed by using two methods, namely HierS (hierarchical scaffolds [19, 20]) 

and MCES (maximal common edge subgraphs [21, 22]). In TBR, drug targets are 

analogous with “items” and compounds with “users”, as defined by IBCF algorithms. 

Thus, the rows in the rating matrix represent targets (items), whereas columns represent 

compounds (users). The target-similarity matrix is also analogous with the item-similarity 

matrix.  

However, TBR deviates from IBCF in the manner of computing the target-similarity 

matrix. That is, the TBR algorithm does not use the correlation between rating matrix 
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rows to compute the target-similarity matrix. Instead, TBR approaches target similarity 

from a chemical biology viewpoint. Accordingly, chemical patterns derived from 

compounds tested on certain targets (extracted from CARLSBAD) are taken into account 

to express the bias of some targets toward certain chemical patterns (as processed via 

HierS and MCES).  

An outline and a detailed description of the TBR algorithm are provided below.  

 

Outline of the TBR Algorithm:  

1. Generate a Target-Compound-Activity matrix, analogous to the rating matrix.  

2. Compute kNN lists of targets using the pattern preference of targets and principal 

component analysis [23-25].  

3. Generate predictions using the kNN lists and the Target-Compound-Activity 

matrix.  

Detailed description of the TBR algorithm:  

Generation of the Target-Compound-Activity matrix 

Experimental bioactivity data between human proteins and compounds were acquired 

from the CARLSBAD database. The type of measured activity was narrowed to pIC50 

values (negative logarithm of the IC50, in molar units). The resultant dataset was 

converted to matrix format to form the Target-Compound-Activity matrix, denoted by U. 

Rows of U represent targets, columns represent compounds. Cells of U contain activity 
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values, provided that measured values are present in CARLSBAD for each given target-

compound pair. If no experimental data is present in the CARLSBAD database for a 

given pair, a zero value is stored in the corresponding U cell. To distinguish between 

existing and missing data a so-called masking matrix M, of equal dimension with U is 

computed. Cells of M can only be equal to 1 (existing) or 0 (missing data), respectively.  

 

Computing the kNN Lists of Targets 

As described above, the TBR algorithm is related to the IBCF agorithm. Therefore the 

similarity between pairs of targets, analog to items, is required. The novelty of TBR lies 

in the manner of computing this similarity matrix. Once the matrix is computed, the kNN 

lists of targets can be derived.  

The first step in computing the target-similarity matrix is to determine the preference of 

targets for certain chemical patterns: Associations between chemical patterns (patterns 

for short) and compounds were retrieved from CARLSBAD, where HierS and MCESs 

patterns are stored. Compounds need to be associated with at least one pattern in order to 

be represented in the collection of retrieved associations. If a compound is associated to 

more than one HierS pattern, only the largest HierS is retrieved. Thus, each compound is 

associated with at least one, and at most with two patterns, i.e. one MCES and one HierS. 

Next, with the help of an activity threshold t for each target-pattern pair it is determined 

what is the ratio between the compounds tested as active versus the total number of tested 

compounds on the given target, provided that the compounds contain the given pattern. 
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Compounds having activity on a target greater than, or equal to t, are considered active 

compounds for that target; they are considered inactive otherwise. For this study, t = 7 

(or 0.1µM was used as threshold value. This ratio between a target and a pattern is 

defined as the pattern preference (PatternPreference) of that target towards that pattern. 

Computing this quantity for each target-pattern pair yields the Target-PatternPreference 

(TPP) matrix. The PatternPreference of a target-pattern pair is set to zero by default, for 

situations where no activity values between a given target and compounds containing that 

particular pattern are stored in CARLSBAD. PatternPreference is defined in Eq. 1 , 

where τ denotes the actual target; π the actual pattern; Γact the set of compounds that are 

active on τ and contain π; Γinact the set of compounds that are inactive on τ and contain π.  

 

  

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝜏,𝜋 =
Γ!"#

Γ!"# ∪  Γ!"#$%
,                if  Γ!"# ∪  Γ!"#$% > 0

 
              0,               else                     

 (1) 

 

Each row-vector of TPP expresses the PatternPreference of a given target for many, 

typically thousands of patterns. Accordingly, the dimension of row-vectors equals to the 

number of patterns, i.e.: the number of columns of the TPP matrix. Data completeness, or 

more often lack of data, is the “Achilles heel of drug-target networks" [26], which is 

exactly the case for TPP matrices as well – they remain very sparse. Therefore, we 

reduce TPP dimensionality by the means of principal component analysis (PCA) [23-25]. 

To facilitate the automated selection of latent variables, we retained all principal 
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components that cumulatively explain 90% or more of the variance. The resultant PCA 

scores are referred to as reduced-TPP (rTPP).  

The similarity of targets is derived from rTPP as follows. First, the Euclidean distance is 

computed between pairs of targets, i.e., row-vectors of rTPP. This gives rise to the 

distance matrix of targets. Then we convert the Euclidean distance matrix to an Euclidean 

similarity matrix, according to Eq. 2 [27].  

  

𝑠𝑖𝑚!" 𝜏!, 𝜏! =
1

1+ 𝑑𝑖𝑠𝑡!" 𝜏!, 𝜏!
 (2) 

 

The final step of computing the kNN lists of targets requires determining the k most 

similar targets for each target. Once this is computed, similarity values corresponding to 

these target-pairs are retained in the Euclidean-similarity matrix of targets, whereas all 

other similarity values are set to zero. Thus, the transformed Euclidean similarity matrix 

of targets contains only values that capture the similarity between a target and its k most 

similar targets. This reduced Euclidean similarity matrix is the function of the selected k 

value, and is denoted as Ik.  

Prediction of Potentially Novel Compound-Target Associations 

The TBR algorithm predicts compound-target associations in a manner analogous to the 

IBCF algorithm. As described above, “items” are targets, and “users” are compounds, 

hence the TBR target-similarity matrix is analogous to the IBCF item-similarity matrix.  
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Computing a predicted activity value for a given target-compound pair can be thought of 

as computing the weighted average of certain bioactivity values. The values used for this 

computation are activity values between the compound at hand and all targets from the 

kNN list for the target at hand. The weight factors originate from the Ik matrix, by 

selecting similarity coefficients between the given target at hand and its most similar 

targets, from the kNN list. However, unknown activities between targets in the kNN list 

and the compound at hand are not taken into account when computing the weighted 

average of activity values. Naturally, the similarity coefficients of the respective target-

pairs, i.e., the weight factors, are not taken into account either. This constraint prevents a 

computational artifact that would emerge from the fact that TCA-matrix U sets unknown 

activity values to zero. Without this constraint, the following scenario could happen. Let 

us assume that compound-A has not been tested on target-X in the kNN list of target-Y. 

Thus, when predicting the activity of compound-A on target-Y, a value of 0 would be 

added to the sum part of the weighted average, and the respective similarity value 

between targets X and Y would be incorporated in the sum of weight factors. This would 

be incorrect for two reasons. First, the unknown activity value between compound-A and 

target-X would be incorrectly quantified as 0. Second, the signal, i.e., the contribution of 

known activity values to the weighted average, would be incorrectly reduced by noise, 

i.e., the additional similarity value of targets X and Y. To avoid the above scenario, the 

TBR algorithm excludes unknown activity values and similarity coefficients of respective 

target-pairs from the process of predicting activity values between pairs of compounds 

and targets. To this end, the masking matrix M, which keeps track of known and 

unknown activity values, as described earlier, is used. The prediction process reflecting 
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the above considerations is formalized as follows.  

First, the process of predicting activity values between targets and compounds requires a 

set of formal notations: The prediction involves a set of targets T and a set of compounds 

Γ. Furthermore it involves the matrices Ik, U and M, defined above in context of the TBR 

algorithm. P is the matrix of predicted activity values between target-compound pairs. An 

auxiliary matrix, the so-called raw-prediction matrix (rP) is also utilized for computing 

predictions. The dimensions of the matrices are as follows: Ik : |T|×|T|, U : |T|×|Γ| and M : 

|T|×|Γ|, P : |T|×|Γ|, rP : |T|×|Γ|. Predictions are computed by the TBR algorithm according 

to Eq. 3-7.  

For the sake of better readability a set of auxiliary matrices (A, A′ and B) were introduced 

defined by Eq. 3-5. Please note that Eq. 6, 7 utilize the so-called “entry-wise 

multiplication” or “Hadamard product” [28] operation and not the matrix multiplication 

operation. The purpose of this step is to remove all known bioactivity values from rP, and 

to retain only predicted ones.  

𝐴 = 𝐼!𝑀 (3) 

𝐵 = 𝐼!𝑈 (4) 

 

[𝐴!]!,! =

    1,             if  [𝐴]!,! = 0
 

  
1

[𝐴]!,!
,             else                     

 (5) 

 

𝑟𝑃 = 𝐵⨀𝐴′ (6) 
 



 30 

𝑃 = 𝑟𝑃⨀[ −1 𝑀 − 1 ] (7) 
 

Validation Procedure 

The TBR algorithm has two parameters that influence the outcome of predictions: The 

value of k determines how many of the nearest neighbors of a target are taken into 

account when generating its kNN list. The other parameter, not strictly part of the TBR 

algorithm, emerges from the validation process. This parameter is the minimum number 

of targets a given compound needed to be tested on, denoted by N. Often, validation 

protocols follow a leave-L-out strategy (where L varies between 1 and 50% of the number 

of objects), to separate data that are used to train the algorithm from those that stay 

hidden. This separation gives rise to the training sets and internal test sets, respectively. 

However, recommender systems validation often takes the keep-N, rather than leave-L-

out, approach [12]. Our validation process follows the keep-N strategy. Accordingly, N 

represents the number of targets for which a compound has experimentally determined 

bioactivity data in the training set. Splitting the data into training and test sets followed a 

10-fold cross-validation strategy. The validation process is described in details below.  

 

Division of Data into Validation and Blind Sets 

CARLSBAD contains experimentally determined bioactivity values between small 

molecules and targets. Some of these molecules are Food and Drug Administration 

(FDA) approved drugs while others are not. The validation set only contains non-drug 
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compounds and their respective bioactivity data. FDA approved drugs and their 

bioactivity data were set aside as a blind set. In this manner, we predict bioactivities for a 

well-defined set (drugs), which was not used in training and validating the TBR 

algorithm. The validation set comprises 1,882 unique compounds, 1,642 unique chemical 

patterns, 869 unique targets and 28,270 bioactivity values, respectively. The external 

(blind) set comprises 138 drug molecules and the same set of targets and patterns as the 

validations set. For a detailed description of how compounds, targets and patterns were 

selected for the validation and blind set please see the Compilation of Validation and 

Blind Data Sets for the TBR Algorithm in the Supporting Information.  

 

Process of Validation 

Compounds in the validation set were partitioned into 10 test sets of nearly equal size 

with the help of “caret” R-library [29]. Next, for each compound in the 10 sets N ∈ [1,9] 

bioactivity data corresponding to N targets were randomly selected to retain and create 

the training set. The remaining bioactivity data were set aside as test set. Accordingly, for 

each 10 pairs of training and test sets the matrices Ux, and Mx and M′x were generated, 

where the index x ∈ [1,10] refers to the x-th training-test set pair. Matrix Ux denotes the 

TCA-matrix derived from the x-th training set. Matrices Mx and M′x denote the masking 

matrices of the x-th training and test sets, respectively. Matrices Mx and M′x have the 

same dimensions as Ux, with rows and columns representing targets and compounds, 

respectively. Cell values of 1 indicate known training bioactivity values in Mx, and 
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known but left-out test bioactivity values in M′x. Cell values of 0 indicate unknown or 

known but left-out test bioactivity data (Mx) or training or unknown bioactivity values 

(M′x). 

The target-similarity matrix Ix
k needs to be computed for each training set in order to 

compute predictions, because the PatternPreference values, which are required for 

deriving the target-similarity matrix, are themselves influenced by the choice of test 

compounds: To avoid “information leak” from the test set to the training set, all the 

activity values of test compounds are ignored when computing PatternPreference values 

for a given training set. This means that not even the N retained activity values of test 

compounds are taken into account when computing the PatternPreference values. Had 

not been this case, then left-out activities of test compounds could have been taken into 

account when computing the target-similarity matrix, thus introducing a prediction bias.  

Predictions for training sets, i.e. estimates of known bioactivity values of the 

corresponding test sets, are computed in two steps. The first step yields the so-called raw 

prediction matrix rPx, computed for the x-th training set according to Eq. 3 by 

substituting rP with rPx, U with Ux, M with Mx and Ik with Ix
k. In the next step, rPx is 

transformed into a prediction matrix Px, by retaining only predicted values with respect to 

left-out activities. This transformation takes place according to Eq. 8.  

𝑃! = 𝑟𝑃!⨀𝑀!
!  (8) 

 

Reference sets for each validation cycle are computed as follows: Let Uv denote a matrix 

that has the same function as U, and includes all activity values of the validation set. With 
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the help of Uv and M′x, the reference bioactivity value for a given pair of training and test 

sets, denoted by Rx, is computed according to Eq. 9.  

𝑅! = 𝑈!⨀𝑀!
!  (9) 

 

In order to characterize the performance of the TBR algorithm, three different 

performance measures were computed. These are the sensitivity or true-positive rate 

(TPR), the false-positive rate (FPR) and specificity. The formula of each measure is 

provided by Eq. 10 - 12, respectively.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (10) 

 

𝐹𝑃𝑅 = 1−
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (11) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (12) 

 

Values for TP, TN, FP, and FN are obtained via Equations 13-19, and the activity 

threshold t, previously set as t ≥ 7 (pIC50) to distinguish potent from less potent 

compounds. To be consistent, we used the same threshold value in distinguishing 

between predicted activities. Accordingly, compounds are considered as potentially 

active on a given target if their predicted bioactivity value for that target are greater than 

or equal to 7. Compounds with predicted values below 7 are considered as inactive. 

Using this separation and Equations 13-19, the values for TP, TN, FP, and FN are 

computed as follows.  
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First, Px, the prediction matrix associated with the training/test set is transformed using 

the activity threshold t into a binary matrix Zx – see Equation 13.  

A similar transformation is carried out on the reference matrix Rx to yield the matrix Wx 

according to Equation 14.  Certain cells in the reference matrix Rx are transformed to an 

arbitrary integer y in Wx, in order to keep track of missing and training set values. As 

indicated in Equation 14, the value of y cannot be any of the following integers: -1, 0, 1, 

2, 3 to avoid error. For the sake of correct internal operation, SmartGraph excludes 

negative bioactivity values, expressed as pIC50, at the very beginning of the data 

collection process. Therefore, including an additional condition in the transformation was 

not deemed necessary although the second condition allows for such negative values.  

Finally, a matrix Qx is computed according to Equation 15, which allows us to derive 

values for TP, TN, FP, and FN according to Equations 16-19. In these equations qi,j 

denotes a cell of Qx.  

[𝑍!]!,! =
−1,             if  [𝑃!]!,! ≥ 𝑡

 
     0,            if  𝑃! !,! < 𝑡 

 (13) 

 

[𝑊!]!,! =

         2,             if  ([𝑅!]!,! ≥ 𝑡)⋀( 𝑀!
!
!,! = 1)

 
          0,             if  ([𝑅!]!,! < 𝑡)⋀( 𝑀!

!
!,! = 1)

 
    𝑦 ∈ ℤ  ∖ {−1, 0, 1, 2, 3},        if  𝑀!

!
!,! = 0 

 (14) 

 

𝑄! =𝑊! − 𝑍! (15) 
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𝑇𝑃 = 𝑞!,! = 3  (16) 
 

𝑇𝑁 = 𝑞!,! = 0  (17) 
 

𝐹𝑃 = 𝑞!,! = 1  (18) 
 

𝐹𝑁 = 𝑞!,! = 2  (19) 
 

Indices of targets, chemical patterns and compounds were kept consistent throughout the 

validation process. Thus, matrices Ux, Mx, M′x and Ix
k had the same dimensions for all 

sets.  

 

Computing Predictions for Blind Data 

The role of validation is two-fold. First, it is used to quantitatively characterize the 

performance of the TBR algorithm. Second, it is used to determine the values of certain 

parameters that are crucial for predicting unknown activities for blind set compounds. 

These parameters are k and N, i.e., the number of nearest target similarity neighbors and 

the minimal number of known activities of a compound, respectively. Once the values of 

these parameters are determined, predictions of unknown activities for blind set 

compounds are computed as follows.  

The target similarity matrix is computed according to the process described above, by 
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taking into account all known activities covered by the validation set. With the help of the 

determined value of k, only similarity values associated with given targets and their k 

nearest neighbors are retained, with the remaining similarity values set to zero. This 

process gives rise to matrix I, without using any activity information concerning the blind 

dataset. Next, blind set compounds that possess bioactivity data for at least N different 

targets are identified. The value of N is determined by the outcome of the validation 

process and the set of these compounds is denoted by ΓN. Next, the TCA-matrix U and 

the masking matrix M are computed between targets and the compounds in ΓN. Naturally, 

the set of targets remains the same for both the validation and the blind sets. These 

matrices are used to predict activities for compounds in ΓN, according to Eq. 3-7.  

The TBR algorithm allows us to compute the vote number (VN), a measure that reflects 

the amount of information used to predict bioactivity values for any compound-target 

pair. VN can be considered a quasi-confidence value to characterize prediction quality, 

and is explained as follows. 

A prediction between target τ and compound γ can only be computed when there is at 

least one known bioactivity value between one of the kNNs of τ and γ. Let V τ,γ denote the 

number of known bioactivities between γ and the kNNs of τ. When V τ,γ = 1, only one 

bioactivity value is known between the kNNs of τ and γ; accordingly, when computing the 

predicted bioactivity value only 1 bioactivity value will be taken into account for the 

weighted average. For V τ,γ > 1, multiple known bioactivity values are factored in when 

computing the prediction. It can be argued that the latter case incorporates a greater body 

of evidence, compared to the Vτ,γ = 1 case. Intuitively, a prediction is thought to be of 
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higher confidence when based on more evidence. Thus, the higher the value of V τ,γ, the 

higher the confidence of the predicted bioactivity value between target τ and compound γ. 

A convenient form for computing matrix V containing all V τ,γ values is provided 

by Eq. 20, 21.  

[𝐶!]!,! =
1,             if  [𝐼!]!,! > 0

 
 0,            if  𝐼! !,! = 0

 (20) 

𝑉 = (𝐶!𝑀)⨀[(−1)(𝑀 − 1)] (21) 

 

Pathway Analysis 

Pathway information between targets have been extracted from the KEGG database (FTP 

Release 2013-12-16) [3, 4] and the KEGGgraph R library [30]. All human metabolic and 

non-metabolic pathways that contain at least one target from CARLSBAD were 

investigated . With help of the KEGGgraph functions1 parseKGML2Graph and 

mergeKEGGgraphs, each of these pathways were converted and merged into a network. 

Nodes represent proteins (targets) and edges reflect the regulatory relations between 

them. Accordingly, the resultant network is a directed, unweighted network. In some 

cases converting a KEGG pathway to a network resulted in an empty network. These 

pathways were excluded from further analysis.  

                                                
1 The parameters of the function parseKGML2Graph were set to expandGenes=TRUE, 
genesOnly=TRUE. The function mergeKEGGgraphs was used with parameter setting: edge- 
mode=”directed”.  
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With the help of JUNG library [31] the shortest distance between all pairs of targets have 

been computed and stored in the ’CBGRAPH’ back-end database. For the sake of 

efficiency, distances are stored only for target-pairs where both targets are in the 

CARLSBAD database and when a path between them exists. In this process, 794 targets 

were mapped onto a KEGG ID out of those 1,070 CARLSBAD-targets that have an 

associated UniProt ID. For a detailed description of the mapping process please refer to 

the Supporting Information. The resultant set of existing shortest paths comprises 478 

CARLSBAD-targets. This information is stored in the CBGRAPH database.  

With the help of pre-computed distances between targets, it is possible to analyze 

downstream and upstream regulatory relations between proteins and to detect feedback 

loops. The investigator has control over limiting the relevance of information by varying 

the maximal distance between nodes to be considered for analysis. 

 

Compiling Associations between Targets, Compounds, Chemical Patterns and 

Activities 

The SmartGraph system was designed with the intention of helping biomedical 

researchers to conduct network-pharmacology oriented lead and drug discovery. In 

addition to DTIs, SmartGraph investigates relationships and interactions between the 

targets themselves. This is, in fact, an implementation of the network pharmacology 

paradigm, as it takes into account biological pathways. This systems biology aspect helps 

identify targets that are affected by a drug molecule, even when there is no direct DTI. 
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Moreover, this enables the exploitation of biological pathways in the design of multi-

target therapies.  

SmartGraph uses a target-centered approach to manage data complexity and to deliver an 

information rich, yet simple visualization. Using these built-in cheminformatics and 

bioinformatics functions does not require domain expertise in these fields, and complex 

operations can be performed in real-time by means of ’one-clicks’. In order to perform 

these tasks, SmartGraph takes advantage of a network logic underpinned by bioactivity 

and biological pathway relationships between drug-target and target-target pairs, 

respectively. This novel network logic is explained in details below.  

 

Potent Compounds and Potent Chemical Patterns 

The bioactivity relations of SmartGraph are extracted from CARLSBAD [3]. These 

experimentally determined bioactivities are often used to classify compounds as active or 

inactive. Although the cut-off value for such categorization is often target-dependent, and 

may further depend on the amount of bioactivity data (i.e., information) available to the 

scientists at any given time. The active/inactive separation may further reflect structure-

activity relationships by recognizing that some chemical patterns are more “active” than 

others. Moreover, this distinction can be used to train computational models that in turn 

might predict novel interactions between small molecules and targets. For the TBR 

algorithm, we applied the cut-off value of 0.1µM to separate actives from inactive 

compounds, as discussed earlier. While this general value appears suitable for the TBR 
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algorithm, we found it necessary to turn to a different approach for the integrated 

platform. In seeking to emulate a medicinal chemist's approach, we decided to classify 

the top 20% of the compounds (ranked in descending order of bioactivity) as “potent” 

compounds, whereas the remaining compounds tested on that same target are classified 

as “not potent”. This approach is preferable when working with multiple target classes, 

since the typical enzyme or ion channel bioactivity profile may vary by two or three 

orders of magnitude compared to a nuclear or G-protein coupled receptor – hence the 

0.1µM cut-off value cannot appropriately separate actives from inactives across all 

targets. While the 80/20 division was generally applied to distinguish compounds, for 

some targets an alternative formula was required (see: Supplementary Information).  

Using experimentally determined bioactivity values from CARLSBAD and the above 

criteria, potent compounds for each target are flagged. We then examined relations 

between targets based on their molecular recognition ability, as estimated by chemical 

(MCES or HierS) patterns featured in potent compounds. To this end, we did not consider 

only the maximal HierS and/or MCES patterns of a given compound, but all patterns 

represented by a potent compound. These target-compound and compound-pattern 

associations allow us to establish new associations between targets and patterns. All 

patterns contained in a potent compound can thus be considered potent patterns for that 

specific target. Associations between a target and potent patterns suggest that certain 

targets might recognize other (untested) compounds that contain potent patterns 

associated with that target.  
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Target Relationships via Potent Patterns and Potent Compounds 

New relationships between targets can thus be defined on the basis of potent patterns. 

These relationships can be defined between any two targets, and are referred to as 

potential repurposable compounds (PRCs). The PRC(A,B) relationship of targets A and B 

reflects the number of compounds that fulfill the following criteria: i.) compounds 

contain at least one potent pattern of A, ii.) compounds have been tested on B, iii.) 

compounds have not been tested on A. These criteria don’t require that the compound in 

question is either a potent compound of B nor that it contains a potent pattern of B. The 

PRC relationship between targets is asymmetric, hence PRC(A,B) is different than 

PRC(B,A).  

Another relationship that can be established between target pairs is whether or not they 

have potent compounds in common. We referred to this as common potent compounds 

(CPC). The CPC(A,B) relationship of targets A and B gives the number of potent 

compounds they have in common. The CPC relationship is symmetric, i.e., CPC(A,B) 

equals CPC(B,A).  

These two relationships reduce the otherwise cumbersome process of analyzing the 

associations between targets, compounds, bioactivities and chemical patterns. 

SmartGraph integrates these relationships into its analytic features, which can be 

particularly useful in two aspects of lead and drug discovery.  

1. Both CPC and PRC can be used to unveil similarities in the molecular 

recognition ability of targets. If these relationships return high values 
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between pairs of targets, then there is strong evidence that the targets in 

question recognize similar structural patterns.  

2. Via PRC(A,B), compounds that could be repurposed from target B to target 

A, can be flagged. If PRC(A,B) > 0, then at least one CARLSBAD 

compound tested on target B but not target A may potentially be active on 

A. 

 

The SmartGraph backend database has a lookup table that stores pattern information in 

relation to target-pairs in a triplet format. The first member of the triplet is target A, the 

second is target B, and the third is a potent pattern of A contained by a compound tested 

on B. Please note, that this pattern is not required to be a potent pattern of B. Using this 

table and compound-pattern associations, SmartGraph compiles realtime lists of 

compounds that might be repurposed from target B to A based on the above described 

associations. The list of potential repurposable compounds (PRCs) can be further 

narrowed down from a novelty viewpoint by filtering only cases for which PRC(A,B) > 0 

and CPC(A,B) = 0. In this scenario, only PRCs for which no common potent compounds 

are shared between the two targets are selected. The predicted associations would be less 

likely to be obvious when compared to the scenario of omitting the CPC(A,B) = 0 

constraint.  

The list of PRCs is always defined in the context of two targets, but such a list does not 

cover all compounds that might be repurposed for target A. To get a list of PRCs for 
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target A, all target pairs that involve A should be considered (e.g., between A and C via 

PRC(A,C) and so on). The SmartGraph platform is equipped with a feature to return all 

PRC relations of targets, as it will be detailed in section “Graphical User Interface of 

SmartGraph”.  

Besides the aforementioned uses of the PRC and CPC relationships, there is a more 

technical use, namely, to control the size of the resultant bioactivity network. This feature 

will be explained and demonstrated in section “Graphical User Interface of 

SmartGraph”.  

 

 

Corroboration of Predicted Associations between Targets and Compounds 

PRC relationships are used to impute potential activity for targets in a binary manner, i.e., 

numerical values are not computed for novel compound-target predictions. To 

corroborate these predictions, the TBR algorithm, integrated into the SmartGraph 

platform, provides quantitative predictions. This feature of the platform will be 

demonstrated in section “Graphical User Interface of SmartGraph”.  
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Results and Discussion 

Results of Validation 

The training set consists of 1,882 compounds, 869 targets, 1,642 patterns and 28,270 

activities. Ten-fold cross-validation was carried out on a range of k nearest neighbors and 

N randomly retained activities parameters. Only a single activity value between a 

compound and a target is used in this study. The range of k starts with 1 and ends with 

20, inclusive, with 1-step increments. N values ranged from 1 to 9, in 1-step increments. 

The natural limit for N was 9, as compounds in the validation set were required to have at 

least 10 associated activities. The total number of combinations between validation 

parameters and training/test sets is 1,800, which equals the number of experimental 

points produced by the validation process. Due to the large number of experimental 

points, the results are presented by the means of two different visualizations: First, the 

resultant ROC-curves are presented by varying the value of k at a fixed value of N (see: 

Fig. 2, 3). Accordingly, the different series on the ROC-curves represent different N 

values and the experimental points represent the increasing value of k. The second type of 

visualization is similar, only this time the value of k is fixed and the value of N is varied 

on the ROC-curves (see: Fig. 4-7).  

 

 

Comparison of Performance between TBR and Alternative Recommender 

Algorithms 
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To decide whether the TBR algorithm is able to improve the target prediction process, its 

performance was compared with IBCF and UBCF, two widely used recommender 

algorithms, introduced earlier. It should be emphasized that the IBCF and UBCF 

algorithms operate solely on the Target-Compound-Activity matrix that is analogous with 

the rating or observation matrix used by these recommenders. 

The performance of the algorithms was characterized by the sum of sensitivity and 

specificity measures. Sensitivity is often referred-to as TPR, and FPR is computed as 1-

specificity. Thus, the closer the sum of these measures to 2 the better the performance. 

The result of the comparison is shown on Fig. 9. Individual TPR and FPR values are 

given for each experimental data point in “Supporting Information” (S1 Table-S5 Table). 

As shown, the performance of TBR exhibits a sudden advantage compared to IBCF. 

IBCF is preferable to TBR for k = 1 only. On the other hand, UBCF exhibits an overall 

good performance compared to both algorithms and it only starts to loose preference over 

the TBR algorithm in the k >= 8 domain. The overall best performance is also achieved 

by the TBR algorithm at k = 12 and N = 8 parameter combination where the sum of 

sensitivity and specificity is equal to 1.644. The aforementioned observations are 

summarized in Table 1. Accordingly, the TBR algorithm obtains higher performance in 

the majority of the cases as compared to both the IBCF and UBCF algorithms. 

Computing the two-sided Fisher’s exact test [32-34, 44] for these outcomes it can be 

concluded that the TBR algorithm outperforms both alternative recommender algorithms 

in a statistically significant manner (p-value < 2.2 x 10-16).  
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 IBCF UBCF 

TBR+ 166 96 

TBR- 14 84 

 

Table 1: Summary of the performance comparison between TBR, IBCF and UBCF 

algorithms. TBR+: number of cases when the TBR algorithm achieves a higher 

sensitivity + specificity value than the alternative algorithm at hand. TBR-: number of 

cases when the TBR algorithm achieves a lower sensitivity + specificity value than the 

alternative algorithm at hand. 

 

Predicted Bioactivities for Compounds of Blind Dataset 

As mentioned earlier, one of the aims of a validation process is to determine adequate 

values of certain parameters that influence the outcome of predictions. The TBR 

algorithm has two of these parameters, namely k and N. The former one defines the size 

of the similarity neighborhoods of targets to be considered in the prediction making 

process. The value of N poses a constraint for the minimal number of activities a 

compound is required to have in order to compute predictions for it. It should be 
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emphasized again, that the number of activities means the number of different targets for 

which a given compound has an experimentally determined bioactivity value in the 

database. If a compound has less than N activities then no prediction is computed for it.  

In the validation process the performance of the algorithms were compared in the terms 

of the sum of sensitivity and specificity. It was concluded that the TBR algorithm 

outperformed the investigated alternative recommender algorithms and achieved the best 

performance at k = 12 and N = 8 parameter setting. However, practical considerations 

required us to divert from choosing these parameter values for computing predictions. 

These considerations are centered on the parameter N and involve two concurrent 

objectives.  

One of the objectives is to include as many compounds in the prediction process as 

possible. The other is to maintain a good prediction performance.  In order to find a 

reasonable balance between the objectives we made a judgment call. Accordingly, the 

value of N was selected to equal to 5. This parameter value assures that there will be 

sufficient amount of a priori information for the TBR algorithm. Furthermore, the 

number of compounds excluded from the prediction process is reduced as opposed to 

choosing N to equal to 8. 

Once the new value of N = 5 was determined we ordered the experimental points in a 

decreasing order with respect to the sum of average sensitivity and specificity. In this 

ordering the value of k = 9 at N = 5 was found to be associated with the best prediction 

performance of the TBR algorithm. Therefore, the values of k and N to be used in the 

prediction process of the blind data were selected to be 9 and 5, respectively. 
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The total number of predictions computed by using the selected parameters is 3621 

defined between 120 compounds (FDA-approved drugs) and 827 targets. Out of these, 

522 interactions are predicted to have higher than 0.1µM activity. In these interactions 

there are 51 unique compounds and 223 unique targets involved. Out of these predicted 

interactions 44 have a VN >= 2 attribute. According to our literature search, 32 out of 44 

predicted interactions have the potential to be a bonafide novel interaction. It should be 

noted, that all of these 32 interactions have a VN = 2 attribute. The experimental 

confirmations of these predictions are in progress. However, we were able to confirm 117 

out of the above noted 522 predicted interactions by the means of literature search. In this 

process we relied mainly on DrugDB [35], SciFinder [36], DrugBank [37] and 

PubMed [38] databases besides general internet search. 

 

Architecture of SmartGraph Platform 

The concept behind designing the architecture of SmartGraph was to follow a client-

server configuration that enables multiuser acces to data analysis and visualization 

features. The architecture can be divided into two main components as it is shown in 

Figure 10. The main components of the SmartGraph platform are a backend database 

server, called ”CBGRAPH”, and a frontend graphical user interface (GUI).  

The backend server, powered by PostgreSQL database engine [39], serves as the 

knowledge base of the platform that was compiled mainly from the CARLSBAD 

bioactivity database. Accordingly, it contains experimentally determined high quality 
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bioactivity data defined between compounds and human proteins. Furthermore, it 

contains molecular structures and patterns contained by them. Chemical structures and 

HierS patterns are stored in SMILES format whereas MCES patterns are stored in 

SMARTS format. With the help of the RDKit cheminformatics database cartridge various 

computations can be carried out realtime on molecular and pattern structures. The other 

main building block of the backend server consists of biological pathway relations 

between targets that were derived from the KEGG database as described earlier in the 

text. Besides experimentally determined bioactivity data the CBGRAPH database 

integrates predicted quantitative bioactivity values for a set of compound-target pairs. 

These predictions were computed by the TBR algorithm in case of sufficient information 

existed in the database in the light of prediction parameters k and N. Furthermore, CPC 

and PRC relations of targets are precomputed and stored in the backend server.  

The client was implemented in Java programming language using the Swing GUI 

framework. The GUI uses JDBC driver to connect to the CBGRAPH backend database, 

execute queries and to collect results. Three layers are responsible for the main functions 

of the GUI. The network visualization layer was built with the help of GraphStream 

API [40]. This layer takes care of representing the biological targets as nodes and 

relations between them as edges. Furthermore, the network layout is also computed with 

the help of the same API. The second layer is responsible for detecting chemical patterns 

among molecular structures. These patterns were detected with the help of ChemAxon 

JChem library [41] and were stored in CBGRAPH. The RDKit database cartridge is used 

for computing the amount of overlap between a pattern and a molecular structure 

realtime. Finally, the third layer provides the user with the depiction of molecular 
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structures and patterns by visualizing SMILES and SMARTS [23, 24]. This layer is built 

on the ChemAxon Marvin API [41]. In the following section further details are provided 

about the GUI with regard to its data analysis features.  
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Graphical User Interface of SmartGraph  

 

The GUI consists of two main panels. The first panel is the so-called control panel shown 

on Figure 11. With the help of this panel the user is first required to define a bioactivity 

network. To this end the user has the ability to vary certain parameters having direct 

effect on the quality as well as the size of the resultant network. The PRC relation of 

targets can be used to explore potentially repurposable compounds for targets. The CPC 

relation can be used to include or exclude target-pairs in case a selected number of 

compounds are known to be potent compounds of both targets. Combining these 

parameters can be an efficient means of focusing on less obvious predictions. Such 

scenario can be achieved by requesting the value of PRC relation to be greater than zero 

while setting the value of CPC relation to equal to zero. Furthermore, the CPC relation is 

useful on its own to identify targets that tend to recognize similar molecular structures by 

setting the value of the relation to be greater than zero. The user has the option to 

corroborate predicted interactions by quantitative bioactivity values computed by the 

TBR algorithm. This can be achieved by selecting the “Has TBR Prediction” option. 

Besides the aforementioned parameter settings the user has the option to request the 

target-pairs to share membership in at least one biological pathway. This can be achieved 

by selecting the “In Same Pathway” feature. All of these parameters above have a direct 

influence on the size of the resultant bioactivity network. Therefore, the user can tailor 

the complexity and the size of the network to visualize according to the research needs 

and computational infrastructure.  
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The resultant network is visualized in the so-called network panel as shown on Figure 12. 

In the view, a node represents a biological target. When the user selects one or multiple 

nodes then various data analysis functions will become available. The operations of some 

of these functions can be affected by certain parameters controlled through the control 

panel. The functions can be categorized based on the required number of selected targets.  

The first category includes one data analysis function that is available only if exactly one 

node is selected (available under Biology–>Upstream and Downstream Targets, see: 

Figure 11C). This function is able to identify upstream and downstream targets of the 

selected target. The function can identify, furthermore, targets that are member of a 

feedback loop in the context of the selected target. The function takes advantage of a 

merged pathway network (MPN) stored on CGBRAPH backend that includes all pathway 

relations between targets (see: “Pathway Analysis”). Furthermore, the operation of the 

function can be manipulated by varying the value of the “Maximal Pathway Distance” 

parameter located on the control panel. This parameter controls the maximal shortest 

distance between two targets in the MPN to be considered for the purpose of the analysis. 

For instance, when this parameter is set to one then only the immediate neighbors of the 

targets in the MPN are considered. Increasing the value of this parameter allows for 

taking into account effects of more distant pathway relations. The color of the selected 

target is blue, upstream targets are green, downstream targets are orange and members of 

feedback loops are purple. This data analysis function is a great help in generating 

hypotheses with regard to indirect effects of drug molecules. That is, identifying off-

target proteins that might be affected by the change in activity of an intended drug target.  
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In the next category data analysis functions operate exactly on two targets if an edge 

exists between them in the assembled bioactivity network. The first such function 

provides a table of compounds that qualify as potent compounds with regard to both of 

the selected targets (available under Chemistry–>Common Potent Compounds, see: 

Figure 11B). This function takes advantage of the stored CPC relations of targets stored 

in CBGRAPH. The other function operating on a pair of selected targets can predict 

compounds that might be repurposed from one of the selected targets to the other selected 

one (available under Chemistry–>Potential Repurposable Compounds, see: Figure 11B). 

The prediction is based on the PRC relations of targets stored in CBGRAPH. If this 

function is used in conjunction with the “Has TBR Prediction” option on the control 

panel then certain predictions will be augmented with a quantitative predicted bioactivity 

computed by the TBR algorithm. It should be emphasized again, that quantitative 

predicted value is only provided for interactions for which the TBR algorithm had 

sufficient information. Another feature on the control panel is the so-called ”Pattern 

overlap”. When selected, then only those repurposable compounds will be listed that 

overlap with the potent pattern in question by at least the defined percentage. The overlap 

between a compound and a pattern is expressed by the percentage of heavy atoms of the 

compound that constitute the pattern at hand. For instance, if this parameter is set to 80% 

then all listed repurposable compounds are assured to be overlapping with the respective 

potent pattern by at least 80%.  

Functions of the last category operate on any number of selected targets. The first such 

function provides the user with the list of the potent compounds of the selected targets 

(available under Chemistry–>Potent Compounds, see: Figure 11B). The other function 
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returns with the list of identifiers of biological pathways the selected targets are known to 

be the member of according to KEGG database (available under Biology->Pathways, see: 

Figure 11C).  

The last feature on the control panel is the “Auto Layout” option. Setting this option to 

“On” will layout the network in an automatic manner. If this option is set to “Off” then 

the user has a control over placing the nodes of the network to any desired position.  
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Conclusions 

The aim of this study was to create an integrated platform that can assist in analyzing the 

effects of drug molecules on intended and (unintended) off-targets with the help of a 

systems biology approach. That is, regulatory pathways relations between targets are 

utilized to follow the path of activity change initiated by the drug molecule at hand. The 

platform referred-to as SmartGraph is able to predict potential new drug targets for small 

molecules. Predictions are computed by two algorithms. One of them analyzes the 

complex relations of nodes in a target-compound-pattern tripartite bioactivity network to 

indicate potential novel interactions between small molecules and targets. These 

predictions can be corroborated by quantitative bioactivity values predicted by the novel 

Target Based Recommender algorithm. The graphical interface of the platform is target 

centered and incorporates a network-based visualization. The predictive and pathway-

analytic features are available through single-click options. Hence, the platform does not 

require expert knowledge in the field of cheminformatics and/or bioinformatics. Still, the 

analytic options can potentially be utilized in multiple aspects of drug discovery, e.g. 

target identification, drug repurposing, off-target identification, hit-to-lead optimization 

to name but a few. We believe that the SmartGraph platform will be able to assist 

biomedical and clinical researchers to generate various hypotheses with regard to 

explaining observed adverse reactions or to designing novel therapeutic treatments. 
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Outlook 

 

The modular and integrative nature of the platform and network analysis allows for the 

integration of additional information into the platform. Such example would be the 

integration of gene expression data. The rational behind this is that the effect of a drug is 

not limited to its intended target due to polypharmacology and the regulatory relations 

between proteins. Therefore, the effect of a drug might be transduced to a transcription 

factor (TF) through direct or indirect interaction(s) between the target protein of the drug 

and the TF at hand. Of course, another type of data source might be considered for future 

integration besides gene expression data. 

 

The TBR algorithm in its current form is not optimized for drug-classes. It could be of 

interest in the future to create optimized versions of the TBR algorithm with regard to 

various drug-classes. The platform could also be turned into a system that experimental 

data can be fed into. This would allow for a periodic re-training of the predictive engine 

in order to improve prediction performance. 

 

Finally, it should be noted that the SmartGraph platform was designed to be modular. 

This means that the components of the platform can be substituted by the choosing of the 

researcher as long as the data-structure is maintained. That makes the SmartGraph 

platform adoptable to various research settings.   
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Figures 

 

 

 

 

 

 

 

 

 

 

Figure 1. Demonstration of the prediction computing process of the TBR algorithm. The 
kNN lists of targets are contained by matrix I2. Accordingly, the 2 nearest neighbors of targets are 
considered in the process of prediction. Therefore, the value of k equals to 2, i.e. Ik = I2. Cells of 
red colored numbers in matrices indicate compound-target pairs involved in the prediction 
process. Per definition in the masking matrix M the zeros indicate missing values, hence the 
coloring of them was omitted. 
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Figure 2. Effect of parameter k when N is fixed on results of validation. Part 1. One series of 
data represents one fixed value of N. The range of N on the figure is defined by the interval of 
(1,5). The range of investigated k values is defined by the interval of (1,20). The value of k was 
increased in steps of 1. The experimental points are connected by guidelines corresponding to an 
increasing order of k. 

  



 68 

 

 

 

  

Figure 3. Effect of parameter k when N is fixed on results of validation. Part 2. One series of 
data represents one fixed value of N. The range of N on the figure is defined by the interval of 
(6,9). The range of investigated k values is defined by the interval of (1,20). The value of k was 
increased in steps of 1. The experimental points are connected by guidelines corresponding to an 
increasing order of k. 
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Figure 4. Effect of parameter N when k is fixed on results of validation. Part 1. One series of 
data represents one fixed value of k. The range of k on the figure is defined by the interval of 
(1,5). The range of investigated N values is defined by the interval of (1,9). The value of N was 
increased in steps of 1. The experimental points are connected by guidelines corresponding to an 
increasing order of N. 
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Figure 5. Effect of parameter N when k is fixed on results of validation. Part 2. One series of 
data represents one fixed value of k. The range of k on the figure is defined by the interval of 
(6,10). The range of investigated N values is defined by the interval of (1,9). The value of N was 
increased in steps of 1. The experimental points are connected by guidelines corresponding to an 
increasing order of N. 
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Figure 6. Effect of parameter N when k is fixed on results of validation. Part 3. One series of 
data represents one fixed value of k. The range of k on the figure is defined by the interval of 
(11,15). The range of investigated N values is defined by the interval of (1,9). The value of N was 
increased in steps of 1. The experimental points are connected by guidelines corresponding to an 
increasing order of N. 

  



 72 

 

 

 

  

Figure 7. Effect of parameter N when k is fixed on results of validation. Part 4. One series of 
data represents one fixed value of k. The range of k on the figure is defined by the interval of 
(16,20). The range of investigated N values is defined by the interval of (1,9). The value of N was 
increased in steps of 1. The experimental points are connected by guidelines corresponding to an 
increasing order of N. 
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Figure 8. Cumulative distribution of the target-degree of compounds in the validation set. 
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Figure 9: Comparison of recommender algorithms. The labels on the x-axis indicate the value 
of parameters k and N. From left to right the value of N is increased in steps of 1. Once the value 
of N reaches 9 the value of k is increased by 1 whereas the value of N is reset to 1. The ranges of 
k and N are defined by intervals (1,20) and (1,9), respectively. A label on the x-axis represents a 
combination of k and N values, in this order, separated by underscore character. Each 
experimental point represents the average of the sum of sensitivity and specificity values of the 10 
training/test sets corresponding to the actual value of k and N. 
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Figure 10. SmartGraph Platform Architecture. Shown are the components of the SmartGraph 
platform. The numbers represent certain software components used for the corresponding data 
processing step or visualization module. 1: JUNG 2 Java Library and KEGGgraph, part of the 
BioConductoR library in R. 2: GraphStream Java Library. 3: ChemAxon JChem Library and 
RDKit cheminformatics database cartridge. 4: ChemAxon Marvin Library. 5: Java PostgreSQL 
JDBC driver. The backend database ”CBGRAPH” is powered by PostgreSQL database server in 
combination with the RDKit database cartridge. The graphical user interface of the frontend is 
implemented with the help of Java Swing framework. 
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Figure 11. Control Panel of SmartGraph. Shown are the various data analysis parameters and 
functions available for users to assemble and analyze bioactivity networks. The red numbers 
denote the graphical icons that are associated with the particular data analysis functions described 
in the text; 1: Potent Compounds, 2: Common Potent Compounds, 3: Potential Repurposable 
Compounds, 4: Pathways, 5: Upstream and Downstream Targets. Once the parameter values are 
adjusted as desired the bioactivity network is assembled by clicking on the “GO” Button. The 
resultant network will appear on the network panel. Please note, the data analysis functions are 
not available until a network is assembled. Accordingly the menu points and graphical icons will 
be inactive and appear as grayed-out. 
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Figure 12. Network Panel of SmartGraph. The bioactivity network reflecting the parameter 
setting is visualized on this panel. It should be noted that the network panel is initially empty. The 
network can be redefined be readjusting the parameters and clicking on the “GO” button. The 
previous network will be erased from the network panel to assure that there is no interference 
between the previous and the redefined. Lack of interference is also assured for the data analysis 
functions and their results upon redefining a network. 
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Supporting Information 

S1 Compilation of Validation and Blind Data Sets for the TBR Algorithm 

1. Get ALL unique CIDs.  

2. Remove drug CIDs.  

3. Get ambiguous SIDs (substance IDs). Ambiguous: SID is associated with multiple 
CIDs in CARLSBAD.s2c joining table.  

4. Get One-To-One SID To CID mapping derived from CARLSBAD.s2c table.  

4.1. Get CARLSBAD.s2c table.  

4.2. Remove ambiguous substance related SID-CID mappings.  

5. Get Human targets related IC50 CARLSBAD activities for unique pairs of target-
compounds (TID-CID) where compound is not a drug and activity is greater than 0 (-
logM).  

5.1. Get Human-target related IC50 activities.  

5.2. Activities belonging to ambiguous substances (ambigSIDs) need to be removed.  

5.3. As here molecules are in form of substances, these activities need to be mapped to 
compound IDs (CIDs). Transcode Target-Substance-Activity triplets to Target-
Compound-Activity triplets with the help of S2C  

5.4. Then the activities need to be removed that are associated with drug compounds.  

5.5. Aggregate TCA activities by averaging activities belonging to unique TID-CID 
duplets.  

6. Keep only compounds that are associated to at least 5 different targets  

7. Get Unique Compound-Pattern associations so that CIDs appear in TCAs after all the 
previous filtering (C2Ps).  

7.1. Get *unique* compound-pattern associations (CID,PID).  

7.2. Remove C2Ps in which CID is not in TCAs resulted by all the above filtering.  

8. Remove TCAs in which CID is not in C2Ps resulted by all the previous filtering (in 
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7.2).  

9. Generate Tidx-TID, Cidx-CID, Pidx-PID Mappings  

10. Save to disk filtered, unique TID-CID-Activity triplets and filtered, unique CID-PID 
duplets and Tidx-TID, Cidx-CID, Pidx-PID Mappings .  

 

S2 Crossreferencing Target Identifiers 

Generating one-to-one mapping between CARLSBAD Target IDs (TIDs), UniProt IDs 
and KEGG IDs.  

Step 1. First, all human targets from CARLSBAD that have a UniProt ID associated with 
them were collected in a TID-UniProt association list.  

Step 2. Ambiguous KEGG IDs and UniProt IDs were identified in the original KEGG file 
(KEGG FTP Release 2013-12-16 (habanero)): “genesuniprot.list”. Ambiguous means 
that either one KEGG ID is associated with multiple UniProt IDs or one UniProt ID is 
associated with multiple KEGG IDs. These IDs were identified to be as follows.  

Ambiguous UniProt IDs: P50391, P20231, P36544, Q9Y256, P15514.  

Ambiguous KEGG IDs: ’hsa:7177’, ’hsa:6916’.  

Step 3. Original KEGG file ’genesuniprot.list’ was further filtered to keep only UniProt 
IDs - KEGG ID associations where the UniProt ID is in the TID-UniProt collection of 
Step 1. The result of this step is a collection consisting of 983 one-to-one KEGG ID - 
UniProt ID mapping.  

Step 4. Collection of Step 1 was filtered to only retain TID-UniProt associations in which 
UniProt ID is contained by the resultant set of UniProt IDs in Step 3.  

Step 5. Ambigous TIDs and UniProts were removed from collection resulted by Step 4.  

Ambiguous TID list: 247, 452, 685, 819, 850, 550, 732, 77, 4, 399, 1269, 53, 62, 518, 
222, 454, 1133, 82, 791, 1060, 991, 1162, 996, 265, 608, 1149, 572, 1152, 70, 27, 906, 
293, 1115, 327, 21, 281, 838, 181, 351, 228, 846, 3, 61, 87, 67, 395, 1305, 142, 477, 121, 
659, 258, 900, 69, 334, 557, 686, 424, 133, 408, 892, 617, 803, 84, 128, 102, 212, 71, 
722.  

Ambiguopus UniProt IDs: Q99808,P05556, P30304,P23443, P43166, P09467, P07339, 
Q01726, P01008, P41145, P25024, P46098, P35968, P11229, P42262, Q08499, P00915, 
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Q12809, P14416, P22303, O14965, Q08493, P35372, P32239, P24046, O96017, P09619, 
P41968, P16234, P25103, P50052, P08246, O76074, O95259, Q09428, Q07343, P28702.  
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S3 Alternate Computation of Raw-Prediction Matrix 

Using the same notations as defined in Prediction of Potentially Novel Compound-Target 
Associations an alternative computation of raw-prediction matrix rP is provided below.  

Provided that ∀i : 1 ≤ i ≤ |T|, ∀j : 1 ≤ j ≤ |T|, ∀a : 1 ≤ a ≤ |Γ| the raw-prediction matrix rP 
can be alternatively computed according to Eq. 22. This alternate method is illustrated by 
computing two cells of rP according to Eq. 23, 24. Please note that this illustration uses 
the same example Ik, U, M matrices defined in the main body of the text.  
 

𝑟𝑃 !,! =

1
𝐼! !,! 𝑀 !,!

!
!!!

𝐼! !,! 𝑈 !,! 𝑀 !,!

!

!!!

,            if 𝐼! !,! 𝑀 !,!

!

!!!
> 0

 
                                    

                                    0,           else     

 

 
 
 
 
 

 
(22) 

 
 
 

[𝑟𝑃]!,! =
1

0.4 × 1+ 0.7 × 1 0.4 × 7.1 × 1+ 0.7 × 6.4 × 1 ≈ 6.7 (23) 

 
 
 
 
 

[𝑟𝑃]!,! =
1

0.7 × 0+ 0.9 × 1 0.7 × 0 × 0+ 0.9 × 4.7 × 1 = 4.7 (24) 
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S1 Table 

Performance comparison of TBR, IBCF and UBCF algorithms. Part 1.  
 
 
 

Parameters TBR IBCF UBCF 
k N FPR TPR FPR TPR FPR TPR 
1 1 0.0005 0.0515 0 0 0.0583 0.5589 
1 2 0.0007 0.0989 0.0257 0.1868 0.0393 0.6071 
1 3 0.0017 0.163 0.0297 0.3266 0.0361 0.624 
1 4 0.0023 0.2183 0.0309 0.3117 0.0236 0.6082 
1 5 0.0026 0.2478 0.0345 0.4363 0.0221 0.61 
1 6 0.002 0.2816 0.0293 0.5008 0.0145 0.6096 
1 7 0.0024 0.3667 0.0255 0.5577 0.0163 0.5975 
1 8 0.0043 0.4106 0.0305 0.5767 0.017 0.6136 
1 9 0.0033 0.4147 0.0276 0.6014 0.0162 0.5699 
2 1 0.0012 0.1079 0 0 0.0583 0.5589 
2 2 0.0015 0.1817 0.0257 0.1868 0.0393 0.6071 
2 3 0.0037 0.28 0.0297 0.3266 0.0361 0.624 
2 4 0.0038 0.3676 0.0309 0.3117 0.0236 0.6082 
2 5 0.0051 0.391 0.0345 0.4363 0.0221 0.61 
2 6 0.0038 0.4428 0.0293 0.5008 0.0145 0.6096 
2 7 0.0046 0.5144 0.0255 0.5577 0.0163 0.5975 
2 8 0.0057 0.5385 0.0305 0.5767 0.017 0.6136 
2 9 0.0057 0.5266 0.0276 0.6014 0.0162 0.5699 
3 1 0.0019 0.1543 0 0 0.0583 0.5589 
3 2 0.0025 0.2584 0.0257 0.1868 0.0393 0.6071 
3 3 0.0048 0.3737 0.0297 0.3266 0.0361 0.624 
3 4 0.0047 0.4598 0.0309 0.3117 0.0236 0.6082 
3 5 0.0063 0.5074 0.0345 0.4363 0.0221 0.61 
3 6 0.0046 0.5319 0.0293 0.5008 0.0145 0.6096 
3 7 0.0058 0.5751 0.0255 0.5577 0.0163 0.5975 
3 8 0.0069 0.5868 0.0305 0.5767 0.017 0.6136 
3 9 0.0064 0.5853 0.0276 0.6014 0.0162 0.5699 
4 1 0.0024 0.2054 0 0 0.0583 0.5589 
4 2 0.0029 0.3262 0.0257 0.1868 0.0393 0.6071 
4 3 0.0052 0.439 0.0297 0.3266 0.0361 0.624 
4 4 0.0052 0.5179 0.0309 0.3117 0.0236 0.6082 
4 5 0.0076 0.5586 0.0345 0.4363 0.0221 0.61 
4 6 0.0052 0.5697 0.0293 0.5008 0.0145 0.6096 
4 7 0.0066 0.5992 0.0255 0.5577 0.0163 0.5975 
4 8 0.0068 0.6297 0.0305 0.5767 0.017 0.6136 
4 9 0.0068 0.6043 0.0276 0.6014 0.0162 0.5699 

 

Shown are the validation results of the TBR, IBCF and UBCF algorithms in the function 
of parameters k and n for the range of 1 ≤ k ≤ 4 and 1 ≤ n ≤ 9. The performance if 
characterized by the false positive rate (FPR) and true positive rate (TPR) measures. 
Often TPR is referred to as sensitivity and FPR can be computed as 1-specificity. 
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S2 Table 

Performance comparison of TBR, IBCF and UBCF algorithms. Part 2.  
 
 

Parameters TBR IBCF UBCF 
k N FPR TPR FPR TPR FPR TPR 
5 1 0.0029 0.2492 0 0 0.0583 0.5589 
5 2 0.0041 0.3847 0.0257 0.1868 0.0393 0.6071 
5 3 0.0059 0.4865 0.0297 0.3266 0.0361 0.624 
5 4 0.0057 0.5586 0.0309 0.3117 0.0236 0.6082 
5 5 0.0083 0.5868 0.0345 0.4363 0.0221 0.61 
5 6 0.0057 0.5926 0.0293 0.5008 0.0145 0.6096 
5 7 0.0073 0.6088 0.0255 0.5577 0.0163 0.5975 
5 8 0.0075 0.6383 0.0305 0.5767 0.017 0.6136 
5 9 0.0077 0.6092 0.0276 0.6014 0.0162 0.5699 
6 1 0.0036 0.2897 0 0 0.0583 0.5589 
6 2 0.0053 0.4286 0.0257 0.1868 0.0393 0.6071 
6 3 0.0067 0.5321 0.0297 0.3266 0.0361 0.624 
6 4 0.0065 0.5846 0.0309 0.3117 0.0236 0.6082 
6 5 0.009 0.6049 0.0345 0.4363 0.0221 0.61 
6 6 0.0065 0.606 0.0293 0.5008 0.0145 0.6096 
6 7 0.0082 0.6134 0.0255 0.5577 0.0163 0.5975 
6 8 0.0082 0.6397 0.0305 0.5767 0.017 0.6136 
6 9 0.0087 0.6149 0.0276 0.6014 0.0162 0.5699 
7 1 0.0039 0.3324 0 0 0.0583 0.5589 
7 2 0.006 0.4633 0.0257 0.1868 0.0393 0.6071 
7 3 0.0072 0.5521 0.0297 0.3266 0.0361 0.624 
7 4 0.0069 0.5974 0.0309 0.3117 0.0236 0.6082 
7 5 0.0092 0.6159 0.0345 0.4363 0.0221 0.61 
7 6 0.007 0.6153 0.0293 0.5008 0.0145 0.6096 
7 7 0.0083 0.6141 0.0255 0.5577 0.0163 0.5975 
7 8 0.0089 0.6454 0.0305 0.5767 0.017 0.6136 
7 9 0.0093 0.6189 0.0276 0.6014 0.0162 0.5699 
8 1 0.004 0.372 0 0 0.0583 0.5589 
8 2 0.0064 0.4953 0.0257 0.1868 0.0393 0.6071 
8 3 0.0082 0.5647 0.0297 0.3266 0.0361 0.624 
8 4 0.0074 0.6074 0.0309 0.3117 0.0236 0.6082 
8 5 0.0095 0.6223 0.0345 0.4363 0.0221 0.61 
8 6 0.0075 0.6281 0.0293 0.5008 0.0145 0.6096 
8 7 0.0081 0.6174 0.0255 0.5577 0.0163 0.5975 
8 8 0.0094 0.648 0.0305 0.5767 0.017 0.6136 
8 9 0.0098 0.6218 0.0276 0.6014 0.0162 0.5699 

 
 
 
 

Shown are the validation results of the TBR, IBCF and UBCF algorithms in the function 
of parameters k and n for the range of 5 ≤ k ≤ 8 and 1 ≤ n ≤ 9. The performance if 
characterized by the false positive rate (FPR) and true positive rate (TPR) measures. 
Often TPR is referred to as sensitivity and FPR can be computed as 1-specificity. 
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S3 Table 

Performance comparison of TBR, IBCF and UBCF algorithms. Part 3.  
 
 

Parameters TBR IBCF UBCF 
k N FPR TPR FPR TPR FPR TPR 
9 1 0.0047 0.4041 0 0 0.0583 0.5589 
9 2 0.0067 0.5175 0.0257 0.1868 0.0393 0.6071 
9 3 0.0083 0.5768 0.0297 0.3266 0.0361 0.624 
9 4 0.0073 0.6114 0.0309 0.3117 0.0236 0.6082 
9 5 0.0104 0.6236 0.0345 0.4363 0.0221 0.61 
9 6 0.008 0.6318 0.0293 0.5008 0.0145 0.6096 
9 7 0.0083 0.6217 0.0255 0.5577 0.0163 0.5975 
9 8 0.0092 0.6504 0.0305 0.5767 0.017 0.6136 
9 9 0.0098 0.6247 0.0276 0.6014 0.0162 0.5699 

10 1 0.0053 0.4423 0 0 0.0583 0.5589 
10 2 0.0074 0.5294 0.0257 0.1868 0.0393 0.6071 
10 3 0.0091 0.5818 0.0297 0.3266 0.0361 0.624 
10 4 0.0083 0.6155 0.0309 0.3117 0.0236 0.6082 
10 5 0.0106 0.6229 0.0345 0.4363 0.0221 0.61 
10 6 0.0083 0.6333 0.0293 0.5008 0.0145 0.6096 
10 7 0.0089 0.6234 0.0255 0.5577 0.0163 0.5975 
10 8 0.0088 0.6517 0.0305 0.5767 0.017 0.6136 
10 9 0.0101 0.6294 0.0276 0.6014 0.0162 0.5699 
11 1 0.0057 0.4648 0 0 0.0583 0.5589 
11 2 0.0077 0.5354 0.0257 0.1868 0.0393 0.6071 
11 3 0.0093 0.5869 0.0297 0.3266 0.0361 0.624 
11 4 0.0085 0.6163 0.0309 0.3117 0.0236 0.6082 
11 5 0.0107 0.6216 0.0345 0.4363 0.0221 0.61 
11 6 0.0083 0.6328 0.0293 0.5008 0.0145 0.6096 
11 7 0.0091 0.6247 0.0255 0.5577 0.0163 0.5975 
11 8 0.0094 0.6526 0.0305 0.5767 0.017 0.6136 
11 9 0.0106 0.6293 0.0276 0.6014 0.0162 0.5699 
12 1 0.0059 0.4788 0 0 0.0583 0.5589 
12 2 0.0077 0.5445 0.0257 0.1868 0.0393 0.6071 
12 3 0.0097 0.5882 0.0297 0.3266 0.0361 0.624 
12 4 0.0087 0.6171 0.0309 0.3117 0.0236 0.6082 
12 5 0.011 0.6209 0.0345 0.4363 0.0221 0.61 
12 6 0.0086 0.634 0.0293 0.5008 0.0145 0.6096 
12 7 0.0094 0.6246 0.0255 0.5577 0.0163 0.5975 
12 8 0.0092 0.6532 0.0305 0.5767 0.017 0.6136 
12 9 0.0108 0.6303 0.0276 0.6014 0.0162 0.5699 

 
 
 
 

Shown are the validation results of the TBR, IBCF and UBCF algorithms in the function 
of parameters k and n for the range of 9 ≤ k ≤ 12 and 1 ≤ n ≤ 9. The performance if 
characterized by the false positive rate (FPR) and true positive rate (TPR) measures. 
Often TPR is referred to as sensitivity and FPR can be computed as 1-specificity. 
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S4 Table 

Performance comparison of TBR, IBCF and UBCF algorithms. Part 4.  
 
 

Parameters TBR IBCF UBCF 
k N FPR TPR FPR TPR FPR TPR 
13 1 0.0063 0.4838 0 0 0.0583 0.5589 
13 2 0.0082 0.5457 0.0257 0.1868 0.0393 0.6071 
13 3 0.01 0.5902 0.0297 0.3266 0.0361 0.624 
13 4 0.0089 0.6177 0.0309 0.3117 0.0236 0.6082 
13 5 0.0111 0.6206 0.0345 0.4363 0.0221 0.61 
13 6 0.0088 0.6379 0.0293 0.5008 0.0145 0.6096 
13 7 0.0095 0.6275 0.0255 0.5577 0.0163 0.5975 
13 8 0.0094 0.6526 0.0305 0.5767 0.017 0.6136 
13 9 0.011 0.6324 0.0276 0.6014 0.0162 0.5699 
14 1 0.0066 0.4931 0 0 0.0583 0.5589 
14 2 0.0083 0.5498 0.0257 0.1868 0.0393 0.6071 
14 3 0.0102 0.5912 0.0297 0.3266 0.0361 0.624 
14 4 0.0092 0.6188 0.0309 0.3117 0.0236 0.6082 
14 5 0.0115 0.6211 0.0345 0.4363 0.0221 0.61 
14 6 0.0092 0.6375 0.0293 0.5008 0.0145 0.6096 
14 7 0.0099 0.6286 0.0255 0.5577 0.0163 0.5975 
14 8 0.0098 0.6525 0.0305 0.5767 0.017 0.6136 
14 9 0.0112 0.6318 0.0276 0.6014 0.0162 0.5699 
15 1 0.0066 0.5005 0 0 0.0583 0.5589 
15 2 0.0083 0.5501 0.0257 0.1868 0.0393 0.6071 
15 3 0.0111 0.5915 0.0297 0.3266 0.0361 0.624 
15 4 0.0093 0.6192 0.0309 0.3117 0.0236 0.6082 
15 5 0.0117 0.6208 0.0345 0.4363 0.0221 0.61 
15 6 0.0093 0.6367 0.0293 0.5008 0.0145 0.6096 
15 7 0.01 0.6273 0.0255 0.5577 0.0163 0.5975 
15 8 0.0099 0.6532 0.0305 0.5767 0.017 0.6136 
15 9 0.0114 0.6323 0.0276 0.6014 0.0162 0.5699 
16 1 0.0068 0.5005 0 0 0.0583 0.5589 
16 2 0.0083 0.551 0.0257 0.1868 0.0393 0.6071 
16 3 0.0111 0.592 0.0297 0.3266 0.0361 0.624 
16 4 0.0095 0.6214 0.0309 0.3117 0.0236 0.6082 
16 5 0.0118 0.6204 0.0345 0.4363 0.0221 0.61 
16 6 0.0094 0.6372 0.0293 0.5008 0.0145 0.6096 
16 7 0.0104 0.629 0.0255 0.5577 0.0163 0.5975 
16 8 0.0101 0.6518 0.0305 0.5767 0.017 0.6136 
16 9 0.0116 0.6317 0.0276 0.6014 0.0162 0.5699 

 
 
 
 

Shown are the validation results of the TBR, IBCF and UBCF algorithms in the function 
of parameters k and n for the range of 13 ≤ k ≤ 16 and 1 ≤ n ≤ 9. The performance is 
characterized by the false positive rate (FPR) and true positive rate (TPR) measures. 
Often TPR is referred to as sensitivity and FPR can be computed as 1-specificity. 
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S5 Table 

Performance comparison of TBR, IBCF and UBCF algorithms. Part 5.  
 
 

Parameters TBR IBCF UBCF 
k N FPR TPR FPR TPR FPR TPR 
17 1 0.007 0.5012 0 0 0.0583 0.5589 
17 2 0.0083 0.5521 0.0257 0.1868 0.0393 0.6071 
17 3 0.0112 0.5915 0.0297 0.3266 0.0361 0.624 
17 4 0.0094 0.6228 0.0309 0.3117 0.0236 0.6082 
17 5 0.012 0.6193 0.0345 0.4363 0.0221 0.61 
17 6 0.0095 0.6366 0.0293 0.5008 0.0145 0.6096 
17 7 0.0105 0.6294 0.0255 0.5577 0.0163 0.5975 
17 8 0.0104 0.6509 0.0305 0.5767 0.017 0.6136 
17 9 0.0117 0.6307 0.0276 0.6014 0.0162 0.5699 
18 1 0.0072 0.5018 0 0 0.0583 0.5589 
18 2 0.0083 0.5527 0.0257 0.1868 0.0393 0.6071 
18 3 0.0114 0.592 0.0297 0.3266 0.0361 0.624 
18 4 0.0096 0.6227 0.0309 0.3117 0.0236 0.6082 
18 5 0.0122 0.6188 0.0345 0.4363 0.0221 0.61 
18 6 0.0095 0.6368 0.0293 0.5008 0.0145 0.6096 
18 7 0.0106 0.6294 0.0255 0.5577 0.0163 0.5975 
18 8 0.0105 0.6488 0.0305 0.5767 0.017 0.6136 
18 9 0.0116 0.6316 0.0276 0.6014 0.0162 0.5699 
19 1 0.0074 0.5022 0 0 0.0583 0.5589 
19 2 0.0083 0.5524 0.0257 0.1868 0.0393 0.6071 
19 3 0.0117 0.5937 0.0297 0.3266 0.0361 0.624 
19 4 0.0098 0.6228 0.0309 0.3117 0.0236 0.6082 
19 5 0.0123 0.619 0.0345 0.4363 0.0221 0.61 
19 6 0.0096 0.637 0.0293 0.5008 0.0145 0.6096 
19 7 0.0107 0.6293 0.0255 0.5577 0.0163 0.5975 
19 8 0.011 0.6491 0.0305 0.5767 0.017 0.6136 
19 9 0.0121 0.6326 0.0276 0.6014 0.0162 0.5699 
20 1 0.0074 0.5026 0 0 0.0583 0.5589 
20 2 0.0083 0.5531 0.0257 0.1868 0.0393 0.6071 
20 3 0.0117 0.5945 0.0297 0.3266 0.0361 0.624 
20 4 0.0098 0.6237 0.0309 0.3117 0.0236 0.6082 
20 5 0.0125 0.6214 0.0345 0.4363 0.0221 0.61 
20 6 0.0098 0.6379 0.0293 0.5008 0.0145 0.6096 
20 7 0.0108 0.6311 0.0255 0.5577 0.0163 0.5975 
20 8 0.0112 0.6498 0.0305 0.5767 0.017 0.6136 
20 9 0.0122 0.6319 0.0276 0.6014 0.0162 0.5699 

 
 
 
 
 

Shown are the validation results of the TBR, IBCF and UBCF algorithms in the function 
of parameters k and n for the range of 17 ≤ k ≤ 20 and 1 ≤ n ≤ 9. The performance is 
characterized by the false positive rate (FPR) and true positive rate (TPR) measures. 
Often TPR is referred to as sensitivity and FPR can be computed as 1-specificity. 
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S1 Fig 

Table of Potential Repurposable Compounds. The figure only hows the most 
important columns of the table. From left to right these are: “Potential New Target”, 
“Tested on Target”, “Predicted Compound”, “Common Pattern”, “Predicted TBR 
Activity”, “Vote Number”, “Compound Structure (Iso SMILES)”, “Pattern Structure”, 
“Pattern Overlap Ratio”. As the name of the “Compound Structure (Iso SMILES)” 
suggests the string representation of compound structures were generated by selecting 
isomeric SMILES as the output format. The HierS and MCES pattern structures are 
represent as strings in either SMILES and SMARTS format, respectively [23, 24]. 
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S2 Fig 

Table of Common Potent Compounds. The figure only hows the most important 
columns of the table. From left to right these are: “Target1”, “Target2”, “Compound” 
(depiction of compound’s chemical structure), “Compound Structure (Iso SMILES)”. 
The “Iso SMILES” is an abbreviation of isomeric SMILES [23, 24].  

 



 89 

S3 Fig 

Panel for Exporting Table Results into CSV Fromat.   
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Chapter 2 
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Discovery and development of a drug starts by first identifying a drug target protein, as it 

was discussed shortly in the beginning of the previous chapter. Although it can take 

several years to develop an appropriate drug candidate, still, the success of the 

subsequent clinical trials is instrumentally determined by the choice of the drug target. 

Even if the drug candidate succeeds in reaching and modifying the activity of its intended 

target in vivo, the invoked biological response can still turn out to be detrimental. This 

realization itself should suffice to help us appreciate the importance of the careful 

selection of the drug target, be it a single target or multiple targets. However, this chapter 

intends to shed light on a less-known aspect of drug target selection that will provide 

further insights into the importance of this drug discovery phase. 

 

This aspect is the so-called prioritization of potential drug targets, i.e. proteins, from 

druggability point of view. The prioritization process attempts to establish a ranked list of 

proteins that show promise to be a successful drug target based on available direct and 

indirect information. Collecting direct information from existing literature is itself a great 

challenge that requires manual data extraction, annotation and curation. Collection of 

indirect information is, on the other hand, a different kind of art leading to the realm of 

so-called knowledge mining.  

 

The term knowledge mining represents a family of computational methods that use 

various kinds of algorithms to infer novel knowledge based on existing data, meta-data 

and observed relations between the entities of a database. These algorithms are often 
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referred-to as machine learning algorithms or supervised learning methods and their 

operation require a number of training and testing iteration cycles.  

 

The core idea of the machine learning methods is that the algorithm is assumed to be able 

to pick up patterns from a set of observations given the corresponding set of outcomes of 

some kind. For example, the daily-recorded temperature, humidity and atmospheric 

pressure could constitute a set of observation. Similarly, the event of rain or the lack 

thereof, recorded during these days could constitute an outcome. The duty of the machine 

learning method is to find patterns in temperature, pressure and humidity that would 

predict rainy or rain-free days with acceptable confidence. In the validation phase of the 

machine learning process, a number of training observation and outcome sets are 

provided for the algorithm. Using the “knowledge” the algorithm constructed from the 

training set, the algorithm makes prediction for a number of so-called test observations. 

These predicted outcomes can be compared to the test outcomes that are known for the 

researcher but hidden from the algorithm. In an ideal case, after a number of training-

testing cycles the optimal parameter settings of the algorithm can be determined. 

Furthermore, at this point quantitative parameters are revealed that characterize the 

anticipated accuracy and confidence of future predictions. This point concludes the 

validation phase of the machine learning. 

 

With the help of parameters determined during the validation phase the algorithm is then 

applied on real, or often referred-to as “blind” data. It should be emphasized that blind 

data, including observations and outcomes, must not be included in any part of the 
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validation process. The significance of this practice is to assure the unbiased nature of 

predictions made for blind data. 

 

The method presented in this chapter applies a unique combination of network inference 

and machine learning to decide which proteins are likely to be successfully targeted with 

small-molecules. The presented method and its underlying network model were inspired 

by concepts of information theory. 

 

In the network model the proteins are represented as nodes. These nodes are connected 

by edges that represent regulatory relations between the proteins. The edges have 

direction to indicate which protein regulates which in a given relationship. The idea of 

the model is that information from can be spread from one node to neighboring nodes 

along the edges. However, in this process the ability of the nodes is not equal to convey 

information. The inequality is derived from the importance of each node in the network. 

The importance of nodes is computed on the basis of their connection structure. 

 

The network described above can be used to simulate the spread of information. At the 

end of the simulation process the amount of information gain can be used to rank proteins 

from drug discovery perspective. Those proteins that originally were only attributed with 

low level of information but gained high amount of information at the end of the 

simulation process are of great interest. The higher the information gain, to more likely it 

is that new knowledge for the protein in question might be revealed with the help of its 

related proteins. Of course, the model cannot be used to infer specific knowledge. 
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Nevertheless, it might be useful in pinpointing promising potential drug targets that are 

currently understudied. 

 

 

 

  

 

 

 

 Hypothesis:  

 

 It is possible to prioritize potential drug target proteins for drug 

discovery purposes on the basis of information theory related 

network analysis. 
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Abstract 

The current study presents a computational method based on biological pathways for 

knowledge discovery with regard to known and potential drug target proteins. The paper 

introduces a novel network theory based algorithm and its underlying model which is 

referred to as the Luminosity-Diffusion Algorithm (LDA). The dynamic network model 

uses an information theory based approach to prioritize proteins for potential drug 

discovery. We evaluate the algorithm on proteins belonging to members of four protein 

families (G protein coupled receptors, Ion channels, Protein kinases, Nuclear receptors) 

being studied as part of our “Illuminating the Druggable Genome (IDG)” project. The 

pathway information pertaining to these proteins was extracted from the Pathway 

Commons database. The LDA algorithm was validated on 8,010 relations of 794 proteins 

extracted from the Target Central Resource Database (TCRD) of IDG. We believe that 

LDA will be a useful tool for in silico drug discovery research. 
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Introduction 

Discovering mechanistic relationships  among diseases, genes, biological pathways and 

proteins is a worthwhile scientific pursuit. Such findings hold the key to discovering new 

drugs and to understand their mechanism-of-action. Therefore, it is crucial to develop 

systematic methods to shed light on potential drug targets and to direct the attention of 

the research community to under- or over-studied, promising or potential drug targets. 

 

Our research project, namely “Illuminating the Druggable Genome (IDG)”, addresses the 

above challenges in a number of ways. One of the main goals of the project is to organize 

and integrate available knowledge with regard to four protein families: i.) G-Protein 

coupled receptors (GPCRs), ii.) Kinases, iii.) Ion-channels (ICs) and iv.) Nuclear 

receptors (NRs). These protein families encompass almost 1,800 proteins. We have 

characterized these proteins with regard to their druggability potential and status based on 

three primary factors. The first  is the strength of evidence of involvement of a protein in 

the onset and progression of a disease or clinical condition. The second factor is the 

potency of known drugs or small-molecule modulators for a particular protein target. The 

third factor is the understanding of the mechanism-of-action of the drug acting on the 

target, or the lack thereof. Taking these three factors into consideration we have classified 

the targets into six categories that are referred to as target development levels (TDLs) and 

are described in detail in the “Datasets and Methods” section. 

 

The aim of the present study is to prioritize proteins for future drug discovery studies 

based on their roles as potential targets in biological pathways. To this end we decided to 
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analyze the Pathway Commons database [1] as it integrates a number of biological 

pathway databases. In this work we propose to use complex network theory to model 

biological pathways from a druggability potential perspective. A directed network 

approach seems appropriate to encode upstream-downstream relations of targets. 

 

The rationale behind our approach is to treat the TDL categories as the amount of 

information a target is able to transmit in the network given certain constraints. These 

constraints are imposed by a.) the influence of the individual nodes in terms of network 

topology and b.) the directionality of the edges between the nodes. Note that the influence 

of nodes in a network can be expressed by various representations. We provide a precise 

description of our choices for quantifying node influence in “Datasets and Methods” 

section. Following the direction of edges a node can only transfer information to its so-

called “child-nodes” as opposed to its “parent-nodes”.  

 

We now provide a few examples of models describing information diffusion or flow of 

information from literature. One of these models is the well-known maximum-flow 

model of graphs [2]. In this model a certain amount of information is emitted from a 

source node through the network towards a sink node. For each edge, the respective 

amount of partial flow is computed based on the network topology. Other models 

relevant to this study are the works of Kempe et al. [3], and Kimura et al. [4].  These 

methods investigate the spread of information in a network with respect to the influence 

of the individual nodes and the influence of a particular node is computed on the basis of 

its relationship with its neighboring nodes as reflected by the topology of the underlying 

graph. The Markov-blanket algorithm [5] takes into consideration the probabilistic 
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dependencies among the nodes to model the flow of information in a network and is 

subject to the Markov condition which states that a node is independent of its ancestors 

given its parents. 

The aim of this study is to propose and validate a novel network-based algorithm that can 

be useful in prioritizing targets for in silico drug discovery studies. The model behind the 

algorithm operates on the analogy of certain nodes acting as light sources in the network 

that are able to shine light, i.e. to 'illuminate', their child-nodes. Their ability to illuminate 

is influenced by their location in the network that is expressed in terms of network 

topology. Therefore, this model is referred to as a 'luminosity-diffusion' model and the 

proposed algorithm is termed the Luminosity-Diffusion algorithm. 

 

The rest of the paper is organized as follows. The dataset under investigation as well as 

the “Luminosity-Diffusion” algorithm is introduced in the “Dataset and Methods” 

section. The “Results and Discussion” section will provide details on the results we 

obtained and the interpretation of the analysis we performed. Finally, we provide a 

conclusion and outline some future directions that look promising. 
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Dataset and Methods 

Pathway Commons database 

We decided to analyze the Pathway Commons [1] database for a number of reasons. First 

of all, it integrates a number of pathway data sources related to human genes. Next, it 

stores the nature of relations between targets in a well-defined manner. Out of the 

available interaction types we focused on the following ones: “controls-phosphorylation-

of”,”controls-expression-of”,”controls-state-change-of”,”controls-transport-of” [1]. It 

should be noted that these types of interactions are directed which gave rise to the 

directed nature of the network constructed based on these relations. We extracted 

regulatory relations of the proteins from the “Pathway Commons 7 All” database 

(version: March 05, 2015) in SIF file format. The genes are encoded by HUGO Gene 

Nomenclature Committee (HGNC) [6] identifiers in the downloaded file. 

In this study we only used a subset of the targets included in the Pathway Commons 

database. This subset is limited to the targets that belong to any of the four IDG protein 

families (see: TCRD database). This resulted in a subset of 794 unique targets and 8,010 

relations between them. 

 

TCRD database 

The TCRD is a database developed in-house. It contains proteins belonging to four 

families—GPCRs, kinases, ion-channels, and nuclear receptors. The TCRD database 

classifies the proteins of each family according to a scheme that reflects the amount of 
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available chemical, biological and clinical information with respect to the protein at hand. 

A detailed introduction of this classification scheme is beyond the scope of this study. 

Some of the most important features of the classification scheme are the following: a.) 

the number of Food and Drug Association (FDA) approved drugs known for the target 

protein, b.) whether or not the mechanism-of-action is known for these drugs, c.) whether 

or not the target is associated with a disease. A scoring scheme is associated with the 

classification that allows for quantifying the available knowledge of the proteins and 

categorizing them accordingly. Based on this schema the following categories were 

created: Tclin+, Tclin, Tchem, Tmacro, Tgray and Tdark. The categories are listed in a 

decreasing order with respect to the available information.  

 

Network Assembly 

As described above, we extracted a subset of the Pathway Commons database consisting 

of 794 unique targets and 8010 relations between them. This gave rise to a network that 

consists of 794 nodes and 8010 directed edges representing the protein targets and the 

relationshipss between them, respectively. In the network the edges are unweighted and 

the nodes are associated with a number of numeric attributes. These attributes are the 

“FilterFactor”,  “PhotonCounter” and TDL-Category (see: “Network Model”). In the 

next section we introduce the model which forms the basis for the LD algorithm that uses 

the network described above. 
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Network Model 

The rationale behind the model is that certain targets can be thought of as nodes of the 

network that contain a high amount of information when compared to other targets, in the 

light of available knowledge. This information can be propagated in the network through 

the edges. However, the challenge is to differentiate between the ability of nodes to 

propagate information in a principled and meaningful way and we expressed this as a 

function of network topology measures. We hypothesized that the network model will be 

able to retain a small amount of important information and reduce abundant information 

of less importance. Furthermore, nodes that absorb the highest amount of information 

diffusing through the network might be of high scientific interest in the field of drug 

discovery. This might be true even more so for nodes that we originally had very limited 

knowledge for (the Tdark category proteins). Inspired by the name “Illuminating the 

Druggable Genome”, of our research project that provides the framework of this study, 

we created our model based on the analogy of light as information and light sources, 

filters, light emission and absorption as ways to propagate information through the 

network.  

 

The spread of information is modeled by the iterative process of light emission and 

absorption. Accordingly, the nodes are able to emit and absorb light of certain intensity. 

Their ability to do so, however, changes dynamically. When a node absorbs light and gets 

illuminated it acquires the capacity to emit light. The intensity of the emission 

(propagation) is a function of i.) the node's FilterFactor attribute, ii.) the intensity of the 

absorbed light and iii.) a so-called decay-factor. The maximal number of iteration cycles 
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is designated as an optional parameter. If unset, the algorithm terminates at a certain point 

in a definitive manner on its own.However, if the parameter is set by the user, the 

information propagation process is interrupted once the number of iteration cycles 

reaches the value of the parameter. When a node absorbs a single quantum or multiple 

quanta of light from a single or multiple sources (nodes) then the total intensity of the 

absorbed quanta of light is registered in the PhotonCounter attribute of the node. At the 

end of the iterative process the PhotonCounter attribute of nodes serves as output and is 

used to prioritize nodes. 

 

 

In the following sections we introduce the model-specific concepts that are required for 

the understanding of the model. Thereafter, in the “Luminosity-Diffusion Algorithm” 

section we describe the model in operation. 

 

Node Attribute: TDL-Category 

 

The nodes of the network are initially labeled (initialized) with one of the six TDL-

categories introduced above. The TDL-category of targets is extracted from the TCRD 

database. Accordingly, the TDL-category attribute (label) of nodes is the respective TDL 

category of the protein. 
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Node Attribute: FilterFactor 

 
The nodes in this network model can act as light sources and light transmitters. However, 

in the process of propagating light to another node the influence of the nodes are taken 

into account. The influence of nodes manifests in their light filtering capacity. That is, the 

nodes can reduce the intensity of the transmitted light as a function of their filtering 

capacity. The strength of their filtering ability is quantified by the FilterFactor node 

attribute. The value of the FilterFactor of a node is derived as follows. 

 

For each node three network topology measures were computed: i.) PageRank [7], ii.) 

node betweenness centrality [8], iii.) sum of in- and out-degrees [8]. As these topology 

measures are widely used in network research, it should suffice to say that they take into 

account various global and local aspects of the connectivity of the nodes.  

 

The computed network topology measures were normalized to fall within a range from 0 

to 1 according to the template formula provided by Equation 1. Here, T(v) stands for a 

topology measure of a node v, nT(v) for the normalized value of T(v), and max(T) and 

min(T) for the maximum and minimum of the observed topology measure at hand, 

respectively. Furthermore, it holds that max(T) > min(T).  
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𝑛𝑇 𝑣 =
𝑇 𝑣 −min 𝑇
max 𝑇 −min 𝑇        max 𝑇 > min (𝑇) (1) 

 

Next, the three normalized network topology measures were summed up for each node 

and the nodes were sorted in a decreasing order based on the sum with ties broken 

randomly. The index i of a node in the ordered ranked list denotes its rank. The value of i 

was used to compute the FilterFactor attribute of nodes. The value of FilterFactor of a 

node v is computed according to Equation 2, provided that max(i) > 0, where max(i) 

stands for the maximum of observed indices of nodes in the ordered rank list. 

Considering that these indices are ZERO-indexed, max(i) is supposed to be equal to 

N − 1. The variable N denotes the number of nodes in the network. 

 

 

𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 𝑣 =
max 𝑖 − 𝑖(𝑣)

max (𝑖)    max 𝑖 > 0 (2) 

 

 

According to the above ranking scheme, the node of highest influence has an index of 

zero (i = 0)  in the ordered rank list. Accordingly, the FilterFactor value of this node is 1. 

The FilterFactor value of the node of lowest influence is 0. 

 

Considering that the light is the analogy of information in our model, our intention was to 

attribute nodes of high influence with low light filtering and high transmission capacity. 

Thus nodes of high influence are able to spread the received information unchanged or in 

a slightly reduced form. In contrast, nodes of low influence have a limited capacity to 
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transmit or pass on information. This notation prioritizes information originating from 

proteins of high importance over proteins of low importance. Here, the term 

“importance” relates to the topological role of the nodes, representing proteins, in the 

network. Accordingly, when the intensity of the transiting light is multiplied by the 

FilterFactor of the given node its intensity remains unchanged in the case of the node of 

highest influence (FilterFactor = 1). If the light passes through a node of lower influence 

its intensity will be reduced as the FilterFactor of such a node is lower than 1. 

 

Node Attribute: PhotonCounter 

This node attribute serves to register the total amount of light intensity that a given node 

receives through the simulation process. As discussed in more details later, nodes pass-on 

all the absorbed light at once in the subsequent emission step. Therefore, this node 

attribute quantifies the amount of “information” gained by each nodeand the 

PhotonCounter node attribute serves as  the output of the LD algorithm. The nodes are 

prioritized based on the amount of gained information, i.e. the value of their 

PhotonCounter. 

 

Network Object: Quantum 

Light in this network model is represented by a so-called “quantum object” that can be 

passed between nodes. The quantum object contains a variable that stores the intensity of 

the object’s light. The object can only be passed from parent-nodes to child-nodes. The 

original intensity of the quantum object received by a node is registered in the node’s 

PhotonCounter unchanged.  However, the same node might alter the light intensity value 
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of the quantum object before it passes the object on to its child-nodes. Whether or not the 

intensity will be changed is a function of the emitting node’s FilterFactor. The quantum 

object’s intensity is recomputed before the object is passed on. The computation takes 

place by multiplying the actual light intensity of the quantum object by the emitting 

node’s FilterFactor. Regardless of the number of child-nodes all of them receive a 

replica of the same quantum object of recomputed intensity from the emitting parent-

node. 

 

Parameter: Decay Factor 

The decay-factor imitates the natural intensity loss of the light as it travels distances. 

Each time light is emitted from a node its intensity is multiplied by the decay-factor. 

Therefore, over “time”, i.e. the number of iteration cycles, the intensity of the light 

gradually decreases. The decay-factor was devised to counter-balance the fact that the 

network has cycles. These cycles can cause the nodes to absorb and/or emit light of 

disproportionately large intensity. 

 

Luminosity-Diffusion Algorithm 

The input to the “Luminosity-Diffusion (LD)” algorithm is a network that we created 

according to details provided in “Network Assembly” section. When the model network 

is created none of the nodes is able to emit light (Fig. 1A).  
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In the so-called “seeding” step of the algorithm pre-defined numeric values are assigned 

to nodes whose TDL-category is not Tdark. These numeric values represent initial light 

intensities that the nodes will be able to emit later during the propagation step. We 

decided to assign the values of 25, 20, 15, 10 and 5 to nodes of Tclin+, Tclin, Tchem, 

Tmacro and Tgray TDL-category, respectively (Fig. 1B). The difference in the values 

represents the difference in the information content associated with different TDLs. It 

should be noted that Tdark targets are seeded with a value of 0, hence they are not 

considered as light sources unless they become light sources as discussed below. 

 

In the next step, a series of so-called ‘emission-absorption cycles’ occur (Fig. 1C-1H). 

There is an option for the user to set the maximal number of cycles at the beginning of 

the simulation. If such a limit is not set then the algorithm terminates at a point where no 

node is able to emit light. Such a limit was not applied in this study. One cycle of 

iteration represents the process of certain nodes emitting light to their child-nodes, the 

“illuminated” child-nodes absorbing the emitted light and getting updated for a 

subsequent light emission. As discussed above, initially only the non-Tdark nodes can 

emit light, with the initialized (prior) intensities associated with different TDL categories. 

In the subsequent iteration cycles their child-nodes themselves become light-sources and 

acquire the ability to emit light in subsequent iteration cycles. It should be noted that 

unless a node absorbs light in a given cycle it cannot emit light in the next cycle. This 

means that nodes only transmit light but don’t accumulate the intensity of the transiting 

light. This prevents the nodes from becoming stronger and stronger light sources in 

subsequent steps. However, the nodes keep track of the total intensity of light that they 
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absorb, in the PhotonCounter attribute, but this information is not factored into the 

intensity of emitted light as discussed before. 

 

In the light emission preparation step nodes aggregate the quantum of light they received 

from parent nodes. In the aggregation step the intensity of each absorbed quanta of light 

is multiplied by the node’s FilterFactor attribute. The sum of these products will then be 

multiplied by the decay-factor. This final operation yields the intensity of the light the 

node will transmit in the next cycle to each of its child-nodes. 

 

At the end of the emission-absorption cycle the algorithm lists for each node the 

identifier, the TDL category and the PhotonCounter, which is the output of the algorithm. 

The pseudo-code is provided in the “Appendix” to enable the implementation of the LD 

algorithm  and the operation of the LD algorithm is shown in Figure 1 with the help of a 

simple illustrative example. 

 

Computational Time Complexity Analysis 

The computational time complexity of the LD algorithm in a worst-case scenario can be 

derived as the function of the number of nodes, denoted by N. The number of iteration 

cycles is defined by the user and is denoted by c. The seeding step of the algorithm 

iterates over all the nodes one time hence contributes to complexity by a factor of 1 × N. 

Then, in each cycle of the iteration we iterate over all nodes to identify those that can 

emit light and to prepare them for emission. For each node v that is able to emit light we 

need to iterate over all the child nodes of v. In a worst-case scenario each v has N − 1 
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child nodes. Therefore, the light emission step could account as much as N × (N − 1) for 

the complexity in each cycle of iteration. Aggregating the absorbed light intensities can 

account as much as N × (N − 1) for the complexity in each cycle of iteration. 

Based on the above considerations we derived the worst-case computational time 

complexity according to Equation 3. Accordingly, the computational time complexity of 

the LD algorithm is bound asymptotically by the quadratic function of the number of 

nodes in the input network. 

 

 

𝑁 + 𝑐 2𝑁 𝑁 − 1 = 𝑂 𝑁!  (3) 
 

 

Equation (3) derives the worst case time complexity for the LD algorithm. However if we 

limit the number of children of a node v by k such that k<<N, a tighter bound can be 

arrived at as shown in Equation (4). 

 

𝑁 + 𝑐 2𝑁𝑘 = 𝑂 𝑁𝑘  (4) 
 

Validation Scheme 

The LD-algorithm was validated based on a leave-one-out strategy. At each validation 

step a node of Tclin+ TDL-category was seeded with a light intensity value of 0 as 

opposed to 25. This node was referred to as the left-out Tclin+ (LO Tclin+) node. 

Considering that our dataset contained 233 Tclin+ targets we needed to perform 233 
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validation cycles to treat each Tclin+ nodes once as a LO Tclin+. At the end of each 

validation cycle the PhotonCounter value of Tdark and LO Tclin+ nodes were recorded. 

Furthermore, the PhotonCounter values of Tdark nodes were averaged at the end of each 

validation cycle. After the completion of all validation cycles the average PhotonCounter 

values of Tdark targets and the PhotonCounter values of LO Tclin+ targets were 

compared. The results of the validation process are presented in the “Results and 

Discussion” section. 
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Results and Discussion 

The parameter settings of the LD algorithm during the validation process were as follows. 

The number of iteration cycles was chosen to be 20. The decay-factor was set to 0.1. 

These settings were determined by testing a range of values and observing the output 

PhotonCounter values of nodes. The aforementioned parameter settings resulted in a 

reasonable range of observed PhotonCounter values. Furthermore, the 20 iteration cycles 

allows for information to spread between distant nodes in the network. Although these 

parameter values proved useful for our study a different network might require different 

parameter settings. 

 

The validation process revealed that there is a clear difference between the mean and 

standard deviation of PhotonCounter values with respect to the Tdark and the left-out 

Tclin+ targets. The PhotonCounter values in the case of LO Tclin+ nodes range from 0 to 

1385185.51, their mean and standard deviation is 188723.49 and 294576.22, respectively. 

 

In the case of the Tdark targets the PhotonCounter values range from 0 to 32640.10, their 

mean and standard deviation is 11182.94 and 9691.33, respectively. Welch’s-test [9] was 

performed to compare the PhotonCounter values of Tdark and LO Tclin+ nodes. The test 

was deemed appropriate, as the variances of the two samples cannot be assumed to be 

equal. At the end of the validation process we concluded that there was a statistically 

significant difference (P-value: 
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2.15 × 10-17) between the observed PhotonCounter values of the Tdark and the LO 

Tclin+ targets. 

 

It is interesting to point out that some of the Tclin+ targets (27) did not receive any 

illumination when they were left out. Most of these Tclin+ targets (23) have a 0 in-degree 

in the pathway network which provides a clear explanation. However, four of the Tclin+ 

targets, such as CDK9, KCND1, KCNQ5 and SCN4B have an in-degree of 1. The 

peculiar topology of these targets might make them interesting drug targets, as they are 

somewhat isolated in the network. This isolation could be exploited in the drug discovery 

process to avoid or limit unwanted effects caused by perturbing biological pathways. 

 

 

 PhotonCounter 

 mean stddev min max 

LO Tclin+ 188723.49 294576.22 0 1385185.51 

Tdark 11182.94 9691.33 0 32640.10 

 

Table 1. Results of Validation, using the LD algorithm. 

 

 

 

From a target prioritization perspective, targets that are associated with a large amount of 

information gain as compared to other targets might be of interest for future studies for a 
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number of reasons. For example, the information gain of a target reflects the likelihood of 

revealing new knowledge about the target at hand by careful investigation of its 

relationships to other targets in the network. Therefore, this approach might be able to 

identify the Tdark targets most amenable to further exploration. Furthermore, this 

approach could be helpful in the identification of targets that are unlikely to benefit from 

a simple knowledge inference based on the network at hand. We have not proposed this 

model as a tool for new knowledge discovery. However, it would be helpful to 

investigators in deciding where to focus their drug discovery efforts and channel 

available resources efficiently. Finally our approach could be generalized for various 

research domains by adopting the knowledge content scoring scheme to the scientific 

question at hand. 

 

In addition to the original  LD algorithm described earlier we developed an alternative 

algorithm, referred-to as the Luminosity Diffusion 2 (LD2) algorithm (see: Supporting 

Material; S3 Luminosity Diffusion Algorithm, S4 Pseudocode of Luminosity Diffusion 2 

Algorithm, Figure S1-S5). The LD2 algorithm provides an improvement over the LD 

algorithm for a number of reasons. First, it provides the means to analytically track-back 

the sources of information gain. This feature can pinpoint those targets that are worth 

studying in relation to targets with large information gain. The LD2 algorithm also 

provides an efficient mechanism to deal with cycles in the pathway network. /* Can you 

explain in one or two sentences how LD2 deals with cycles here? */ The exhaustive 

characterization of the LD2 algorithm in terms of performance is beyond the scope of the 

current manuscript. Nevertheless, the LD2 algorithm is described in details in the 
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Supporting Material. Also, results of preliminary validation of the LD2 algorithm are 

provided (see: Supporting Material; S5 Preliminary Validation of the LD2 Algorithm and 

Table S1). 
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Conclusion 

 

This study introduces a novel information theory based dynamic network model and 

algorithm. The model allows for simulating the spread of biomedical information in a 

directed network takeing into account the influence of individual nodes represented in the 

network topology.  

 

The main goal of the model is to shed light on understudied targets that might benefit 

from knowledge that could be potentially gained from better-studied targets. Although 

the method is based on a computational approach involving simulation we believe that 

the output of the LD algorithm can be considered as a prioritization scheme to select 

targets for further study and evaluation. The prioritization approach is useful in drawing 

attention to the most promising drug targets which are likely to be novel.  

 

The LD algorithm was validated on 794 proteins that appear both in the TCRD and 

Pathway Commons databases. The results of the validation process support the premise 

that the LD algorithm and the network model could be of use in identifying targets that 

have the potential to gain high amount of information from its related targets. 

Furthermore, the output of LD algorithm might be of use in prioritizing understudied or 

elusive, e.g. Tdark, targets for experimental investigation in the hope of successful 

illumination of their pharmacology treats.  
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Future Directions 

The results presented in this study were achieved by setting some of the user-dependent 

parameters to constant values for our analysis. Therefore it is possible that our results 

may not be optimal or near-optimal. To address this we will perform a thorough 

parameter optimization process in the hope of enhancing our results. We will investigate 

the applicability of the LD-algorithm in other scientific settings. Finally, it would be of 

interest to corroborate the findings of the LD algorithm. That is, it would be desirable to 

analyze the same network with the help of existing algorithms and compare which targets 

they would identify as promising targets for future studies. For example, influence of 

nodes could be computed based on determining the number of vertex independent 

pathways between vertices (nodes), or by analyzing the network with the help of Markov-

blanket algorithms. We will also examine the possibility of parallelizing the LD and the 

LD2 algorithms to improve efficiency enabling them to become critical and useful tools 

for prioritizing drug targets. 
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Figures 

 

 

 

 
Figure 1. Luminosity Diffusion Network Model – Part 1. A) A directed and unweighted network is 
created based on the regulatory relations of proteins. The size of the nodes reflects their influence, i.e. the 
FilterFactor node attribute (larger the node size, larger the FilterFactor). Node 1 is the most influential 
node, hence its size is the largest and its FilterFactor is 1 by definition. B) In the seeding step the initial 
light intensity of nodes are allocated based on their TDL-category. Accordingly, node 1 is a Tclin+, nodes 7 
and 8 are Tchem targets, and the rest of the nodes are Tdark targets in this example. The color of the nodes 
reflects the initial light intensity value “seeded” according to the TDL categories. Accordingly, node 1 is 
the brightest as its initial light intensity value is 25. Nodes 7 and 8 are somewhat dimmer as their initial 
intensity is 15. C) The emission-absorption cycle begins in this step. Only nodes 1, 7 and 8 can emit light. 
However, in accordance with their FilterFactor attributes they can only transmit a certain fraction of their 
light intensity. This is designated by the width of the arrows pointing towards their child-nodes. While node 
1 can transmit all of its light intensity to node 2, nodes 7 and 8 can only transmit a certain fraction of their 
intensity. Please note, that the emitted light intensity is further modulated by the decay-factor in each 
emission step.  
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Figure 1. Luminosity Diffusion Network Model – Part 2. D) In the first absorption step the child node 
aggregates the light intensities absorbed from their parent-nodes. Node 2 has only one parent: node 1, so it 
absorbs the light intensity emitted by node 1 in the previous step. On the other hand, node 6 has two 
parents, nodes 7 and 8. So it aggregates the intensities emitted by nodes 7 and 8. The nodes record the 
absorbed light intensities in their PhotonCounter attribute. In this example node 2 absorbed four arbitrary 
units of light intensity, while node 6 absorbed three of them. The value of PhotonCounter is illustrated by 
the + signs next to the respective nodes. E) In this second emission step only nodes 2 and 6 are able to emit 
light. The intensity of the emitted light is modulated by their FilterFactor attributes and the decay-factor. 
Note that node 2 can only transmit a small fraction of the light intensity that it absorbed from node 1 in the 
first absorption step. This is the result of the low influence in the network of node 2 because it acts as a 
“strong light filter”. F) In the second absorption step nodes 3 and 5 absorb light from their parent-nodes 2 
and 6, respectively. 
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Figure 1. Luminosity Diffusion Network Model – Part 3. G) In the third emission step only node 3 has 
the ability to emit light, considering that node 5 does not have any child-node. On the other hand, due to the 
effect of the decay-factor in this example the intensity of light emitted by 3 will equal to zero practically. 
Hence, node 4 will not absorb any light from node 3. H) At this point the LD algorithm terminates, as there 
are no more nodes that could emit light. The algorithm either terminates at this point or after the number of 
iteration cycles has reached the maximal number of iterations set by the user at the beginning of the 
simulation process, whichever occurs earlier. The output of the algorithm is the PhotonCounter values of 
nodes. In this example one would prioritize the (Tdark) nodes in decreasing order of priority as follows: 
node 2, node 6, node 5 and node 3.  
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Supporting Material 

S1 Terminology of Luminosity Diffusion Algorithm 

 

 

Definition 1: A Quantum object q consists of the following attribute: 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∈ ℝ ∶ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 0  

 

Definition 2: A node represents a protein. A node n is defined by the following attributes: 

 

𝐼𝐷 ∈ ℤ!! , where ℤ!! represents the nonnegative integer numbers. 

𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 ∈ ℝ ∶ 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 ∈ [0, 1] . 

𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {𝑇𝑐𝑙𝑖𝑛+,𝑇𝑐𝑙𝑖𝑛,𝑇𝑐ℎ𝑒𝑚,𝑇𝑚𝑎𝑐𝑟𝑜,𝑇𝑔𝑟𝑎𝑦,𝑇𝑑𝑎𝑟𝑘,𝑇𝑙𝑜} . 

𝑃ℎ𝑜𝑡𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ∈ ℝ ∶ 𝑃ℎ𝑜𝑡𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 0 . 

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑞!, 𝑞!,… , 𝑞! , where qi is a Quantum object. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛: a Quantum object. 

 

The attributes of node n are denoted as n<A> where A symbolizes any attribute of n as 

defined above. 
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Definition 3: An edge represents a regulatory relation between two nodes. If n1 ─> n2, n1 

is said to regulate n2. 

 

Definition 4: A directed and unweighted network 𝐺 = {𝑉,𝐸} consists of a set of nodes V 

and a set of edges 𝐸 = 𝑈 × 𝑉 | 𝑢 ∈ 𝑈:𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉,𝑢 ≠ 𝑣. Due the directionality of 

edges 𝑢, 𝑣 ≠ (𝑣,𝑢). While self-loops are not allowed in G, a loop between nodes u and 

v can exist represented by the edge (u, v) and the corresponding reverse-edge (v, u). 

  

 

Definition 5: A node 𝑛! ∈ 𝑉 is the parent node of 𝑛! ∈ 𝑉 if there exists an edge 

𝐸 = 𝑛!,𝑛! . In this relationship 𝑛! is referred-to as a child-node of 𝑛!. Note, that in case 

the edge 𝑛!,𝑛!  does not exist but the reverse edge 𝑛!,𝑛!  exists, then 𝑛! is not the 

parent node of 𝑛!. In case both of the above referenced edges exist then 𝑛! is both the 

parent- and child-node of 𝑛! and vice versa. 

 

Definition 6: The transmission of a Quantum object q from a node P to all of its child-

nodes C1, C2, …, Cx represents the following process. Let q be associated with P. 

Replicas of object q are created so that their number is equal to the number of child nodes 

of P. Each of these replicas are denoted by q’ and the intensity of them is identical to that 

of q initially. The intensity attribute of each q’ (q’<Intensity>) is recomputed according 

to Equation 5. Next, for each child-node Cx a single q’ object is relocated from P to Cx. 

Upon relocation, q’<Intensity> is recomputed according to Equation 6. The recomputed 
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q’<Intensity> is added to Cx<PhotonCounter>. Finally, object q is disassociated from P 

and is removed from the network. The process is demonstrated on Figure S1.  

 

 

Note, that a node can have multiple parent-nodes. In this case all parent-nodes transmit 

all their quantum objects to the child-node at hand according to the detailed process 

above. Subsequently, the intensity values of all quantum objects received by a node are 

aggregated into a single intensity value. A Quantum object q with this aggregated 

intensity value is created and the quantum objects received from the parent nodes are 

eliminated from the network.  

 

𝑞! < 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > = 𝑞! < 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > × 𝑃 < 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 >    (5) 

 

𝑞! < 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > = 𝑞! < 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > × 𝐷𝑒𝑐𝑎𝑦𝐹𝑎𝑐𝑡𝑜𝑟     (6) 

 

 

 

Definition 7: A single emission-absorption cycle consists of one transmission step in 

which all nodes transmit its associated Quantum object to its child nodes. 

 

Definition 8: Seeding is the process that operates on an initial network of nodes and 

edges. In this initial network no node is associated with a Quantum object. After the 

seeding step certain nodes are associated with a Quantum object in correspondence with 
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the TDL attribute of the nodes. Considering a node n and an associated Quantum object q 

the identifier of the node (n<ID>) is added to the Route list attribute of q (q<Route>). 

The intensity of q (q<Intensity>) is set according to the TDL category of n 

(n<TDLCategory>) as shown in Equation 7. 

 

𝑞 < 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > =

25, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑐𝑙𝑖𝑛 + "
20, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑐𝑙𝑖𝑛"
15, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑐ℎ𝑒𝑚"
10, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑚𝑎𝑐𝑟𝑜"
5, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑔𝑟𝑎𝑦"
0, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑑𝑎𝑟𝑘"
0, 𝑛 < 𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > = "𝑇𝑙𝑜"

    

 (7) 

 

Observation 1: A node n is unable to transmit a Quantum object q if n does not have any 

child nodes, i.e. it is a leaf node. 

 

Observation 2:  If a node n is unable to transmit its associated Quantum object q then q 

will be disassociated from n and removed from the network. 

 

Observation 3: If a node n is not associated with a Quantum object then it cannot transmit 

a Quantum object to its child nodes. However, in a subsequent emission-absorption cycle 

n might receive a Quantum object q from one of its parent nodes. In this case n can 

transmit q to its child nodes in a subsequent emission-absorption cycle.  
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S2 Pseudocode of Luminosity Diffusion Algorithm 

 

Data structure: 
 
 
class Quantum { 

 Double lumen; 

 

 Quantum (double l) { lumen = l; } 

   

 Quantum (Quantum q) { lumen = q.getLumen(); } 

  

updateLumen (double d) { lumen = d; } 

 

Double getLumen () { return lumen; } 

} 

 
class Node {       

 String id = null; 

 List<String> neighbors; 

 Double filterFactor = 0.0; 

 List<Quantum> absorption; 

 Quantum emission; 

 

 String TDLClass = null; 
 Double photonCounter = 0.0;  
 

Node (String s, String t, Double f, List<String> n) { 
  id = s; 
  TDLClass = t; 
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  filterFactor = f; 
neighbors = n; 

 } 
 

 

 receiveQuantum (Quantum q) { 
 Quantum cloneQ = new Quantum(q); 

  absorption.add(cloneQ); 
 } 

 

 aggregateAbsorption () { 
  double l = 0.0; 
    
  for (Quantum q: absorption) { 
   if (actualCycleNr > 0) { 
    q.updateLumen(q.getLumen() * getDecayFactor()); 
    l += q.getLumen(); 
   } 
   else if (0 == actualCycleNr) l += q.getLumen(); 
     
  } 
  photonCounter  +=1; 
  emission.updateLumen(l); 
 } 
 

prepareEmission () { 
  emission.updateLumen(0); 
  aggregateAbsorption (); 
  applyFilter (); 
  absorption.clear(); 

} 
	
	

applyFilter () { 
Quantum q = emission; 
q.updateLumen(q.getLumen() * filterFactor ); 

 } 
	
	

 emitQuantum () { 
  if ((neighbors.size() > 0) && (emission.getLumen() > 0)) { 
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   for (String s: neighbors) { 
    Node v = allNodes.get(s); 
    v.receiveQuantum(emission); 
   } 
  } 
  emission.updateLumen(0);  
 } 
 

} 

 
 
 
 
 
 

Map<Integer,Node> Network;    
Integer actualCycleNr = 0; 
 
LuminosityDiffusion (Map<Integer,Node> G, Double DF, Integer iterationCycleNumber) { 
  

 
Network = G; 
 
seedNetwork (); 
 
 
 

 while (actualCycleNr < iterationCycleNumber ) { 
     
  for (Node n: Network.Values) { 
   if (!n.absorption.isEmpty()) n.prepareEmission();  
  } 
     
  for (Node n: Network.Values) { 
   if (n.emission.getLumen() > 0) n.emitQuantum(); 
  } 
 
  actualCycleNr++; 
 } 
} 
 
seedNetwork () { 
 Quantum q; 
 for (Node n: Network.Values){ 



 133 

  if (n.getTDLClass().equals("Tclin+")) q = new Quantum (25); 
  else if (n.getTDLClass().equals("Tclin"))  q = new Quantum (20); 
  else if (n.getTDLClass().equals("Tchem")) q = new Quantum (15); 
  else if (n.getTDLClass().equals("Tmacro"))  q = new Quantum (10); 
  else if (n.getTDLClass().equals("Tgray"))  q = new Quantum (5); 
  else if (n.getTDLClass().equals("Tdark"))  q = new Quantum (0); 
  else if (n.getTDLClass().equals("Tlo")) q = new Quantum (0);  

n.receiveQuantum(q); 
 } 
} 
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S3 Luminosity Diffusion Algorithm 2 

 

Definition 1: A Quantum object q consists of the following attributes: 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∈ ℝ ∶ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 0  

𝑅𝑜𝑢𝑡𝑒 = 𝑛!,𝑛!,… ,𝑛! , where 𝑛! ∈ ℤ!! 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∈ ℤ!!  

 

Definition 2: A node represents a protein. A node n is defined by the following attributes: 

 

𝐼𝐷 ∈ ℤ!! , where ℤ!! represents the nonnegative integer numbers. 

𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 ∈ ℝ ∶ 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 ∈ [0, 1] . 

𝑇𝐷𝐿𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {𝑇𝑐𝑙𝑖𝑛+,𝑇𝑐𝑙𝑖𝑛,𝑇𝑐ℎ𝑒𝑚,𝑇𝑚𝑎𝑐𝑟𝑜,𝑇𝑔𝑟𝑎𝑦,𝑇𝑑𝑎𝑟𝑘,𝑇𝑙𝑜} . 

𝑃ℎ𝑜𝑡𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ∈ ℝ ∶ 𝑃ℎ𝑜𝑡𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 0 . 

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑞!, 𝑞!,… , 𝑞! , where qi is a Quantum object. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑞!, 𝑞!,… , 𝑞! , where qi is a Quantum object. 

 

The attributes of node n are denoted as n<A> where A symbolizes any attribute of n as 

defined above. 
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Definition 3: An edge represents a regulatory relation between nodes. If n1 ─> n2, n1 is 

said to regulate n2. 

 

Definition 4: A directed and unweighted network 𝐺 = {𝑉,𝐸} consists of a set of nodes V 

and a set of edges 𝐸 = 𝑈 × 𝑉 | 𝑢 ∈ 𝑈:𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉,𝑢 ≠ 𝑣. Due the directionality of 

edges 𝑢, 𝑣 ≠ (𝑣,𝑢). While self-loops are not allowed in G, a loop between nodes u and 

v can exist constituted by the edge (u, v) and the corresponding reverse-edge (v, u). 

  

 

Definition 5: A node 𝑛! ∈ 𝑉 is the parent node of 𝑛! ∈ 𝑉 if there exists an edge 

𝐸 = 𝑛!,𝑛! . In this relationship 𝑛! is referred-to as a child-node of 𝑛!. Note, that in case 

the edge 𝑛!,𝑛!  does not exist but the reverse edge 𝑛!,𝑛!  exists, then 𝑛! is not the 

parent node of 𝑛!. In case both of the above referenced edges exist then 𝑛! is both the 

parent- and child-node of 𝑛! and vice versa. 

 

Definition 6: The transmission of a Quantum object q from a node P to all of its child-

nodes C1, C2, …, Cx represents the following process. Let q be associated with P. 

Replicas of object q are created so that their number is equal to the number of child nodes 

of P. Each of these replicas are denoted by q’ and the values of their attributes are 

identical to that of q initially. The intensity attribute of each q’ (q’<Intensity>) is 

recomputed according to Equation 5. Next, for each child-node Cx a single q’ object is 

relocated from P to Cx. Next, the node identifier of Cx at hand is added to the Route list 

attribute of object q’ (q’<Route>) associated with Cx. and q’<Intensity> is recomputed 
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according to Equation 6. The recomputed q’<Intensity> is added to 

Cx<PhotonCounter>. Finally, object q is disassociated from P and is removed from the 

network. The process is demonstrated on Figure S1.  

 

Note, that a node can have multiple parent-nodes. These parent-nodes also can be 

associated with multiple quantum objects. In this case all parent-nodes transmit all their 

quantum objects to the child-node at hand according to the detailed process above. 

 

 

Definition 7: A single emission-absorption cycle consists of one transmission step in 

which nodes transmit their associated Quantum objects to their child nodes. 

 

Definition 8: Seeding is the process that operates on an initial network of nodes and 

edges. In this initial network no nodes is associated with a Quantum object. Over the 

seeding step certain nodes are associated with a Quantum object in correspondence of the 

TDL attribute of the nodes. Considering a node N and an associated Quantum object q 

the identifier of the node (N<ID>) is added to the Route list attribute of q (q<Route>). 

The intensity of q (q<Intensity>) is set according to the TDL category of N 

(N<TDLCategory>) as shown in Equation 7. 

 

Observation 1: A node n is unable to transmit a Quantum object q if n does not have any 

child nodes, i.e. it is a leaf node. 
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Observation 2: A Quantum object q’ cannot be transmitted from a node P to its child 

node C if C<ID> is contained by q’<Route>. This can only happen if a cycle exists that 

starts from C and includes P as a second-to-last node to C in the cycle. Furthermore, q’ is 

a successor of a Quantum object q that was at some point already transmitted from C to 

its child node that is the member of the same cycle. For clarity, P will attempt to transmit 

q’ to C but the transmission will fail due to the aforementioned reason. 

 

Observation 3:  If a node n is unable to transmit its associated Quantum object q then q 

will be disassociated from n anyway and removed from the network. 

 

Observation 4: If a node n is not associated with any Quantum object then it cannot 

transmit a Quantum object to its child nodes. However, in a subsequent emission-

absorption cycle n might receive a Quantum object q from one of its parent nodes. In this 

case n can attempt to transmit q to its child nodes in a subsequent emission-absorption 

cycle.  

 

Theorem 1: The Luminosity Diffusion algorithm terminates definitely in at most Z 

emission-iteration cycles where Z denotes the length of longest acyclic path(s) in the 

directed network G. 

 

Proof: In order to prove Theorem 1 it is necessary and sufficient to consider two cases 

that can occur in a directed network G during an emission-absorption cycle. We assume 

that the network is already seeded, i.e. it contains certain nodes that are associated with a 
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Quantum object. Also, let us assume that each node has a FilterFactor=1 node attribute 

and that the DecayFactor=1. 

 

Scenario 1. Let us consider the longest acyclic path AB in G that starts in node A and 

ends in leaf node B. The length of AB is denoted by Z, and the value of Z equals the 

number of edges one needs to traverse to reach B starting from A through the longest 

possible acyclic path.  Note that other paths of the same length as the length of AB may 

exist. Let us assume that there exists an intermediate node C in path AB that is a parent 

node of B and C is still associated with a Quantum object q in the Zth emission-absorption 

cycle. This means that C can transmit q to B in the Z+1th emission-absorption cycle. This 

scenario, however would be only possible in two cases: i.) the length of AB is Z+1, ii.) 

there is a node D that is a parent node of A and the emission-absorption cycles started in 

D.  We reach a contradiction in both cases. Thus, in line with Observation 1 and 

Observation 3 we conclude that in Scenario 1 there can only be at most Z emission-

absorption cycles. This also holds true, if C is only an ancestor of B as compared to being 

a parent node of B. Furthermore, it is easy to see that in case AB is not the longest path 

then in the Zth emission-absorption cycle no Quantum object can be associated with B. 

 

Scenario 1 can be illustrated using Figure S2 as follows. The longest acyclic path on the 

figure is the path ABCDF. Accordingly, node A of the figure corresponds to node A of 

Scenario 1, node F of figure to node B of Scenario 1, and node X of figure to node D of 

Scenario 1. Note, that node X of figure represents the impossible case that leads to 

contradiction. 
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Scenario 2: Let us consider an acyclic path A-(X)-B, where X stands for any number of 

intermediate nodes between A and B. This A-(X)-B path is the longest acyclic path in the 

network. Note, that X can also stand for the lack of such node. Also, other paths may 

exist of the same length as the length of A-(X)-B. The path starts from A and ends in B. 

The A-(X)-B path is a part of a larger path that also starts from A and forms a cycle by 

returning into A or one of the intermediate nodes X through node B as the second-to-last 

node. This means that B is also a descendent of A but also a parent node of A and/or X. 

Note, that the existence of such cyclic path (cycle or loop) does not contradict that A-(X)-

B is the longest acyclic path. Let Z denote the length of A-(X)-B. In the Zth emission-

absorption cycle the Quantum object q is associated with B. In the next, Z+1th emission-

absorption cycle, B attempts to transmit q to A or X, which attempt fails according to 

Observation 2. That is, Quantum object q’, the replica of q, already contains A and/or X 

in its q’<Route> list. As the transmission fails, B will be dissociated from q and q will be 

removed from the network. Consequently B will loose its ability to emit a Quantum 

object. Let us assume that there exists a node C that is a child node of B but it is not 

contained by the A-(X)-B path. In order for B to transmit q to C in the Z+1th emission-

absorption cycle the A-(X)-B-C path must be longer than A-(X)-B. That would be a 

contradiction as the length of A-(X)-B-C is Z+1 which contradicts that the length of the 

longest path, i.e. A-(X)-B, is Z. Thus, in line with Observation 2 and Observation 3 there 

can be only Z emission-absorption cycles. This also holds true if B is only an ancestor of 

A and/or X as compared to being a parent node of A and/or X. Furthermore, it is easy to 
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see that in case A-(X)-B is not the longest path then in the Zth emission-absorption cycle 

no Quantum object can be associated with B. 

 

Scenario 2 can be illustrated on Figure S2 with the help of path ABCDE as follows. Node 

A of the figure corresponds to node A of Scenario 2, and node E of figure corresponds to 

node B of Scenario 2. Node B of the figure corresponds to a node X of Scenario 2. 

 

 

It can be seen that any scenario between the 0th and Zth emission-propagation step can be 

considered as either of Scenario 1 or Scenario 2. Thus, proving the above cases is 

sufficient to prove Theorem 1. 

∎  
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Figure S1. Quantum Object Transmission. A: Node A represents a protein of 
TDLCategory=”Tclin+” and node D a protein of of TDLCategory=”Tmacro”. Accordingly, they 
are seeded with a Quantum object q of Intensity = 25 and r of Intensity = 10, respectively. Note 
that nodes B and C represent proteins of TDLCategory=”Tdark”. Accordingly, B and C are not 
seeded with any Quantum object. B: In the first emission-absorption cycle only node A and D are 
able to transmit a Quantum object to their child nodes. As it can be seen, A transmits q to B and 
C, and D transmits r to C. After transmission A and D are not associated with any Quantum 
object. Note, that C receives two Quantum objects by the end of the emission-absorption cycle. 
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Figure S2. Example Network for Theorem 1. The longest acyclic paths of the network are 
ABCDE and ABCDF. Node X and the corresponding edge X-A represent any subgraph that 
could be connected to node A but is in fact not connected to node A. 
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S4 Pseudocode of Luminosity Diffusion 2 Algorithm 

 
Global variables: 
 
Boolean isFinished = true;     
Integer actualCycleNr = 0; 
Double DF = 0.0; 
Map<Integer,Node> Network;    
 
LuminosityDiffusion (Map<Integer,Node> G, Double DF, Integer iterationCycleNumber) { 

Network = G; 
seedNetwork (); 
 
while (isFinished) { 

  isFinished = true; 
   

for (Node n : Network.Values) { 
   if (!n.absorption.isEmpty()) { n.prepareEmission(); } 
  } 
  for (Node n : Network.Values) { 

if (n.emission != null) { n.emitQuantum(); } 
  } 
  actualCycleNr++; 

} 
}    
 
seedNetwork () { 
 Quantum q; 
 for (Node n: Network.Values){ 
  if (n.getTDLClass().equals("Tclin+"))  q = new Quantum (25); 
  else if (n.getTDLClass().equals("Tclin"))   q = new Quantum (20); 
  else if (n.getTDLClass().equals("Tchem"))  q = new Quantum (15); 
  else if (n.getTDLClass().equals("Tmacro"))   q = new Quantum (10); 
  else if (n.getTDLClass().equals("Tgray"))   q = new Quantum (5); 
  else if (n.getTDLClass().equals("Tdark"))   q = new Quantum (0); 
  else if (n.getTDLClass().equals("Tlo"))  q = new Quantum (0);  

n.receiveQuantum(q); 
 } 
} 
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class Node {       

  String id; 
  List<String> neighbors; = new List<String> (); 
  Double filterFactor = 0.0;  
 
  List<Quantum> absorption; 
  List<Quantum> emission; 
 
  String TDLClass; 
  Double photonCounter = 0.0;  
 

Node (String s, String t, Double f, List<String> n) { 
  id = s; 
  TDLClass = t; 
  filterFactor = f; 

neighbors = n; 
 } 

 

 

   
  
  
  receiveQuantum (Quantum q) { 
   Quantum cloneQ = new Quantum(q); 
   absorption.add(cloneQ); 
  } 
   
  prepareEmission () { 
   emission.clear(); 
   removeReturnedORDimmedQuanta (); 

  aggregateAbsorption (); 
   applyFilter (); 
   stampQuanta (); 
   absorption.clear(); 
  } 
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  applyFilter () { 
    
    
   for (Quantum q: absorption) { 
    q.updateLumen(q.getLumen() * filterFactor ); 
    emission.add(q); 
   } 
    
  } 
   
   

stampQuanta () { 
   for (Quantum q: emission) q.stampSource(id); 
  }   
 
 
  aggregateAbsorption () { 
    
    
   Double l = 0.0; 
    
   for (Quantum q: absorption) { 
    if (actualCycleNr > 0) { 
     l += q.getLumen() * DF; 
     q.increaseTraveledDistance(); 
    } 
    else { 
     l += q.getLumen(); 
     q.increaseTraveledDistance(); 
    } 
   } 
   photonCounter += l; 
  } 
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removeReturnedORDimmedQuanta () { 
   Quantum q; 
  
   for (int i = 0; i < absorption.size(); i++) { 
    q = absorption.get(i); 

if (q.hasReturned(id) || (q.hasDimmed ()) {  
 absorption.remove(q); 
} 

   }  
  } 
   
 
  emitQuantum () { 
 
   if (neighbors.size() > 0) { 
    
    if (!emission.isEmpty()) {  

isFinished = false; 
     
     for (String s: neighbors) { 
      Node v = Network.get(s); 
      for (Quantum q: emission) v.receiveQuantum(q); 
     } 
    } 
   } 
 
   emission.clear();  
  } 
 } 
  
 
 class Quantum { 
 
  Double lumen = 0.0; 
  Integer traveledDistance = 0; 
  Map<String, Boolean> sourceStamps; 
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  Quantum (double l) { 
   lumen = l; 
  } 
  Quantum (Quantum q) { 
   lumen = q.getLumen(); 
   traveledDistance = q. traveledDistance; 
   sourceStamps = q. sourceStamps; 
  } 
     
  updateLumen (Double l) { 
   this.lumen = l; 
  } 
   
  Double getLumen () { 
   return lumen; 
  } 
   
   
  Boolean hasDimmed () { 
    
   if (0 == getIterationNr()) return false; 
   else {    
    if (traveledDistance > getIterationNr()) { return true; } 
    else { return false; } 
   } 
  } 
 
  increaseTraveledDistance () { 
   traveledDistance++; 
  } 
   
  stampSource (String sourceNodeID) { 
   sourceStamps.put(sourceNodeID, true); 
  } 
   
  Boolean hasReturned (String receivingNodeID) { 
   if (sourceStamps.containsKey(receivingNodeID)) { return true; } 
   else { return false; } 
  } 
 } 
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S5 Preliminary Validation of the LD2 Algorithm 

The validation scheme of LD2 algorithm is identical to the scheme applied in the 

validation of the LD algorithm. The applied DecayFactor was chosen to be 1. A Quantum 

object q was considered to be dimmed if its q< traveledDistance > attribute has reached the 

value of 2. This parameter setting allows for a Quantum object q to travel to nodes that 

are separated at most by 2 edges from the node emitting q. Also, in this scenario, i.e. 

DecayFactor = 1, the intensity of q and its replicas (q’) are only influenced by the 

FilterFactor attribute of nodes they transit. Accordingly, varying the maximal distance 

allowed for a Quantum object to travel is helpful in limiting the regulatory relations to be 

considered in simulating the information flow. The results of the validation using the 

aforementioned scenario are summarized in Table S1. The observed difference of the 

average PhotonCounter values of the left-out Tclin+ nodes (LO Tclin+) and that of the 

Tdark nodes is statistically significant (Welch’s test: two-tailed t-test on two samples, 

assuming unequal variances, p = 1.06 x 10-17). 

 

 PhotonCounter 

 mean stddev min max 

LO Tclin+ 2581.92 4019.44 0 19345.08 

Tdark 132.32 77.71 0 281.93 

 

Table S1. Results of Validation, using the LD2 algorithm. 
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We also carried out experiments with increased values of the maximal allowed distance 

to travel for Quantum objects. Unfortunately, the experiment did not finish over four days 

when this parameter was set to 3. A possible work-around of this problem might be to 

adopt the LD2 algorithm to a parallel computational environment. 
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Supplementary Figures 

 

 

 

 

Figure S3. Luminosity Diffusion Network Model – Part 1. A) A directed and unweighted network is 
created based on the regulatory relations of proteins. The size of the nodes reflects their influence, i.e. the 
FilterFactor node attribute (larger the node size, larger the FilterFactor). Node 1 is the most influential 
node, hence its size is the largest and its FilterFactor is 1 by definition. B) In the seeding step the initial 
light intensity of nodes are allocated based on their TDL-category. Accordingly, node 1 is a Tclin+, nodes 7 
and 8 are Tchem targets, and the rest of the nodes are Tdark targets in this example. The color of the nodes 
reflects the initial light intensity value “seeded” according to the TDL categories. Accordingly, node 1 is 
the brightest as its initial light intensity value is 25. Nodes 7 and 8 are somewhat dimmer as their initial 
intensity is 15. C) The emission-absorption cycle begins in this step. Only nodes 1, 7 and 8 can emit light. 
However, in accordance with their FilterFactor attributes they can only transmit a certain fraction of their 
light intensity. This is designated by the width of the arrows pointing towards their child-nodes. While node 
1 can transmit all of its light intensity to node 2, nodes 7 and 8 can only transmit a certain fraction of their 
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intensity. Please note, that the emitted light intensity is further modulated by the decay-factor in each 
emission step.  

 

 

 

 
 

 
 
Figure S4. Luminosity Diffusion Network Model – Part 2. D) In the first absorption step the child node 
aggregates the light intensities absorbed from their parent-nodes. Node 2 has only one parent: node 1, so it 
absorbs the light intensity emitted by node 1 in the previous step. On the other hand, node 6 has two 
parents, nodes 7 and 8. So it aggregates the intensities emitted by nodes 7 and 8. The nodes record the 
absorbed light intensities in their PhotonCounter attribute. In this example node 2 absorbed four arbitrary 
units of light intensity, while node 6 absorbed three of them. The value of PhotonCounter is illustrated by 
the + signs next to the respective nodes. E) In this the second emission step only nodes 2 and 6 are able to 
emit light. The intensity of the emitted light is modulated by their FilterFactor attributes and the decay-
factor. Note that node 2 can only transmit a small fraction of the light intensity that it absorbed from node 1 
in the first absorption step. This is the result of the low influence in the network of node 2 because it acts as 
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a “strong light filter”. F) In the second absorption step nodes 3 and 5 absorb light from their parent-nodes 2 
and 6, respectively. 

 

 

 

 

 

 

Figure S5. Luminosity Diffusion Network Model – Part 3. G) In the third emission step only node 3 has 
the ability to emit light, considering that node 5 does not have any child-node. On the other hand, as per 
definition of Quantum object transmission node 3 is not able to transmit quantum object to node 1. The 
reason of this is that the Quantum object to be transmitted already has node 1 listed in its “Route” list 
attribute indicating that it made a round-trip from and to node 1. Such transmission of a Quantum object is 
prohibited. H) At this point the LD algorithm terminates, as there are no more nodes that could emit light. 
The algorithm terminates at this point or after the number of iteration cycles has reached the maximal 
number of iterations, set by the user at the beginning of the simulation process. The output of the algorithm 
is the PhotonCounter values of nodes. In this example one would prioritize the (Tdark) nodes in decreasing 
order of priority as follows: node 2, node 6, node 5 and node 3. 
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Chapter 3 
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The first two chapters of the Thesis were focusing mainly on the target selection phase of 

the drug discovery process. Once a promising target or multiple targets are selected the 

next major milestone is the identification of lead molecules. The lead molecules can be 

thought of as the ancestors of the product of the drug development process, i.e. the drug 

candidate. This drug candidate is the subject of the clinical trials and upon the positive 

outcomes of the trials it will become the marketed drug. 

 

This chapter takes a closer look on a typical technique used in conjunction with the 

screening experiments that is used to enhance the properties of the lead molecules. This 

technique is called clustering. Although it remains open to date to derive a universally 

accepted definition for clustering the common ground of existing definitions can be 

summarized as follows. The clustering is a family of unsupervised machine learning 

methods. These methods aim to divide objects into groups so that objects of the same 

group are more similar to each other than to objects of a different group. The groups in 

this context are referred-to as clusters.  

 

The technique of clustering in drug discovery is used typically as follows. In the first 

round of the high-throughput screening process so-called hit molecules are distinguished. 

The basis of the distinction is the magnitude of the biological response invoked by the 

molecules. The greater the invoked the response, the more likely a molecule will be 

identified as a hit molecule. The actual distinction is the function of the mean and 

variance of the observed biological responses. In a follow-up screening experiment the 
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set of hit molecules is re-tested. Moreover, this set is extended with additional molecules.  

This is where the clustering technique comes into play. 

First, the original set of molecules is partitioned into clusters with the help of a clustering 

algorithm. Next, clusters are selected that contain the hits. Finally, molecules from these 

clusters that were not distinguished as hits are selected and added to the set of molecules 

to be screened in the follow-up screening experiment. One of the most important reasons 

behind this practice is the derivation of so-called structure-activity relation (SAR) series. 

These SAR series can be used to pinpoint structural features of molecules that play an 

important role in interacting with the drug target at hand. These structural features are of 

key importance in the subsequent structural optimization or “fine-tuning” of the 

molecules. The most promising molecules are selected as lead molecules over a number 

of follow-up screens. Eventually, in an ideal scenario, a drug candidate can be derived 

from one of the lead molecules through a series of structural optimization steps.  

 

While clustering methods have been around for multiple decades the so-called network 

clustering techniques constitute a rather new branch of the art. Furthermore, they show a 

great promise in handling databases in the realm of Big Data. Although network 

clustering techniques have become popular in a broad range of disciplines, including 

cheminformatics, some aspects of the clustering procedure received less attention than 

they deserve. These aspects are related to the very first step of the network clustering 

process, i.e. the generation of the network itself. As the initial step, the network 

generation has a deterministic effect on the outcome of every subsequent processing step. 

Despite the obvious importance of this issue no generally accepted practice has been 
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established to date to aid the network generation process. The systematic method for 

network generation presented in this chapter was born from the seeds of this scientific 

need. 

 
 

 

 

 

 

Hypothesis:  

 

In the case of large molecular datasets when no reference clustering or a 

priori knowledge is available, the likelihood of a reasonable clustering is 

promoted by monitoring the average clustering coefficients of generated 

similarity networks. 
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Abstract 

Background 

Complex network theory based methods and the emergence of “Big Data” 
have reshaped the terrain of investigating structure-activity relationships 
of molecules. This change gave rise to new methods which need to face an 
important challenge, namely: how to restructure a large molecular dataset 
into a network that best serves the purpose of the subsequent analyses. 
With special focus on network clustering, our study addresses this open 
question by proposing a data transformation method and a clustering 
framework. 

Results 

Using the WOMBAT and PubChem MLSMR datasets we investigated the 
relation between varying the similarity threshold applied on the similarity 
matrix and the average clustering coefficient of the emerging similarity-
based networks. These similarity networks were then clustered with the 
InfoMap algorithm. We devised a systematic method to generate so-called 
“pseudo-reference” clustering datasets which compensate for the lack of 
large-scale reference datasets. With help from the clustering framework 
we were able to observe the effects of varying the similarity threshold and 
its consequence on the average clustering coefficient and the clustering 
performance. 

Conclusions 

We observed that the average clustering coefficient versus similarity 
threshold function can be characterized by the presence of a peak that 
covers a range of similarity threshold values. This peak is preceded by a 
steep decline in the number of edges of the similarity network. The 
maximum of this peak is well aligned with the best clustering outcome. 
Thus, if no reference set is available, choosing the similarity threshold 
associated with this peak would be a near-ideal setting for the subsequent 
network cluster analysis. The proposed method can be used as a general 
approach to determine the appropriate similarity threshold to generate the 
similarity network of large-scale molecular datasets. 
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Background 

Complex network theory based clustering algorithms represent a relatively new class of 

methods applied to the field of cheminformatics. This class of methods can process large 

data sets in reasonable time. The core of the decision making mechanism of these 

network, or graph theory based methods, is the connectivity matrix of the network, i.e. 

which nodes are inter-connected. This connection structure can be perceived as 

information spread across the network. This information is used for inferring what node 

is likely to be similar to other nodes, based on what nodes they have in common. 

Network clustering algorithms, which are also referred to as community or module 

detection algorithms, operate on a similar basis. They seek groups of similar subjects 

based on the node neighborhood. Examples of such algorithms are the k-clique 

percolation method (CPM) [1–3] combined with a level selection algorithm (LInCS) [4], 

the InfoMap algorithm [5], and the Girvan–Newman algorithm [6]. The outcome of any 

network based clustering is substantially influenced by the underlying network topology. 

Cheminformatics networks are typically generated using the similarity matrix derived 

from the molecules of interest. Such networks are often referred to as similarity networks. 

The process of converting the similarity matrix into a similarity network is not obvious. 

Typically a threshold is applied to the values of the similarity matrix, leading to a so-

called threshold matrix [4, 7]. Pairs of molecules are preserved as pairs of nodes 

connected by an edge if their similarity-coefficient is greater than or equal to the selected 

cut-off similarity value, denoted ast. This process results in an unweighted and undirected 

network. Ideally this network is able to highlight structural relations between the 

chemical structures at hand. The question arises: How can one select a threshold value so 
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that the similarity network serves as an optimal or near-optimal input for the subsequent 

clustering step? 

The importance of this question is apparent in the context of “Big Data”. To our 

knowledge, no systematic method addresses the aforementioned question. We have 

summarized our requirements for a systematic similarity threshold selection mechanism, 

which are: (1) ability to process large molecular datasets; (2) similarity measure 

independence; (3) use of structural chemical information only; (4) support the decision 

making process with well-defined network topology parameters. In the following we 

provide a short summary of earlier attempts that addressed the challenges, at least in part. 

A common approach to converting a similarity matrix into a similarity network is to 

apply a threshold or series of thresholds on the similarity matrix. Saito et al. [8] used 

statistical significance testing to identify positively correlated pairs of molecules, which 

are connected by an edge in the resultant network. The emerging network topology is a 

function of the selected significance level. A more common approach is to apply a series 

of thresholds on the full similarity matrix. This approach was utilized decades ago for 

clustering documents based on keywords [7]. Tanaka et al. [9] used this approach in 

cheminformatics, however that investigation focused on small-world properties [10] of 

the emerging similarity networks. Wawer et al. [11] applied a series of thresholds to 

generate similarity networks. Their selection of the applied threshold t = 0.65 was driven 

by evaluating clusters based on available bioactivity data. As a secondary data source, 

bioactivity is not always available, thus this method cannot be used when only chemical 

structures are available; furthermore, by changing the endpoint from one bioactivity 

source to another, clusters are likely to re-arrange. The threshold t = 0.65 value is based 
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on the drug-like MACCS fingerprints [12], which are unlikely to be suitable for 

analyzing datasets of Big Data given the low discrimination capacity provided by such a 

relatively small number of structural keys. Furthermore, Wawer et al. [11] only discuss 

network topology from a high-level point of view, i.e. through the number, size, density 

and composition of components. 

Given our interest in molecular similarity networks from a clustering point of view, our 

attention was drawn to a promising and well-defined network topology descriptor. This 

descriptor is the so-called average clustering coefficient (ACC) [10]. The use of ACC in 

conjunction with (similarity) thresholds can be found in prior art, e.g. Serrano et al. [13] 

used it in the realm of physics. This study did not analyze molecular similarity networks, 

but some of its findings demonstrated that the ACC could indicate changes in network 

topology. Barupal et al. [14] show that the selection of the similarity threshold in 

metabolite networks can change the individual clustering coefficient values of nodes. 

Nevertheless, none of the latter two studies provide a systematic method for selecting a 

suitable similarity threshold. To our knowledge, it was our previous work, by 

Zahoránszky et al. [4], that provided a first systematic method for selecting a similarity 

threshold to promote the success of a subsequent network clustering step. While this 

method was able to inspire research [15] outside the realm of cheminformatics it was not 

evaluated on large molecular datasets. Otherwise, the method meets the rest of our 

criteria raised against a systematic similarity threshold selection method. Therefore, we 

extended and generalized this approach. 

The scope of this study is to find a methodology-driven transformation of a similarity 

matrix into a network that facilitates a near optimal outcome of a particular clustering 



 162 

workflow. Naturally the optimal outcome will be constrained by the choice of similarity 

measures and clustering algorithms. The transformation should be able to handle large 

datasets and to operate on the basis of objective network topology measures, in order to 

reduce the need for making subjective decisions by the investigator. 
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Datasets and methods 

Molecular libraries 

Graph theory provides the underpinning of quantifying similarity between molecular 

structures. The atoms of molecules constitute the nodes of the graph whereas the bonds 

constitute the edges. The nodes and the edges are labeled according to the available 

chemical information, i.e. types of atoms and bonds. This representation might be 

referred to as a molecule graph. In this study molecular structures are encoded as isomeric 

SMILES [16] which is a widely used language to describe molecule graphs. The 

following subsections introduce the data sets analyzed in the present study. 

Small combinatorial libraries 

A small set of 157 molecules has been proposed [4] to be used as a reference data set for 

clustering studies. Molecules were manually selected utilizing expert knowledge so they 

can be assigned to six clusters representing the original six combinatorial libraries the 

compounds were synthesized in. The number of molecules selected to each reference 

cluster shows variation that reflects the intention of designing the reference data set. In 

each cluster molecules are more similar to each other than to molecules of another 

cluster. The reason of it is that combinatorial synthesis produces molecules that share the 

same core, referred to as scaffold. Considering that the six different combinatorial 

libraries represent six different scaffolds it is assured that intra-cluster similarity is greater 

than inter-cluster similarity. This data set will be referred to as Small Combinatorial 
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Libraries (SCL) through this study. The original molecular structures of SCL were 

deposited by AMRI Inc. (former Comgenex) [17] in the ZINC 7 database [18]. 

WOMBAT 2010 data set 

The World of Molecular Bioactivity (WOMBAT) database (version 2010) [19] is a 

manually curated comprehensive biological activity database for small molecules. It 

comprises 300,000 unique molecular structures, 19,000 unique targets and more than 

1,000,000 biological activity data that were experimentally determined between small 

molecule-target pairs. Each biological activity entry is referenced by the original paper in 

which the experimental result was reported. Small molecules were extracted from the 

WOMBAT database in the form of isomeric SMILES. Next, a standardization scheme 

was applied on the structures which is described in details in subsection “Structure 

standardization”. Removal of any duplicate structures resulted in 244,143 unique 

molecular structures. 

PubChem MLSMR data set 

The PubChem Molecular Libraries Small Molecule Repository (MLSMR) [20–24] is a 

library that was designed for facilitating high-throughput screening campaigns. The 

library contains several distinguished subsets such as (1) known bioactive compounds 

such as toxins and drugs, (2) natural products, (3) compounds focused on a variety of 

biological target families and (4) large number of compounds attributing to a significant 

diversity. The size of the library has evolved in multiple cycles to achieve a number of 

400,000 compounds the time the experiments of this study were carried out. Therefore, 
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this data set provides a large and diverse sample of known and potential bioactive 

chemical space. Furthermore, the data set contains large number of smaller subsets that 

can be considered as structure-activity relationship (SAR) series. This unique balance of 

diversity and structural relatedness make this library useful for lead identification and 

optimization. After standardization and duplicate filtering: 353,028 unique structures. 

Structure standardization 

The SCL dataset has been imported into ChemAxon InstantJChem (version 5.7.0) [25]. 

Next, the molecules were extracted from the database as canonical SMILES using the 

“smiles:au-H” formatting string. The exported structures were object to another 

standardization in the pipeline which contains a “keep largest fragment only” and a 

“general” aromatization steps. These standardization steps were performed using the 

ChemAxon’s standardize utility from the JChem library (version. 3.2.10). 

The WOMBAT and PubChem MLSMR datasets were imported into a ChemAxon 

InstantJChem database (version 5.3.8). The structures were exported from this database 

as canonical SMILES using the “smiles:au0-H” formatting string. The extracted 

structures were subject to another standardization step with the help “standardize” utility 

of ChemAxon’s JChem library (version: 5.3.6) using the -c 

“keepone..neutralize..aromatize..[O−][N+]=O>>O=N=O..N=[N:1]#[N:2]>>N=[N+:1]=[N

−:2]” −f “smiles:au0-Hn” parameters. The duplicate structures were removed. 

Similarity measures 
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A family of techniques utilized to quantify similarity between molecules starts with 

extracting structural features as subgraphs from the graph of molecular structures. The set 

of extracted structural features will characterize a molecule. This set of features is often 

referred to as a topological fingerprint [26, 27]. The more features two molecules have in 

common the more similar they are [28, 29]. In this study three major types of molecular 

fingerprints were used, namely structural key fingerprints, hashed binary fingerprints and 

extended connectivity fingerprints (ECFP). Structural key based fingerprints were 

computed using the Open Babel (version 2.3.2) implementation [30] of the original 

MACCS keys [12]. It should be noted that only 122 out of the original 166 MACCS keys 

is used in the Open Babel implementation due to the unavailability of the rest of the 

original MACCS keys. Hashed binary fingerprints of length 1024, 2048 and 4096 were 

generated by using ChemAxon’s GenerateMD utility (version 3.2.10) [25, 31]. Extended 

connectivity fingerprints of diameter 4, 8, and 12 were generated by an in-house 

implementation of the underlying algorithm [32–34]. In correspondence with the 

predefined diameter d, types of ECFPs are distinguished by suffixing the abbreviation 

with the applied parameter d; ECFP_4 refers to a fingerprint in which the diameter of the 

extended neighborhoods is 4. Although in the main body of this study molecules were 

characterized by ECFP_4 fingerprints, some of the results were obtained by using 

ECFP_8 and ECFP_12 fingerprints. 

With the help of molecular fingerprints it is possible to quantify the similarity between 

molecules. This step requires the application of a so-called similarity measure. 

The Tanimoto similarity-coefficient [35] is one of the most widely used similarity 

measures in cheminformatics. The idea of this metric is to express the ratio of the 
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common and distinct structural features of two molecules. Accordingly, the maximal 

value of the Tanimoto similarity-coefficient is 1 whereas the minimal is 0 corresponding 

to highest and lowest similarity, respectively. As described above, several methods exist 

to capture structural characteristics of molecules in a form of molecular fingerprints. In 

the case of fingerprints of fixed length, e.g. MACCS-fingerprint and ChemAxon hashed 

binary fingerprints, computing the Tanimoto similarity-coefficient T(m A ,m B ) is 

performed according to Formula 1, where A and B denote the set of indices of bits with a 

value of 1 in the fingerprints of molecule m A and m B , respectively. 

𝑇 𝑚!,𝑚! =  
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵  (1) 

  

The means of computing Tanimoto similarity-coefficient between extended connectivity 

fingerprints follows a similar logic. Considering that ECFPs are comprised of integers 

instead of bits, moreover the length of ECFPs might vary due to the fingerprint 

generating algorithm, it is necessary to convert these fingerprints into a fixed-length bit-

vector. One of the means to do so is treating the integers as indices of a virtual fingerprint 

of length W that corresponds to the largest integer appearing in any of the fingerprints. In 

agreement with this interpretation each integer represents a bit turned to 1 in a W-bit 

length virtual fingerprint. With the aid of this transformation the Tanimoto similarity-

coefficient of two ECFPs can be computed as described above.  

We used ChemAxon’s JChem 5.7.1 library to compute Tanimoto similarity-coefficients 

in the case of MACCS keys and ChemAxon hashed binary fingerprints. In the case of 
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ECFPs an in-house developed software was used to compute Tanimoto similarity-

coefficients.  

 

Molecular Similarity Network Generation 

Pairwise similarities between a set of molecular structures M defines a similarity matrix S 

that is a |M| × |M| squared matrix. Furthermore, S is symmetric considering that in this 

study the similarity of molecules is expressed as Tanimoto similarity-coefficient (see: 

Tanimoto similarity-coefficient above). An element si,j ∈ ℚ [0,1] of S represents the 

Tanimoto similarity-coefficient T(mi , mj  | ∀m ∈ M) defined between molecules mi and 

mj. This similarity matrix can be transformed into a fully connected network constituted 

by molecules as nodes and edges connecting them. An edge in this network is weighted 

and represents the similarity relation si,j between the two endnodes, i.e. molecules mi and 

mj provided that i≠j. The weight of an edge equals to si,j. Considering that Tanimoto 

similarity-coefficient is a symmetric similarity measure the edge between two nodes is 

undirected. Therefore this network is a weighted and undirected network. However, the 

topology of a fully connected network provides little help in finding interesting relations 

between molecules based on network topology.  

A possible solution for highlighting important similarity relations is to apply a similarity 

threshold t on the original similarity matrix S. Applying t on S will transform a similarity-

coefficient to 1 if its value is greater than or equal to t. Otherwise the similarity-

coefficient will be transformed to 0. The resultant matrix of the thresholding step is 
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referred to as a threshold matrix [7] and is denoted by Z. Please note that the dimensions 

of Z are the same as that of S. Elements of Z are denoted by zi,j ∈ {0,1} and are 

computed according to Formula 2.  

 

Thre

shol

d matrix Z can be transformed into a network by similar means as the similarity matrix. 

However, according to our initial aim, i.e. to highlight important similarity relations 

based on the topology merely, there is no need to preserve the weight of the edges. This 

transforms the initial meaning of an edge into a new binary relation: the existence of an 

edge between two nodes represent a T(mi , mj) ≥ t similarity relation between molecules mi 

and mj. The network can be readily derived from Z as follows. If zi,j = 1 then an edge is 

defined between nodes representing molecule mi and mj. On the other hand, if zi,j = 0 then 

no edge is defined between the corresponding nodes. The resultant network is therefore 

unweighted and undirected and can be referred to as a similarity network. It should be 

noted that similarity matrix S might contain molecules that only have Tanimoto 

similarity-coefficients lower than the applied threshold. This kind of molecules will only 

have zeros in the corresponding row in the threshold matrix Z. In similarity networks 

such a molecule is represented as a single node, i.e. a singleton. The process of 

generating similarity networks is illustrated in Fig. 1.  

 

Average Clustering Coefficient 

𝑧!,! =
0, 𝑠!,! < 𝑡
1, 𝑠!,! ≥ 𝑡 (2) 
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Let G = (V, E) denote a network constituted by a set of nodes V and a set of undirected 

and unweighted edges E (U × V ) | u, v ∈ V, ∀(u, v) : u ≠ v connecting the nodes. A node 

v ∈ V is considered a neighbor of node i ∈ V if (i, v) ∈ E, i.e. an edge exists between 

the two nodes. The degree deg(i) ∈ ℕ of node i is defined as the number of edges 

associated to node i.  

Let N(A × B) ⊆ E | A, B ⊆ V \ i, ∀a ∈ A : (i, a) ∈ E, ∀b ∈ B : (i, b) ∈ E denote a 

subset of edges that connect the neighbors of node i. Please note, that none of the edges 

between node i and its neighbors is member of this edge subset N.  

The clustering coefficient, denoted by CC(i) ∈ ℚ [0,1] of a node i ∈ V in the network G 

is defined as the ratio of the number of existing edges between the neighbors of node i 

and the number of possible edges between its neighbors [10]. If node i has none or only 

one neighbor then CC(i) = 0 by definition.  

Using the above introduced concepts the formal definition of clustering coefficient is 

given by Formula 3.  

 

 

It 

can 

be 

seen that the clustering coefficient is a local parameter that provides information on the 

local topology of a particular node. On the other hand, the average clustering coefficient 

ACC(G) ∈ ℝ[0,1] is a global parameter that characterizes the overall network topology 

𝐶𝐶 𝑖 =   
      0,                                             deg (𝑖) ∈ 0,1

2 𝑁
deg 𝑖 deg 𝑖 − 1

, deg 𝑖 > 1  (3) 
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of G [10]. It takes into account the clustering coefficient values of the individual nodes 

that have a degree greater than zero. Let X ⊆ V | ∀x ∈ X : deg(x) > 0 denote the subset 

of such nodes. Accordingly, the average clustering coefficient is defined formally by 

Formula 4.  

 

 

 

 

The interplay between the average clustering coefficient and the addition or 

removal of edges 

The ACC of a network is subject to change in case of edge addition or edge removal. The 

dynamics of this process is quite intriguing: one would expect that addition of new edges 

to an existing network would increase the connectedness. While this is true, i.e. more 

nodes will become connected, it does not follow that the existing neighbors of a node are 

more likely be connected. Acquiring a new neighbor upon an edge addition does not 

increase the clustering coefficient of the host node if the new neighbor won’t be 

connected to any of the already existing neighbors of the host node. Furthermore, 

removal of an edge can actually lead to an ACC increase. The changes described here are 

illustrated with examples in Fig. 2. 

 

The phenomenon described above can be observed when a series of similarity networks 

are generated from a given similarity matrix by applying a series of thresholds. Increasing 

𝐴𝐶𝐶 𝐺 =     
 0,                                     𝑋 = 0
1
𝑋 𝐶𝐶(𝑥!)

!

!!!
, 𝑋 > 0

 (4) 
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the threshold implies removing edges from the network. Applying a strictly 

monotonically increasing series of thresholds on a similarity matrix does not necessarily 

lead to a strictly monotonic decrease in the edge number of the generated similarity 

networks. This happens if an increment in the threshold does not meet the value of the 

next lowest Tanimoto similarity-coefficient of a pair of molecules. In this case the two 

networks generated by the previous and the incremented thresholds will be identical 

despite the threshold value increase. 
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Clustering framework and performance analysis 

Evaluating clustering performance is still a challenge to date for a number of reasons. 

First of all the number of available reference sets, often referred to as ground truth sets, is 

very limited. A common reason is that the data set at hand is proprietary in nature. Even 

though the data set might be accessible, the lack of exact definition of a cluster per se 

contributes some extent of inherent subjectivity to the process of determining which 

object belongs to which cluster, i.e. to the creation of reference clustering. 

One of the common strategies to define a reference clustering for a set of molecular 

structures requires the involvement of expert knowledge. In this process a chemist would 

inspect individual molecular structures and assign them to clusters based on a predefined 

clustering objective. This human-dependent approach becomes cumbersome, then 

intractable as the data sets reach the thousands range. To overcome this barrier 

a computer aided method is required to substitute expert knowledge in the process. A 

plausible way to achieve this is to apply an adequate combination of a pattern-recognition 

algorithm and a clustering algorithm. Considering that numerous pattern recognition and 

clustering algorithms exist it is likely that the resulting clustering will be different in each 

case, although some degree of consensus might be expected. 

In the following subsection we describe a clustering framework that was used to analyze 

the effect of choosing a certain similarity threshold on the clustering performance. The 

clustering framework consists of (a) three reference clustering sets, (b) a clustering 

algorithm and (c) a performance evaluation method. It should be noted, however, that the 

aim of cluster analysis was not to achieve the ideal clustering in light of the reference 

sets, but to show how the choice of similarity threshold influences the performance when 
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the same clustering workflow and reference clustering sets are used for comparison. For 

this reason we accept that one might argue for the existence of other means to create the 

reference clustering sets and to perform the cluster analysis. Nevertheless, the clustering 

framework assures that the observed variance in the clustering performance is 

accounted solely for the choice of similarity threshold. This holds true, because the 

applied reference clustering sets and the clustering algorithm are consistent through the 

entire study. 

Reference clustering data sets 

As mentioned above there exist various approaches to generate a reference clustering set. 

A specimen of a reference clustering set generated by an expert is the SCL dataset [4]. In 

this set 157 molecules are assigned to six different clusters that correspond to six clearly 

defined scaffolds shared by the members of each cluster. For further information on the 

SCL data set please refer to the subsection ‘Molecular libraries’. Results obtained by 

using the SCL data served the purpose of proof-of-concept. However, we felt it necessary 

to investigate data sets that better reflect the size of common chemical libraries. To this 

end, in this study we analyzed additionally the WOMBAT [19] and the PubChem 

MLSMR datasets [20]. Considering that no known reference clustering exists for these 

data sets we needed to overcome several challenges to generate those. 

The number of molecular structures contained by the WOMBAT and PubChem MLSMR 

data sets is in the range of hundreds of thousands. Therefore the possibility of clustering 

the molecules relying on expert knowledge was ruled out. Instead, we have devised a 
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computer aided method to generate a so-called pseudo-reference clustering for the 

datasets. The method of generating reference clusters is described in details as follows. 

We devised a two-phase procedure to generate the pseudo-reference clustering for the 

two large datasets. In the first phase, an in-house implemented algorithm operates on the 

basis of a well-defined clustering objective. This objective follows a chemical rule-set 

that was designed to mimic the decision-making process of a medicinal chemist in 

identifying common structural features of molecules. To this end, the algorithm searches 

for so-called maximal common edge subgraphs (MCESs) [36] with the help of a modified 

version of the RASCAL-algorithm [37]. In the implementation of the algorithm an 

MCES is allowed to be constituted by multiple disconnected subgraphs. The algorithm 

utilizes two major heuristics based solutions to make the clustering capable to handle 

large datasets. One of these solutions is to decompose the molecules according to the 

hierarchical scaffold (HierS) decomposition algorithm [38, 39]. The HierS sets enable to 

eliminate the analysis for pairs of molecules if the differences between these sets indicate 

the lack of common ring systems. If the HierS sets don’t exclude a pair of molecules 

from MCES analysis then a second heuristic is applied to potentially identify an MCES. 

To this end, molecules that contain less than 40 heavy atoms [16] are analyzed by an 

exact MCES finding algorithm. Molecules having between 40 and 80 heavy atoms are 

passed to an algorithm that utilizes a certain approximation in identifying MCES. 

Molecules with more than 80 heavy atoms were excluded from the MCES analyses due 

to performance limits. Once MCESs are identified, each MCES will represent one cluster 

and the cluster will be comprised of molecules that contain the particular MCES. The 

members of the clusters will only differ in the so-called linkers and R-groups that 
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separate and/or augment the parts of MCES, respectively. This sort of decomposition of 

molecular structures, i.e. MCES, linkers and R-groups, follows a common practice in the 

field of medicinal and computational chemistry. The resulting MCES-clusters are 

typically small in size and the members are in a rigorous, medicinal chemistry based 

structural relation with each other. 

One characteristic of the generated MCES-clusters is that the structures of cluster 

members might contain twice as much, or even more heavy atoms as the MCES of the 

cluster. In line with our original aim, i.e. to generate well defined clusters, we thought it 

necessary to apply an extra filtering step on the MCES-clusters. Therefore, in the second 

phase of the process certain clusters including all the cluster-members were eliminated 

from the dataset. The criterion for eliminating a cluster is based on the heavy-atom count 

of the MCES and cluster members. If any cluster member harbors a heavy-atom count 

that exceeds that of the MCES by more than two-fold, then the entire cluster is 

eliminated. 

The filtering step of the second phase is necessary in order to maintain a certain level of 

structural coherence within an MCES cluster. Otherwise, it may happen that two 

molecules share the same MCES consisting of two disconnected heterocycles that are 

connected through a much larger ring system, which might be different in the two 

molecules. In this case the validity of assigning the two molecules to the same MCES 

cluster might be questioned. This filtering step does not incorporate a definite similarity 

constraint on the members of an MCES cluster. The Tanimoto similarity-coefficient 

between members might very well be under 0.5, a value that intuitively might occur in 

connection with the applied filtering step described above. 
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The above steps gave rise to the pseudo-reference clustering datasets derived from the 

original WOMBAT and PubChem MLSMR datasets. The WOMBAT-derived set 

contains 154,012 molecules in 27,168 clusters whereas the PubChem MLSMR-derived 

set contains 276,960 molecules in 52,287 clusters. The distribution of cluster sizes in 

these two pseudo-reference clustering datasets is shown on Fig. 3. 

 

While it is true that clusters were generated through an automated process, the clustering 

objective was underpinned by a rigorous, medicinal chemistry based structural rule set. 

Therefore, we find the pseudo-reference cluster generating scheme a useful and feasible 

alternative for the tedious process of defining reference clustering manually by an expert. 

The InfoMap clustering algorithm 

In this study we utilized the InfoMap [5] network-based clustering method which is able 

to process a threshold matrix of molecules. The reasons of selecting the InfoMap 

algorithm as the clustering method of this study are as follows. In a thorough clustering 

review by Fortunato [40], the InfoMap algorithm was shown to have one of the best 

overall performance investigating a variety of input datasets. Also, the InfoMap 

algorithm scales well with the problem size which is one of its most important 

characteristics in the light of the objective of this study. Furthermore, it requires minimal 

number of input parameters from the user. Finally, the number of clusters and the 

members are determined by the algorithm. These traits make the outcome of the cluster 

analysis rather independent from a subjective bias potentially introduced by the user. 

Another important property of the produced clustering that clusters are non-overlapping. 
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We carried out the InfoMap clustering experiments using the implementation published 

by the authors of the algorithm (version: July 26, 2010). When performing the InfoMap 

clustering, in the case of each dataset, we applied a value of 1000 as the parameter for the 

number of iteration cycles. 
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Evaluating clustering performance 

In this study we decided to apply the widely utilized sensitivity and specificity measures 

[41] to quantify clustering performance. The minimal and maximal values of these 

measures are 0 and 1, respectively. In the case of an ideal clustering both measures have 

the value of 1. Hence, the closer the actual values of sensitivity and specificity are to 1 

the closer the actual clustering approaches the ideal one. The formal definition of 

sensitivity and specificity is provided in Formula 5, where TP, FP, TN and FN stand for 

the number of true positives, false positives, true negatives and false negatives, 

respectively. Please note, that no singletons are present neither in the reference, nor in the 

pseudo-reference clustering datasets, therefore the sensitivity and specificity computation 

will always lead to a rational number in the range of 0 and 1. 

 

  

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (5) 

 

Although the computation of the above measures is quite simple, the large size of the 

WOMBAT and PubChem MLSMR datasets required a specific implementation in order 

to achieve a reasonable runtime. This implementation relies on two important software 

design elements that will be discussed briefly: (1) clustering is represented as cluster 

membership lists (CMLs) that resembles the well-known adjacency list data structure, (2) 

set operations are utilized on the CMLs to efficiently compute the values 

of TP, FP, TN and FN. 
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Clustering is represented by the CMLs as follows. Each list of the CMLs starts with the 

identifier of the node, referred to as list root. This node identifier is followed by the 

identifiers of other nodes that belong to the same cluster as the list root. Compared to a 

more conventional clustering representation, e.g. adjacency matrix, the speedup of 

processing time when using the CMLs data structure is profound. This can be accounted 

for the observation that clustering at reasonable similarity thresholds gives rise to sparse 

CMLs, i.e. list roots associate to a number of nodes that are only a fraction of the size of 

the whole dataset. Although it is not a unique feature of the CMLs data structure, it is 

worth emphasizing its capacity to facilitate the handling of overlapping clusters. This 

feature is not exploited in this study, since the InfoMap algorithm produces only disjoint 

clusters. 
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Results and discussion 

ACC as function of similarity threshold 

We studied ACC in three datasets, namely SCL, WOMBAT, and MLSMR. In the case of 

the SCL dataset, the threshold starts at t = 0, whereas in the case of the latter two datasets 

it starts from t = 0.30. The reason of this is that computing the complete similarity matrix, 

i.e. setting the threshold to t = 0, for the WOMBAT and MLSMR datasets was intractable 

at the time the experiments were performed. In all cases, the upper limit of threshold 

was t = 1, and t was incremented in the steps of 0.01. 

First, we discuss our proof-of-concept SCL dataset which enabled us to make important 

observations. If the threshold is set to t = 0 the similarity network is a fully connected 

network, because all elements of the similarity matrix are turned to 1, hence encoding the 

presence of an edge between all pair of molecules (see: Fig. 4a). By definition the ACC of 

such a network is 1, as the likelihood of neighbors of a host node being connected is 

maximal. Therefore, setting the threshold to t = 0 will result in the maximal average 

clustering coefficient and number of edges in the respective functions ACC(t) and EN(t). 

It can be seen that increasing the threshold stepwise will not affect the ACCinitially, but 

later it will start to decrease steeply until it reaches a local minimum. This local minimum 

is followed by a local maximum att = 0.23. From hereafter, the threshold associated to the 

local maximum of the ACC(t) function is denoted by t α . After t α , the curve decreases and 

eventually reaches ACC = 0. A few shallow local maxima are observed in the range 

of t > 0.23 but their presence was not deemed important. The local maximum seems to 

directly follow an interesting phenomenon in the EN(t) function (see: Fig. 5a). The 
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number of edges start to decrease steeply, then at a certain value the rate of decrease 

becomes slower, leading to a slight decline. The steep decrease and the sudden change in 

the slope of the curve is aligned with the local ACC maximum at t = 0.23. Analysis of the 

SCL dataset with different similarity measures provides more evidence to support this 

observation (see Additional file 1: Fig. S1, Additional file2: Fig. S2, Additional file 3: 

Fig. S3, Additional file 4: Fig. S4, Additional file 5: Fig. S5, Additional file 6: Fig. S6, 

Additional file 7: Fig. S7). 

 

To rule out that the above observations are not specific to the proof-of-concept dataset, 

we performed the same analysis on the larger, more complex datasets, i.e. WOMBAT 

and MLSMR. A local maximum of the ACC(t) function is observed for both the 

WOMBAT and MLSMR datasets, as shown in Fig. 4b, c, respectively. In accordance 

with the SCL dataset, the change in the slope of the number of edges versus threshold 

curve is well aligned with the local maximum of the ACC(t) function (see: Fig. 5b, c). 

Furthermore, t α is shifted in comparison with the SCL dataset, and differs with each 

dataset. The peak enclosing t α in the case of WOMBAT and MLSMR follows a more 

elongated, flat curvature compared to the SCL dataset. 

These curve characteristics unveil important differences on the underlying relations 

between the network objects. The local ACC(t) maximum of the SCL curve stands out 

sharply, suggesting a clear-cut threshold that separates a group of more similar molecules 

from groups of less similar molecules. On the other hand, missing this t α just slightly 

might lead to a less effective separation of molecule groups. By comparison, the 

local ACC(t) maximum in large datasets might be considered more robust, that is, slightly 
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missing t α will not cause such a sudden change in the separation between groups of 

related molecules. 

The observed differences in the characteristics of the ACC(t) and EN(t) functions are 

influenced by the applied similarity measure between the molecules. In this experimental 

framework, we use only one type of fingerprint and similarity measure, i.e. the ECFP_4 

fingerprint and Tanimoto similarity-coefficient, the location of t α and the characteristics 

of the ACC(t) and EN(t) functions are dependent on the similarity measure at hand. This 

effect is demonstrated by several examples in the Supporting Material (see: Additional 

file 1: Fig. S1, Additional file2: Fig. S2, Additional file 3: Fig. S3, Additional file 4: 

Fig. S4, Additional file 5: Fig. S5, Additional file 6: Fig. S6, Additional file 7: Fig. S7). 

The emergence of a robust local maximum of the ACC(t) is also demonstrated on an 

additional much larger dataset extracted from the ChEMBL 20 database [42] 

(downloaded on 04/24/2015). This dataset contains more than one million molecules and 

it was analyzed by the Snap library [43]. The threshold associated with that local 

maximum is also well-aligned with the sudden change in the slope of theEN(t) function. 

These results are included in the Supporting Material (see: Additional file 8: Fig. S8). 

Clustering performance as function of the similarity threshold 

Analyzing the clustering performance as function of the similarity threshold requires that 

certain factors are kept invariant through the clustering process. The similarity matrices 

were generated with the ECFP_4 fingerprint algorithm and the Tanimoto similarity 

measure. While different choices can be made in selecting the applied clustering 

algorithm and performance measure, our goal was to choose a reliable clustering 
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algorithm and a widely used performance measure. As detailed in Datasets and Methods, 

we used the InfoMap algorithm on a 200+ core computing cluster, 

and sensitivity and specificity to characterize clustering performance. 

The algorithm is able to detect the number of clusters automatically thus alleviating the 

need to input this number a priori. For reasons related to storing the similarity matrices, 

the similarity threshold evaluation began at t = 0.30 in the case of the WOMBAT and 

MLSMR datasets, to assure that the produced networks can be stored and processed by 

the available computational tools. 

As seen in Fig. 6, the clustering performance is as dependent on the selected similarity 

threshold as on the ACC. The specificity of the clustering is close to the maximum over 

the majority of the range of the selected threshold, which means that molecules that 

are not supposed to be clustered together are, indeed, not clustered together given a 

reference or pseudo-reference clustering. Thus, the resultant clusters can be thought of as 

being homogeneous. On the other hand, the ideal situation, characterized 

by sensitivity = 1 and specificity = 1 is only observed for the SCL dataset. This may be 

indicative of internal consistency within a data set, i.e. less heterogeneity and more self-

similarity among molecules within the clustered set. 

 

While the observed maximum sensitivity is near maximal in the case of WOMBAT 

dataset, the same parameter has a rather low value for MLSMR, reaching its maximum 

at sensitivity = 0.5223. Analyzing the causes of this difference is beyond the scope of the 

current study. Certain hints are unveiled by the ACC, as discussed in the following 

subsections. Furthermore, the number of singletons accounting for such a difference 
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in sensitivity values can be ruled out, as shown in Additional file 9: Fig. S9, Additional 

file 10: Fig. S10. For the sake of comparison, additional information is provided for the 

SCL dataset in Additional file 11: Fig. S11. A complete analysis would require 

computing the missing range of threshold values for the WOMBAT and the MLSMR 

datasets, which is at the moment a challenge. 

Relation of clustering performance and the observed maximum of ACC versus 

similarity threshold function 

As shown above, the selection of the similarity threshold has a critical effect on the 

topology of the resultant similarity network which, in turn, substantially affects clustering 

performance. Evaluating the resultant clustering is a rather difficult step, which typically 

involves the use of a reference clustering set. Such reference clustering sets at large scale 

are scarce, if available at all. However, we presumed that the ACC(t) function could 

provide insight in the quality of the clustering even if no reference dataset exists. 

Therefore, we analyzed whether the ACC(t) function can suggest a threshold within a 

given framework (i.e. a similarity measure and a clustering algorithm) that might lead to 

a reasonable clustering, even if a reference clustering set was not available. We intended 

to analyze what clues are provided by the ACC(t) that could be used to describe the 

structure of the underlying data, and to inform us whether the similarity measure of 

choice can be improved for the dataset at hand. While some of these objectives might 

sound trivial in the case of small datasets, they can be relevant for datasets in the 

hundreds of thousands of molecules range. 
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The first and probably most apparent feature of the ACC(t) functions in this study is the 

presence of a local maximum, which is often ’obvious’, i.e. a t α that is clearly 

distinguishable from smaller local maxima. This is not the local maximum at t = 0, which 

yields an ACC of 1. In general, this t α might be characterized as robust, because its peak 

spans a larger range of the similarity threshold than any other peak. In some cases, as 

shown in the Supporting Material [Additional file 3: Fig. S3(a)], the peak 

enclosing t α might contain other, minor peaks belonging to other local maxima, but it is 

still obvious that they are part of a larger peak, which encloses t α . 

Although threshold values below 0.30 are not evaluated for the WOMBAT and MLSMR 

datasets, a robust local maximum is observed, spanning a larger range of similarity 

threshold values than any other local maximum. Should a local maximum appear below 

0.30, the peak associated to that local maximum could only span a smaller range of 

threshold values than the peak associated to the visible t α . In the case of SCL 

dataset t α coincides with the threshold where an ideal clustering performance 

of sensitivity = 1 and specificity = 1 is achieved (see: Fig. 6a). For both the WOMBAT an 

MLSMR datasets, selecting the threshold at t α would yield a clustering performance near 

an optimal value, with very little differences (see: Fig. 6b, c). The word “optimal” is used 

here to reflect the fact that only a part of the entire threshold range is available for 

analysis. It is possible, however, that in the case of the WOMBAT dataset the 

visible t α might also be the t α for the entire threshold range. This assumption is based on 

the high value of the observed ACC of t α . 

As mentioned earlier, the manual analysis of datasets in the size of hundreds of thousands 

of molecules is infeasible. In order to further support the value in identifying t α of 
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the ACC(t) function illustrative examples are provided in the Supporting Material (see: 

Additional file12, Additional file 13, Additional file 14, Additional file 15). These 

examples contrast the quality of clustering in the case of the WOMBAT and PubChem 

MLSMR datasets by setting the threshold to t α of the ACC(t) function as compared to 

setting it on the basis of an in-house practice. This in-house practice favors the threshold 

associated with the highest number of observed clusters, excluding singletons. Although 

the corresponding clusters are equally cohesive, the clusters obtained at t α contain more 

molecules of the kind. This means that the clusters are split at the threshold associated 

with the highest number of clusters (singletons excluded). Although only one example is 

provided for both datasets, this trend is clear when considering the sensitivity and 

specificity values in the function of the similarity threshold, as described above. 

For SCL, the ACC(t α ) value is above 0.8, which suggests a high neighbors connectivity 

in the similarity network. A similar observation can be made for the WOMBAT dataset, 

because the visible ACC(t α ) is a little below 0.8. On the other hand, ACC(t α ) is quite low 

for the MLSMR dataset. Thus, the SCL and WOMBAT datasets have groups of similar 

and less similar objects better separated at t α , which might offer valuable information 

regarding the diversity of the underlying datasets, given the applied similarity measure. 

The intent of the MLSMR was to serve as a “diversity” library, which suggests that 

deliberate steps were taken to ensure a high number of dis-similar chemicals were 

incorporated. By contrast, WOMBAT is comprised of a number of literature-extracted 

sets; and more often than not, each paper consists of a low number of scaffold-based 

analog series (usually 1, but rarely above 5 such series). This is consistent with 

the ACC(t α ) trends noted above. 
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Analyzing the same datasets but using different similarity measures, shown in the 

Supporting Material [Additional file 16: Fig. S12(a)], may lead to a different conclusion, 

namely that a particular similarity measure is more appropriate for one dataset compared 

to another. This is a known challenge in the field of cheminformatics, as fingerprints 

determine the resolution of defining similarity between pairs of molecules. Thus, 

analyzing the ACC(t) function of a dataset might be of value to decide which fingerprint 

is more appropriate in the light of a given investigative objective. 

In the Supporting Material further insight is provided in terms of relating the clustering 

performance to the similarity network topology (see: “Appendix: First and second order 

derivatives of the number of edges vs. threshold functions”). A detailed discussion of 

these findings is beyond the scope of this paper. 

In summary, we were able to demonstrate the emergence of an obvious local maximum 

of the ACC(t) function associated with t α in the case of all datasets. The three datasets 

evaluated above share one important feature: Namely, they contain molecules that can be 

part of various SAR series. Despite the differences in the diversity of the SCL, 

WOMBAT and PubCHEM MLSMR sets and the value of ACCobserved at t α it holds true 

that the observed best clustering performance is well aligned with t α . These results 

support the feasibility of extending and generalizing our original similarity threshold 

selection approach [4] for large datasets. 

Although WOMBAT and MLSMR are in the range of 105 molecules, computing 

the ACC(t) function for larger molecular datasets is possible. We have computed this 

function for the ChEMBL 20 dataset that contains more than 1.2 × 106 molecules (see: 

Additional file 8: Fig. S8). The emergence of an obvious local maximum of the ACC(t) 
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function was indeed observed. Considering that the computation of this function can be 

adopted to a parallel-computing environment, we expect that computing the ACC(t) 

function should not be difficult for even larger datasets. 

Besides computing the ACC(t) function, the other limiting step in clustering larger 

molecular datasets is the clustering algorithm itself. InfoMap can be substituted by 

another clustering algorithm, the similarity threshold selection method allows for it. 

Accordingly, the parallelization of the InfoMap algorithm or the use of an alternative 

method can further push the size of manageable molecular datasets. 
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Conclusions 

In this study we proposed a systematic method and an objective measure to select the 

threshold to be applied on a similarity matrix of molecules for network-based clustering. 

Finding an appropriate similarity cut-off value affects clustering performance and results, 

as demonstrated by analyzing three different datasets. We provide a clustering framework 

suitable to perform clustering and evaluate clustering performance on a large dataset. 

Monitoring the ACC as function of the cut-off value can reveal a threshold that improves 

the likelihood of obtaining a reasonable clustering performance when a network-based 

clustering algorithm was deployed. Moreover, we demonstrate that the average clustering 

coefficient can provide insight regarding the diversity of the dataset at hand and how the 

choice of the fingerprint algorithm can be improved. This latter property has substantial 

influence on clustering outcome. In the beginning of the era of Big Data it is of great 

importance to devise algorithms that can improve the quality of clustering for large 

datasets when human quality control would become intractable or unreliable. 
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Outlook 

Considering that the size of chemical databases can be expected to increase substantially, 

and given that the computational costs of computing the ACC for a network will increase, 

it may be of interest to explore the use of heuristics based methods to approximate 

theACC. An alternative method of detecting important changes in network topology is the 

approximation of the first and second order derivatives of the number of edges versus 

threshold function. Furthermore, it could be of interest to apply an asymmetric similarity 

measure, e.g. Tversky [44] as opposed to the Tanimoto similarity-coefficient. This 

approach could lead to directed weighted and directed unweighted networks that might 

reveal further insight among molecular structures. 
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Figures 

 
 
 
 
Figure 1. Transforming a similarity matrix to a similarity network. The upper part of the figure 
shows the original similarity matrix and a network representing it. The lower part of the figure 
shows a threshold matrix and the corresponding similarity network that was derived by applying a 
t = 0.7 similarity threshold on the original similarity matrix. Elements of the similarity matrix 
containing similarity-coefficients greater than or equal to t = 0.7 are transformed to 1. Rest of the 
elements of the similarity matrix are colored with light gray in the threshold matrix and their 
values are transformed to 0. In the resultant similarity network molecule D is a singleton because 
it only has molecules less similar to itself than the similarity threshold of choice. 
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Figure 2. The influence of edge addition/removal on the average clustering coefficient. An 
intriguing dynamics between a network’s average clustering coefficient is observed upon adding 
or removing edges from the network. a Provides an example in which the average clustering 
coefficient increases followed by the addition of a new edge, shown as red dashed line in the 
lower network. b Shows a somewhat counterintuitive scenario in which the average clustering 
coefficient of a network actually decreases upon the addition of one edge. The added edge is 
shown as red dashed line in the lower network. 
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Figure 3. Cluster size distribution of pseudo-reference clustering datasets. The x-axis of the 
graph is shown on log-scale and it represents the size of clusters in the case of the pseudo-
clustering datasets generated from the WOMBAT and PubChem MLSMR datasets. The y-axis 
represents the relative frequency of certain cluster sizes. A given dataset is characterized by 
cluster sizes that have a higher frequency. The overall frequency of cluster sizes provides the 
cluster size profile of a dataset. As it can be seen the cluster size profile of the two datasets are 
nearly identical, with small differences in the low cluster size and in the large cluster size regions. 
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Figure 4. Average clustering coefficient of similarity networks in the function of the 
similarity threshold. For all datasets it is possible to identify a peak that stands out in 
comparison with the others by spanning the largest range of similarity threshold t. The threshold 
associated with the highest ACC value in the peak is denoted as t α , i.e. the so-called obvious local 
maximum of the ACC(t) function. Fingerprint: ECFP_4, similarity measure: Tanimoto similarity-
coefficient. a SCL dataset. b WOMBAT dataset. c PubChem MLSMR dataset.  
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Figure 5. Number of edges in the function of the similarity threshold. Fingerprint: ECFP_4, 
similarity measure: Tanimoto similarity-coefficient. For each dataset it can be observed that the 
number of edges shows a decrease of steep slope at low ranges of the applied similarity threshold. 
This steep decline is followed by a drastic change in the slope over a short range of the similarity 
threshold. a SCL dataset. bWOMBAT dataset. c PubChem MLSMR dataset. 
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Figure 6. Clustering performance in the function of the similarity threshold. On each figure 
shown are the sensitivity and specificity values associated with the determined t α , i.e. the 
‘obvious’ local maximum to choose. Dashed vertical line indicates the location of t α on the x-
axis. a In the case of the SCL dataset both sensitivity and specificity values meet the ideal value 
of 1 over a range of similarity thresholds (0.19 ≤ t ≤ 0.27 and at t = 0.23). Please note that 
above t = 0.91 the similarity network only consists of singletons, therefore the respective 
experimental points are not displayed on the graph. b In the case of the WOMBAT dataset the 
value of sensitivity and specificity associated with t α  = 0.40 are 0.8689 and 0.9994, respectively. 
The deviation between these values and their observed maximum is acceptable. c In the case of 
the PubChem MLSMR dataset the sensitivity and specificity associated with t α  = 0.50 are 0.4905 
and 0.9997, respectively. The deviation between these values and their observed maximum is 
acceptable. 
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Appendix 

First and second order derivatives of the number of edges versus threshold 

functions 

Let f(x) denote the function of the number of edges in the similarity network in the 

function of the selected similarity threshold x. In order to investigate whether the best 

clustering performance is aligned with the first and second order derivatives of f(x) we 

approximated them with the help of numerical differentiation [45]. We applied three 

different methods to compute the first order derivative, namely the so-called forward, 

backward and central difference as defined in Eqs. 6–8, respectively [46]. 

 

𝑓! 𝑥 =  ! !!! !!(!)
!

         (6) 

 

𝑓! 𝑥 =  ! ! !! !!!
!

           (7) 

 

𝑓! 𝑥 =  ! !!! !!(!!!)
!!

         (8) 

 

The second order derivative was computed according to Eq. 9. 

 

𝑓!! 𝑥 = ! !!! !!! ! !!(!!!)
!!

         (9) 
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In the above equations (Eqs. 6–9) d denotes the similarity threshold difference. It was 

selected to be 0.01 in the numerical differentiations as it is the same value as the 

increment of similarity threshold applied in all experiment. 

The first and second order derivatives of f(x) in the case of the SCL, WOMBAT and 

PubChem MLSMR datasets are shown on Additional file 17: Fig. S13, Additional file 18: 

Fig. S14, Additional file 19: Fig. S15. In the case of the WOMBAT and PubChem 

MLSMR datasets the similarity threshold (t γ ) associated with the observed best clustering 

performance is represented by a vertical dotted line (see: Additional file 18: Fig. S14, 

Additional file 19: S15). The value of t γ was determined by identifying where the sum of 

sensitivity and specificity is maximal. In the case of the SCL dataset the possible best 

clustering performance is achieved at multiple values of the similarity threshold therefore 

no single t γ and the corresponding vertical line is indicated on the graph (see: Additional 

file 17: Fig. S13). 

In the case of the WOMBAT and PubChem MLSMR data sets the second order 

derivative of f(x) has a local maximum that is aligned with t γ . Furthermore, in the case of 

the PubChem MLSMR dataset the first order derivative of f(x) computed via the 

backward difference has a local minimum aligned with t γ . 

In the case of the SCL dataset both the first and second order derivatives produce 

multiple local maxima and minima at thresholds associated with the potential best 

clustering outcome. It should be noted that in the case of the first derivative the 

aforementioned observation holds true, regardless of the selected difference computation 

method. Furthermore, the second order derivative also produces a zero value at one of the 

thresholds associated with the best clustering outcome. 
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Additional file 1: Figure S1. Topological features of the similarity network created by using 
the SCL dataset, ChemAxon 1024 bit hashed fingerprint and Tanimoto similarity-
coefficient. Similarity threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 2: Figure S2. Topological features of the similarity network created by using 
the SCL dataset, ChemAxon 2048 bit hashed fingerprint and Tanimoto similarity-
coefficient. Similarity threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 3: Figure S3. Topological features of the similarity network created by using 
the SCL dataset, ChemAxon 4096 bit hashed fingerprint and Tanimoto similarity-
coefficient. Similarity threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 4: Figure S4. Topological features of the similarity network created by using 
the SCL dataset, MACCS fingerprint and Tanimoto similarity-coefficient. Similarity 
threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 5: Figure S5. Topological features of the similarity network created by using 
the SCL dataset, ECFP_4 fingerprint and Tanimoto similarity-coefficient. Similarity 
threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 6: Figure S6. Topological features of the similarity network created by using 
the SCL dataset, ECFP_8 fingerprint and Tanimoto similarity-coefficient. Similarity 
threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 7: Figure S7. Topological features of the similarity network created by using 
the SCL dataset, ECFP_12 fingerprint and Tanimoto similarity-coefficient. Similarity 
threshold is increased in increments of 0.01 from 0.00 to 1.00. 
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Additional file 8: Figure S8. Analysis of the ChEMBL 20 dataset. Molecular structures were 
extracted from the ChEMBL 20 version (downloaded on 04/24/2015). The structures were 
subject to an identical standardization procedure as described in the case of the three other 
datasets, i.e. the SCL, WOMBAT and MLSMR PubChem datasets. Standardization was 
performed using ChemAxon’s JChem standardize utility (version 15.8.10.0). The ChEMBL 20 
dataset comprises 1,256,876 unique molecules that have a MW ≤ 700 and atomcount ≤ 80. In 
order to generate the similarity networks in the function of the similarity threshold ECFP 
fingerprints were generated for the molecules with a diameter of 4. Similarity of the molecules 
was quantified by the Tanimoto-similarity measure. The range of applied similarity threshold t is 
0.30 ≤ t ≤ 1.00 and t was incremented in steps of 0.01. (a) The number of edges in the similarity 
network in the function of the similarity threshold. (b) The average clustering coefficient (ACC) 
in the function of the applied similarity threshold. The obvious local maximum of the ACC vs. 
threshold curve is at threshold t α  = 0.48. The value of the associated ACC(t α ) is 0.5979. 
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Additional file 9: Figure S9. Number of clusters and singletons in the function of the 
selected threshold, WOMBAT dataset. Fingerprint: ECFP_4, similarity measure: Tanimoto 
similarity-coefficient, clustering algorithm: InfoMap, similarity threshold t incremented in steps 
of 0.01 in the range of 0.30 ≤ t ≤ 1.00. (a) Number of clusters excluding singletons. The highest 
number of clusters, 18,120, is observed at t = 0.72. (b) Number of clusters including singletons. 
(c) Number of singletons.  
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Additional file 10: Figure S10. Number of clusters and singletons in the function of the 
selected threshold, MLSMR dataset. Fingerprint: ECFP_4, similarity measure: Tanimoto 
similarity-coefficient, clustering algorithm: InfoMap, similarity threshold t incremented in steps 
of 0.01 in the range of 0.30 ≤ t ≤ 1.00. (a) Number of clusters excluding singletons. The highest 
number of clusters, 40,244, is observed at t = 0.68. (b) Number of clusters including singletons. 
(c) Number of singletons. 
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Additional file 11: Figure S11. Number of clusters and singletons in the function of the 
selected threshold, SCL dataset. Fingerprint: ECFP_4, similarity measure: Tanimoto similarity-
coefficient, clustering algorithm: InfoMap, similarity threshold tincremented in steps of 0.01 in 
the range of 0.00 ≤ t ≤ 0.91. Note, that above t = 0.91 the similarity network only consists of 
singletons, therefore the respective experimental points are not displayed on the graph. (a) 
Number of clusters excluding singletons. (b) Number of clusters including singletons. (c) Number 
of singletons. 
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Additional file 12. Illustrative cluster of WOMBAT dataset at threshold = 0.40. File name: 
wombat_nm17_cid_1178_t_alpha_0.40_pub.pdf . Shown are the molecules of cluster 1178 of 
WOMBAT dataset produced at the obvious local maximum of the ACC vs. threshold curve at 
threshold t α  = 0.40. PDF generated by ChemAxon’s mview utility. 
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Additional file 13. Illustrative cluster of WOMBAT dataset at threshold = 0.72. File name: 
wombat_nm17_cid_505_t_0.72_pub.pdf . Shown are the molecules of cluster 505 of WOMBAT 
dataset produced at threshold t = 0.72 associated with the highest number of clusters (singletons 
excluded). PDF generated by ChemAxon’s mview utility. 

  



 223 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Additional file 14. Illustrative cluster of PubChem MLSMR dataset at the threshold = 0.50. 
File name: mlsmr_nm16_t_alpha_0.50_cid_674_pub.pdf. Shown are the molecules of cluster 674 
of PubChem MLSMR dataset produced at the obvious local maximum of the ACC vs. threshold 
curve at threshold t α  = 0.50. PDF generated by ChemAxon’s mview utility.  
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Additional file 15. Illustrative cluster of PubChem MLSMR dataset at the threshold = 0.68. 
File name: mlsmr_nm16_t_0.68_cid_100_pub.pdf . Shown are the molecules of cluster 100 of 
PubChem MLSMR dataset produced at threshold t = 0.68 associated with the highest number of 
clusters (singletons excluded). PDF generated by ChemAxon’s mview utility.  
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Additional file 16: Figure S12. The effect of the applied fingerprint on the network topology 
in the case of SCL dataset. Tanimoto-similarity threshold was incremented by steps of 0.01 in 
the range of 0 to 1. The choice of molecular fingerprint generating method has a profound effect 
on both the ACC(t) and EN(t) functions. 
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Additional file 17: Figure S13. First and second order derivatives of the number of edges vs. 
threshold function in the case of the SCL dataset. The aforementioned function is denoted 
by f(x), and it’s first and second order derivatives by f′(x) and f″(x), respectively. The derivatives 
were approximated by numerical differentiation. First order derivatives: (a) using the 
forward difference, (b) using the backward difference, (c) using the central difference. (d) Second 
order derivative. 
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Additional file 18: Figure S14. First and second order derivatives of the number of edges vs. 
threshold function in the case of the WOMBAT dataset. The aforementioned function is 
denoted by f(x), and it’s first and second order derivatives by f′(x) and f″(x), respectively. The 
derivatives were approximated by numerical differentiation. The vertical line at 
threshold t γ denotes the threshold associated with the observed best clustering performance. First 
order derivatives: (a) using the forward difference, (b) using the backward difference, (c) using 
the central difference. (d) Second order derivative.  
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Additional file 19: Figure S15. First and second order derivatives of the number of edges vs. 
threshold function in the case of the PubChem MLSMR dataset. The aforementioned 
function is denoted by f(x), and it’s first and second order derivatives by f′(x) and f″(x), 
respectively. The derivatives were approximated by numerical differentiation. The vertical line at 
threshold t γ denotes the threshold associated with the observed best clustering performance. First 
order derivatives: (a) using the forward difference, (b) using the backward difference, (c) using 
the central difference. (d) Second order derivative. 
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Conclusions 

 
The aim of my Thesis is to demonstrate how network analysis can open new dimensions 

in the entire cross-section of drug discovery and development. Network inference, i.e. the 

process of revealing hidden relations between nodes with the help of mathematical rigor, 

is a powerful approach of knowledge mining as it was demonstrated through the three 

chapters. The synthetic fusion of network analysis and machine learning seems a 

promising direction towards devising new drug therapies and discovering drug 

candidates. 

 

The first chapter introduces an integrated drug discovery platform that makes it possible 

to conduct network-pharmacology driven research for researchers lacking 

cheminformatics and/or bioinformatics expertise. The platform could be used in multiple 

aspects of drug discovery. Some of the most important of them are designing multitarget 

therapies, drug repurposing, off-target identification and side-effect prediction, and 

elucidating mechanism-of-action of drugs. 

 

The second chapter describes a novel method created by the fusion of an information 

theory based network analytic algorithm and machine learning technique. With the help 

of this model it is possible to model how information can spread in a biomedical network 

and how the transmission of the information is influenced by the importance of individual 

nodes. Although the method is quite abstract, the phase of target selection could be an 

area where it might prove useful in practice. 
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The final, third chapter introduces a method that is relevant to all network-based 

clustering algorithms as it addresses certain unresolved issues in the core of all of such 

algorithms. The method presented in the chapter proposes a systematic solution for 

establishing a good practice in generating molecular similarity networks. 

 

In summary, I hope that the presented methods in my Thesis demonstrate that network 

analysis could be the key for opening the door towards developing novel and effective 

therapeutic strategies. 
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Conclusions 
 

 

The three chapters of this Thesis provide support that network analysis relying on 

mathematical rigor can benefit important drug discovery phases.  

 

The first chapter describes a novel recommendation engine developed in the framework 

of this Thesis. With the help of this recommender it is possible to predict potential novel 

interactions between drugs and target proteins. Such predictions might prove essential in 

drug repurposing campaigns. This recommender engine was integrated into the 

“SmartGraph” platform. This platform provides an easy-to-use graphical interface for 

biomedical researches to analyze direct and indirect effect of drugs by taking advantage 

of integrated regulatory protein relations between drug targets. The effective visualization 

and one-click data analysis features enable clinical researchers to generate hypothesis 

with regard to devising multi-target therapies, tracking down possible causes of observed 

adverse reactions and elucidating mechanism-of-actions of drugs. 

 

The second chapter introduces an information theory inspired network model and the 

“Luminosity-Diffusion (LD)” algorithm. The LD algorithm is able to simulate how 

information flows in a network. The flow of information is influenced by the regulatory 

relations between proteins and the importance of individual nodes in the network derived 

from their topological features. As it was demonstrated, certain targets gain more 

information than others by the end of the simulation process. This information gain can 
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be interpreted as a sort-of attractiveness factor in the eye of the investigator. Targets of 

high information gain hold the promise that their unknown properties might be revealed 

through studying them (experimentally) in relation to the rest of the targets in the 

network. This prioritization might prove useful in the target selection phase of drug 

discovery. 

 

The third chapter introduces a novel methodology for facilitating the similarity/diversity 

analysis of molecular databases of the Big Data domain. The novel methods introduced in 

the chapter are able to reveal important features of the underlying data structure of 

molecular similarity network. These features can be exploited by the investigator to find 

optimal or near optimal parameter settings for quantifying the similarity between pairs of 

molecules and to promote the success of subsequent data analysis methods, such as 

clustering. Clustering is widely used technique in high throughput campaigns. Its primary 

aim is to identify molecules that are likely to be detected in a follow-up screening as hits, 

i.e. molecules of distinguishable activity on the given assay. While this clustering if 

efficient way of pruning the search space for bioactive molecules it is also essential in 

establishing quantitative structure-activity-relation between compounds. Therefore, the 

methods introduced in the chapter translate to practical use regarding lead identification 

and lead optimization phases of the drug discovery. 

 

 

In summary, it can be concluded that the novel network theory based methods developed 

in the framework of this Thesis relate to a wide spectrum of drug discovery research. 
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Moreover, these methods can effectively address contemporary challenges regarding, e.g. 

Big Data. Finally, some of these methods might open new dimensions in fighting 

diseases through the careful orchestration of direct and indirect actions of drugs on 

proteins. 
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