68 research outputs found

    Curseur Tangible et DĂ©formable sur Dispositifs Mobiles pour Interagir Ă  une Main sans Regarder l'Écran

    Get PDF
    International audienceGraphical sliders are widely used on mobile devices. However, with a single hand, reaching for far values is difficult : users change their grip and can drop the device. Moreover, sliders require visual attention to operate them. Envisioning mobile devices that dynamically extend tangible sliders out of the screen, the contribution of this work is a first attempt to experimentally study a deformable tangible slider that facilitate thumb interaction on mobile devices. The deformable tangible slider expands its cursor (Figure 1) to avoid hand-grip changes by maintaining the thumb within its comfortable area. Moreover, its tangible aspect allows eyes-free interaction. We first compared a low-fidelity prototype with a classic tangible slider. The prototype improves performance by 9.2% when targets are outside the thumb's comfortable area. We then designed a de-formable slider that we compared to a classic tangible slider and a graphical one. Though the deformable slider is globally faster (14.3%) than the classic tangible one, the difference is not significant. While the graphical slider performs faster, the deformable tangible slider o ers eyes- free interaction and stable hand-grip.Les curseurs graphiques sont largement utilisĂ©s sur les dispositifs mobiles. Cependant, atteindre des valeurs Ă©loignĂ©es avec le pouce de la main qui tient le dispositif est difficile : les utilisateurs changent alors la prise en main du dispositif au risque de le faire tomber. De plus, les curseurs graphiques sollicitent l’attention visuelle pour les manipuler. En anticipant que les dispositifs mobiles pourront faire Ă©merger de leurs Ă©crans des curseurs physiques dynamiquement, notre contribution est une premiĂšre exploration expĂ©rimentale d’un curseur tangible qui se dĂ©forme pour faciliter l’interaction mobile avec le pouce de la main qui tient le dispositif. Le curseur tangible se dĂ©forme pour que le pouce manipule toujours le curseur dans la zone d’action facilement atteignable (Fig. 1). Le curseur tangible dĂ©formable (1) Ă©vite les changements de prise en main en maintenant le pouce dans sa zone de confort, et (2) permet une interaction sans regarder le dispositif mobile. Nous avons d’abord comparĂ© un prototype basse-fidĂ©litĂ© avec un curseur classique tangible. Le prototype amĂ©liore les performances de 9.2% lorsque les cibles sont en dehors de la zone de confort du pouce. Nous avons ensuite conçu un curseur dĂ©formable que nous avons comparĂ© Ă  un curseur tangible classique et Ă  un curseur graphique. Les rĂ©sultats expĂ©rimentaux dĂ©montrent que le curseur tangible dĂ©formable est globalement plus rapide de 14.3% que le curseur tangible classique sans que les rĂ©sultats soient significativement diffĂ©rents. Alors que le curseur graphique o re de meilleures performances que les deux autres curseurs tangibles, le curseur tangible dĂ©formable o re une interac- tion sans regarder le dispositif avec une prise en main du dispositif stable

    Interactive Visualization Lenses:: Natural Magic Lens Interaction for Graph Visualization

    Get PDF
    Information visualization is an important research field concerned with making sense and inferring knowledge from data collections. Graph visualizations are specific techniques for data representation relevant in diverse application domains among them biology, software-engineering, and business finance. These data visualizations benefit from the display space provided by novel interactive large display environments. However, these environments also cause new challenges and result in new requirements regarding the need for interaction beyond the desktop and according redesign of analysis tools. This thesis focuses on interactive magic lenses, specialized locally applied tools that temporarily manipulate the visualization. These may include magnification of focus regions but also more graph-specific functions such as pulling in neighboring nodes or locally reducing edge clutter. Up to now, these lenses have mostly been used as single-user, single-purpose tools operated by mouse and keyboard. This dissertation presents the extension of magic lenses both in terms of function as well as interaction for large vertical displays. In particular, this thesis contributes several natural interaction designs with magic lenses for the exploration of graph data in node-link visualizations using diverse interaction modalities. This development incorporates flexible switches between lens functions, adjustment of individual lens properties and function parameters, as well as the combination of lenses. It proposes interaction techniques for fluent multi-touch manipulation of lenses, controlling lenses using mobile devices in front of large displays, and a novel concept of body-controlled magic lenses. Functional extensions in addition to these interaction techniques convert the lenses to user-configurable, personal territories with use of alternative interaction styles. To create the foundation for this extension, the dissertation incorporates a comprehensive design space of magic lenses, their function, parameters, and interactions. Additionally, it provides a discussion on increased embodiment in tool and controller design, contributing insights into user position and movement in front of large vertical displays as a result of empirical investigations and evaluations.Informationsvisualisierung ist ein wichtiges Forschungsfeld, das das Analysieren von Daten unterstĂŒtzt. Graph-Visualisierungen sind dabei eine spezielle Variante der DatenreprĂ€sentation, deren Nutzen in vielerlei AnwendungsfĂ€llen zum Einsatz kommt, u.a. in der Biologie, Softwareentwicklung und Finanzwirtschaft. Diese Datendarstellungen profitieren besonders von großen Displays in neuen Displayumgebungen. Jedoch bringen diese Umgebungen auch neue Herausforderungen mit sich und stellen Anforderungen an Nutzerschnittstellen jenseits der traditionellen AnsĂ€tze, die dadurch auch Anpassungen von Analysewerkzeugen erfordern. Diese Dissertation befasst sich mit interaktiven „Magischen Linsen“, spezielle lokal-angewandte Werkzeuge, die temporĂ€r die Visualisierung zur Analyse manipulieren. Dabei existieren zum Beispiel VergrĂ¶ĂŸerungslinsen, aber auch Graph-spezifische Manipulationen, wie das Anziehen von Nachbarknoten oder das Reduzieren von KantenĂŒberlappungen im lokalen Bereich. Bisher wurden diese Linsen vor allem als Werkzeug fĂŒr einzelne Nutzer mit sehr spezialisiertem Effekt eingesetzt und per Maus und Tastatur bedient. Die vorliegende Doktorarbeit prĂ€sentiert die Erweiterung dieser magischen Linsen, sowohl in Bezug auf die FunktionalitĂ€t als auch fĂŒr die Interaktion an großen, vertikalen Displays. Insbesondere trĂ€gt diese Dissertation dazu bei, die Exploration von Graphen mit magischen Linsen durch natĂŒrliche Interaktion mit unterschiedlichen ModalitĂ€ten zu unterstĂŒtzen. Dabei werden flexible Änderungen der Linsenfunktion, Anpassungen von individuellen Linseneigenschaften und Funktionsparametern, sowie die Kombination unterschiedlicher Linsen ermöglicht. Es werden Interaktionstechniken fĂŒr die natĂŒrliche Manipulation der Linsen durch Multitouch-Interaktion, sowie das Kontrollieren von Linsen durch MobilgerĂ€te vor einer Displaywand vorgestellt. Außerdem wurde ein neuartiges Konzept körpergesteuerter magischer Linsen entwickelt. Funktionale Erweiterungen in Kombination mit diesen Interaktionskonzepten machen die Linse zu einem vom Nutzer einstellbaren, persönlichen Arbeitsbereich, der zudem alternative Interaktionsstile erlaubt. Als Grundlage fĂŒr diese Erweiterungen stellt die Dissertation eine umfangreiche analytische Kategorisierung bisheriger Forschungsarbeiten zu magischen Linsen vor, in der Funktionen, Parameter und Interaktion mit Linsen eingeordnet werden. ZusĂ€tzlich macht die Arbeit Vor- und Nachteile körpernaher Interaktion fĂŒr Werkzeuge bzw. ihre Steuerung zum Thema und diskutiert dabei Nutzerposition und -bewegung an großen DisplaywĂ€nden belegt durch empirische Nutzerstudien

    Art and Design Practices as a Driver for Deformable Controls, Textures and Screen Interactions

    Get PDF
    In this thesis, we demonstrate the innovative uses of deformable interfaces to help de-velop future digital art and design interactions. The great beneïŹts of advancing digital art can often come at a cost of tactile feeling and physical expression, while traditional methods celebrate the diverse sets of physical tools and materials. We identiïŹed these sets of tools and materials to inform the development of new art and design interfaces that offer rich physical mediums for digital artist and designers. In order to bring forth these unique inter-actions, we draw on the latest advances in deformable interface technology. Therefore, our research contributes a set of understandings about how deformable interfaces can be har-nessed for art and design interfaces. We identify and discuss the following contributions: insights into tangible and digital practices of artists and designers; prototypes to probe the beneïŹts and possibilities of deformable displays and materials in support of digital-physical art and design, user-centred evaluations of these prototypes to inform future developments, and broader insights into the deformable interface research.Each chapter of this thesis investigates a speciïŹc element of art and design, alongside an aspect of deformable interfaces resulting in a new prototype. We begin the thesis by studying the use of physical actuation to simulate artist tools in deformable surfaces. In this chapter, our evaluations highlight the merits of improved user experiences and insights into eyes-free interactions. We then turn to explore deformable textures. Driven by the tactile feeling of mixing paints, we present a gel-based interface that is capable of simulating the feeling of paints on the back of mobile devices. Our evaluations showed how artists endorsed the interactions and held potential for digital oil painting.Our ïŹnal chapter presents research conducted with digital designers. We explore their colour picking processes and developed a digital version of physical swatches using a mod-ular screen system. This use of tangible proxies in digital-based processes brought a level of playfulness and held potential to support collaborative workïŹ‚ows across disciplines. To conclude, we share how our outcomes from these studies could help shape the broader space of art and design interactions and deformable interface research. We suggest future work and directions based on our ïŹndings

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue GerĂ€teklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berĂŒhrungsempfindlichen OberflĂ€chen berĂŒcksichtigen kaum haptische QualitĂ€ten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen FĂ€higkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische GegenstĂ€nde des Alltags digital zu erweitern und anhand geeigneter Designparameter und EntwurfsrĂ€ume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie MaterialitĂ€t und DigitalitĂ€t nahtlos ineinander ĂŒbergehen können. Es soll erforscht werden, wie kĂŒnftige Benutzungsschnittstellen nĂŒtzliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden AnsĂ€tze wirft jedoch ĂŒbergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstĂŒtzen? FĂŒr eine systematische Untersuchung stĂŒtzt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln ĂŒber visuelle Erweiterungen von UhrarmbĂ€ndern bis hin zu neuartigen Prototyping-Tools fĂŒr intelligente KleidungsstĂŒcke. Um neue DesignansĂ€tze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-EingabemodalitĂ€ten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu ĂŒberdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch ĂŒbergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    Designing Hybrid Interactions through an Understanding of the Affordances of Physical and Digital Technologies

    Get PDF
    Two recent technological advances have extended the diversity of domains and social contexts of Human-Computer Interaction: the embedding of computing capabilities into physical hand-held objects, and the emergence of large interactive surfaces, such as tabletops and wall boards. Both interactive surfaces and small computational devices usually allow for direct and space-multiplex input, i.e., for the spatial coincidence of physical action and digital output, in multiple points simultaneously. Such a powerful combination opens novel opportunities for the design of what are considered as hybrid interactions in this work. This thesis explores the affordances of physical interaction as resources for interface design of such hybrid interactions. The hybrid systems that are elaborated in this work are envisioned to support specific social and physical contexts, such as collaborative cooking in a domestic kitchen, or collaborative creativity in a design process. In particular, different aspects of physicality characteristic of those specific domains are explored, with the aim of promoting skill transfer across domains. irst, different approaches to the design of space-multiplex, function-specific interfaces are considered and investigated. Such design approaches build on related work on Graspable User Interfaces and extend the design space to direct touch interfaces such as touch-sensitive surfaces, in different sizes and orientations (i.e., tablets, interactive tabletops, and walls). These approaches are instantiated in the design of several experience prototypes: These are evaluated in different settings to assess the contextual implications of integrating aspects of physicality in the design of the interface. Such implications are observed both at the pragmatic level of interaction (i.e., patterns of users' behaviors on first contact with the interface), as well as on user' subjective response. The results indicate that the context of interaction affects the perception of the affordances of the system, and that some qualities of physicality such as the 3D space of manipulation and relative haptic feedback can affect the feeling of engagement and control. Building on these findings, two controlled studies are conducted to observe more systematically the implications of integrating some of the qualities of physical interaction into the design of hybrid ones. The results indicate that, despite the fact that several aspects of physical interaction are mimicked in the interface, the interaction with digital media is quite different and seems to reveal existing mental models and expectations resulting from previous experience with the WIMP paradigm on the desktop PC

    Investigating New Forms of Single-handed Physical Phone Interaction with Finger Dexterity

    Get PDF
    With phones becoming more powerful and such an essential part of our lives, manufacturers are creating new device forms and interactions to better support even more diverse functions. A common goal is to enable a larger input space and expand the input vocabulary using new physical phone interactions other than touchscreen input. This thesis explores how utilizing our hand and finger dexterity can expand physical phone interactions. To understand how we can physically manipulate a phone using the fine motor skills of finger, we identify and evaluate single-handed "dexterous gestures". Four manipulations are defined: shift, spin (yaw axis), rotate (roll axis) and flip (pitch axis), with a formative survey showing all except flip have been performed for various reasons. A controlled experiment examines the speed, behaviour, and preference of manipulations in the form of dexterous gestures, by considering two directions and two movement magnitudes. Using a heuristic recognizer for spin, rotate, and flip, a one-week usability experiment finds increased practice and familiarity improve the speed and comfort of dexterous gestures. With the confirmation that users can loosen their grip and perform gestures with finger dexterity, we investigate the performance of one-handed touch input on the side of a mobile phone. An experiment examines grip change and subjective preference when reaching for side targets using different fingers. Two following experiments examine taps and flicks using the thumb and index finger in a new two-dimensional input space. We simulate a side-touch sensor with a combination of capacitive sensing and motion tracking to distinguish touches on the lower, middle, or upper edges. We further focus on physical phone interaction with a new phone form factor by exploring and evaluating single-handed folding interactions suitable for "modern flip phones": smartphones with a bendable full screen touch display. Three categories of interactions are identified: only-fold, touch-enhanced fold, and fold-enhanced touch; in which gestures are created using fold direction, fold magnitude, and touch position. A prototype evaluation device is built to resemble current flip phones, but with a modified spring system to enable folding in both directions. A study investigates performance and preference for 30 fold gestures, revealing which are most promising. Overall, our exploration shows that users can loosen their grip to physically interact with phones in new ways, and these interactions could be practically integrated into daily phone applications

    Physical Interaction Concepts for Knowledge Work Practices

    Get PDF
    The majority of workplaces in developed countries concern knowledge work. Accordingly, the IT industry and research made great efforts for many years to support knowledge workers -- and indeed, computer-based information workplaces have come of age. Nevertheless, knowledge work in the physical world has still quite a number of unique advantages, and the integration of physical and digital knowledge work leaves a lot to be desired. The present thesis aims at reducing these deficiencies; thereby, it leverages late technology trends, in particular interactive tabletops and resizable hand-held displays. We start from the observation that knowledge workers develop highly efficient practices, skills, and dexterity of working with physical objects in the real world, whether content-unrelated (coffee mugs, stationery etc.) or content-related (books, notepads etc.). Among the latter, paper-based objects -- the notorious analog information bearers -- represent by far the most relevant (super-) category. We discern two kinds of practices: collective practices concern the arrangement of objects with respect to other objects and the desk, while specific practices operate on individual objects and usually alter them. The former are mainly employed for an effective management of the physical desktop workspace -- e.g., everyday objects are frequently moved on tables to optimize the desk as a workplace -- or an effective organization of paper-based documents on the desktop -- e.g., stacking, fanning out, sorting etc. The latter concern the specific manipulation of physical objects related to the task at hand, i.e. knowledge work. Widespread assimilated practices concern not only writing on, annotating, or spatially arranging paper documents but also sophisticated manipulations -- such as flipping, folding, bending, etc. Compared to the wealth of such well-established practices in the real world, those for digital knowledge work are bound by the indirection imposed by mouse and keyboard input, where the mouse provided such a great advancement that researchers were seduced to calling its use "direct manipulation". In this light, the goal of this thesis can be rephrased as exploring novel interaction concepts for knowledge workers that i) exploit the flexible and direct manipulation potential of physical objects (as present in the real world) for more intuitive and expressive interaction with digital content, and ii) improve the integration of the physical and digital knowledge workplace. Thereby, two directions of research are pursued. Firstly, the thesis investigates the collective practices executed on the desks of knowledge workers, thereby discerning content-related (more precisely, paper-based documents) and content-unrelated object -- this part is coined as table-centric approaches and leverages the technology of interactive tabletops. Secondly, the thesis looks at specific practices executed on paper, obviously concentrating on knowledge related tasks due to the specific role of paper -- this part is coined as paper-centric approaches and leverages the affordances of paper-like displays, more precisely of resizable i.e. rollable and foldable displays. The table-centric approach leads to the challenge of blending interactive tabletop technology with the established use of physical desktop workspaces. We first conduct an exploratory user study to investigate behavioral and usage patterns of interaction with both physical and digital documents on tabletop surfaces while performing tasks such as grouping and browsing. Based on results of the study, we contribute two sets of interaction and visualization concepts -- coined as PaperTop and ObjecTop -- that concern specific paper based practices and collective practices, respectively. Their efficiency and effectiveness are evaluated in a series of user studies. As mentioned, the paper-centric perspective leverages late ultra-thin resizable display technology. We contribute two sets of novel interaction concepts again -- coined as FoldMe and Xpaaand -- that respond to the design space of dual-sided foldable and of rollout displays, respectively. In their design, we leverage the physical act of resizing not "just" for adjusting the screen real estate but also for interactively performing operations. Initial user studies show a great potential for interaction with digital contents, i.e. for knowledge work

    Social ways to manage availability in mediated communication

    Get PDF

    Engineering Language-Parametric End-User Programming Environments for DSLs

    Get PDF
    Human-computer communication can be achieved through different interfaces such as Graphical User Interfaces (GUIs), Tangible User Interfaces (TUIs), command-line interfaces, and programming languages. In this thesis, we used some of these inter- faces; however, we focused on programming languages which are artificial languages consisting of instructions written by humans and executed by computers. In order to create these programs, humans use specialized tools called programming environments that offer a set of utilities that ease human-computer communication. When creating programs, users must learn the language’s syntax and get acquainted with the pro- gramming environment. Unfortunately, programming languages usually offer a single user interface or syntax, which is not ideal considering different types of users with varied backgrounds and expertise will use it. Given the increasing number of people performing any kind of programming activity, it is important to offer different inter- faces depending on the programming task and the background of the users. However, from the language engineering point of view, offering multiple user interfaces for the same language is expensive, and if we specifically consider Domain-Specific Languages (DSLs), it is even more expensive given their audience and development teams’ size. Therefore, we study how to engineer different user interfaces for DSLs in a practical way.This thesis presents different mechanisms to engineer different language-parametric programming environments for end-users. These mechanisms rely heavily on reusing existing language components for existing languages or helping language engineers define these interfaces for new languages. We mainly studied four technological spaces, namely, Grammarware, Computational Notebooks, Block-based environments, and Projec- tional editors. We present three different language-parametric interfaces for interacting with DSLs, namely computational notebooks, projectional editors, and block-based editors. These interfaces offer different user experiences and rely upon different technological spaces. Different notations are associated with different technological spaces; for in- stance, grammarware is associated with text files, while block-based environments are associated with Blockly and JavaScript files. Therefore, to provide different notations for their languages, we have to "space travel" so that language engineers can select the most appropriate technological space and interface for their target audience. To support this, we defined grammarware as a common starting point to allow traveling to different technological spaces (e.g., computational notebooks space, projectional editors space, or block-based space). Based on this idea, we developed three tools that allowed language engineers to generate different interfaces for their DSLs based on a grammar definition of the language. Our results show that it is possible to generate these different user interfaces and decrease the effort required to create these. However, additional research is required to improve the usability of the generated interfaces and make the generation of these interfaces more flexible so that users’ data can be used as part of the generated interfaces

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können
    • 

    corecore