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S U M M A RY

Human-computer communication can be achieved through different interfaces such
as Graphical User Interfaces (GUIs), Tangible User Interfaces (TUIs), command-line
interfaces, and programming languages. In this thesis, we used some of these inter-
faces; however, we focused on programming languages which are artificial languages
consisting of instructions written by humans and executed by computers. In order to
create these programs, humans use specialized tools called programming environments
that offer a set of utilities that ease human-computer communication. When creating
programs, users must learn the language’s syntax and get acquainted with the pro-
gramming environment. Unfortunately, programming languages usually offer a single
user interface or syntax, which is not ideal considering different types of users with
varied backgrounds and expertise will use it. Given the increasing number of people
performing any kind of programming activity, it is important to offer different inter-
faces depending on the programming task and the background of the users. However,
from the language engineering point of view, offering multiple user interfaces for the
same language is expensive, and if we specifically consider Domain-Specific Languages
(DSLs), it is even more expensive given their audience and development teams’ size.
Therefore, we study how to engineer different user interfaces for DSLs in a practical
way.

This thesis presents different mechanisms to engineer different language-parametric
programming environments for end-users. These mechanisms rely heavily on reusing
existing language components for existing languages or helping language engineers
define these interfaces for new languages. We mainly studied four technological spaces,
namely, Grammarware, Computational Notebooks, Block-based environments, and Projec-
tional editors. We present three different language-parametric interfaces for interacting
with DSLs, namely computational notebooks, projectional editors, and block-based editors.
These interfaces offer different user experiences and rely upon different technological
spaces 1 Different notations are associated with different technological spaces; for in-
stance, grammarware is associated with text files, while block-based environments are
associated with Blockly and JavaScript files. Therefore, to provide different notations
for their languages, we have to "space travel" so that language engineers can select
the most appropriate technological space and interface for their target audience. To
support this, we defined grammarware as a common starting point to allow traveling
to different technological spaces (e.g., computational notebooks space, projectional
editors space, or block-based space). Based on this idea, we developed three tools that

1 A technological space is a shared context that contains a standard body of knowledge, concepts, and hosts
different notations [195].
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allowed language engineers to generate different interfaces for their DSLs based on a
grammar definition of the language. Our results show that it is possible to generate
these different user interfaces and decrease the effort required to create these. However,
additional research is required to improve the usability of the generated interfaces and
make the generation of these interfaces more flexible so that users’ data can be used as
part of the generated interfaces.

S A M E N VAT T I N G

Communicatie tussen mens en computer kan gerealiseerd worden door verschillen-
de interfaces zoals Graphical User Interfaces (GUIs), Tangible User Interfaces (TUIs),
command-line interfaces, en programmeertalen. In dit proefschrift hebben we sommige
van de eerdergenoemde interfaces gebruikt; maar we hebben ons gericht op program-
meertalen, kunstmatige talen bestaande uit door de mens geschreven instructies welke
door computers worden uitgevoerd. Om programma’s te schrijven worden specialisti-
sche programmeeromgevingen gebruikt welke een verzameling aan functionaliteiten
aanbieden die communicatie tussen mens en computer eenvoudiger maken. Voor het
schrijven van programma’s is het nodig om de syntax van de taal eigen te maken en om
bekend te worden met de gekozen programmeeromgeving. Maar programmeertalen
bieden vaak maar één interface of syntax aan, hetgeen niet ideaal is omdat verschillende
type gebruikers, met andere achtergronden en ervaringsniveaus, van een taal gebruik
zullen maken. Gegeven dat een toenemend aantal mensen programmeeractiviteiten
ondernemen is het belangrijk om verschillende interfaces aan te kunnen bieden, af-
hankelijk van de uit te voeren programmeertaak of de achtergrond van de gebruiker.
Echter is het zo dat, vanuit het perspectief van de taalontwikkelaar, het aanbieden
van meerdere interfaces voor dezelfde taal kostbaar is. Dit wordt versterkt wanneer
we ons richten op domein-specifieke talen (DSLs), gezien de gebruikersgroepen en de
grootte van de ontwikkelteams voor dit soort talen. Het is hierom dat wij onderzoeken
hoe verschillende gebruikersinterfaces voor DSLs op een praktische manier gebouwd
kunnen worden.

Dit proefschrift beschrijft verschillende mechanismen om taal parametrische program-
meeromgevingen te bouwen voor eindgebruikers. Deze mechanismen zijn in sterke
mate gebaseerd op het hergebruiken van bestaande taalcomponenten voor bestaande
talen en op het ondersteunen van taalontwikkelaars bij het definiëren van interfaces
voor nieuwe talen. We hebben met name de volgende vier technologische ruimtes
onderzocht: Grammarware, Computational Notebooks, Block-based omgevingen en
Projectional editors. We beschrijven drie verschillende taal parametrische interfaces
voor het interacteren met DSLs, te weten Computational Notebooks, Projectional editors
en Block-based omgevingen. Deze interfaces bieden verschillende gebruikerservaringen
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aan en zijn daarvoor afhankelijk van verschillende technologische ruimtes 2. Verschillen-
de notaties horen bij verschillende technologische ruimtes; bijvoorbeeld, grammarware
wordt geassocieerd met tekstbestanden, terwijl block-based omgevingen worden geas-
socieerd met Blockly en Javascript bestanden. Daarom, om verschillende notaties voor
hun talen aan te bieden, moeten we "ruimtereizenßodat taalontwikkelaars de meest
geschikte technologische ruimte en interface kunnen selecteren voor hun doelgroep. Om
dit mogelijk te maken hebben we grammarware als een gedeeld startpunt gedefinieerd
voor het reizen tussen verschillende technologische ruimtes (zoals de computational
notebooks ruimte, de projectional editors ruimte, of de block-based ruimte). Vanuit
dit idee hebben we drie tools ontwikkeld die het voor taalontwikkelaars mogelijk
maken verschillende interfaces te genereren voor hun DSLs op basis van een definitie
van een grammatica voor de taal. Onze resultaten laten zien dat het mogelijk is om
deze verschillende gebruikersinterfaces te genereren en zo de ontwikkelingskosten
te verminderen. Echter is meer onderzoek noodzakelijk om de bruikbaarheid van de
gegenereerde interfaces te verbeteren en om het genereren van deze interfaces flexibeler
te maken zodat de data van gebruikers ook binnen de gegenereerde interfaces gebruikt
kan worden.

2 Een technologische ruimte is een gedeelde context van gestandaardiseerde kennis en concepten en
bijbehorende notatie [195].
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P R E L U D E





1
I N T R O D U C T I O N

Computers are malleable tools that can perform any type of computation, but their
power is limited to only the people who know how to program them. In software
engineering, we are constantly trying to raise the levels of abstraction to come closer to
the domain people are working in. Still, at the same time, we want to benefit as much as
possible from all the power and potential offered by computers. Thus, communication
is essential, just like in human interactions. Human interactions require a common
language (e.g., Spanish or Dutch) and means (e.g., written or spoken) to send and
receive messages from another person. Likewise, communication between machines and
people requires common languages, which are software languages. Sometimes, software
languages are also used as a language between humans, and this communication
between humans and machines can occur through different tools (e.g., command lines,
files, and interactive systems).

The number of people performing any kind of programming activity has increased.
Often their background is heterogeneous, which makes it harder for tool builders to
offer a single solution that suits everyone’s needs. Some tools are more appropriate for
a particular task or group of people than others [114, 118]. Therefore, it is important to
offer different tools and interfaces so that users can choose the best tool or interface
to achieve their goals. Computer programming is becoming widespread [184], just
in the United States of America more than 12 million people say that they do some
programming at work, and almost 50 million use spreadsheets and databases [252]. This
increasing number of programmers (i.e., novice, end-user, and professional) imposes
new challenges and research directions for language engineers and tool developers. The
chapters of this thesis present some of these challenges and solutions. Overall, this thesis
presents different alternatives for interacting with Domain-Specific Languages (DSLs).
Therefore, language engineers and users can choose the right tool for the right job or
person [184].

The rest of this chapter is structured as follows: first, it presents some background
information introducing the building blocks to understand the rest of this thesis; second,
it presents some of the highlights of the research together with challenges identified
during its development; third, it presents the origin of the different chapters and the
structure of this thesis; and finally, it presents a conclusion of the thesis.
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4 introduction

1.1 background

This section introduces the building blocks used in the development of this thesis. It
introduces the concepts used within the research field of software language engineering.
Moreover, some of these concepts have been also applied to other domains (e.g., end-
user development).

Language-oriented Programming (LOP) [110, 374] is a software engineering technique
for developing software. This technique relies on creating small languages that are
targeted to tackle problems in a specific domain. These small languages are also known
as DSLs [88, 235]. LOP splits the software development process into three activities,
the design of a DSL, the implementation of different language processors such as code
generators, interpreters, or compilers, and the usage of the language. The first activity
is focused on understanding the problem the software must tackle and the domain in
which the software will be used. Then, a DSL is designed in such a way that it captures
the domain’s knowledge. This allows language engineers to design the language to use
domain terminology instead of generic programming language concepts as General
Purpose Programming Languages (GPLs) do. Thus, DSL design provides a design of
syntax and semantics of the language. Thanks to this abstraction layer introduced by
the DSL, the resulting language is closer to the users, and it is focused on the domain,
which often makes users’ programs more concise and, therefore, easier to read by
domain experts. Since DSLs offer high-level language constructs to address a specific
problem in a particular domain, they increase the users’ productivity.

In addition to the language’s design, the second step is to implement the language
using some existing meta-language. It is often done by developing different language
components that support the its execution (e.g., code generators, parsers, or compilers).
There are tools specialized in this domain of creating languages called Language Work-
benches. It is essential to notice that the DSL program captures the domain knowledge,
and then these language processors are responsible for translating that knowledge into
the desired target language (e.g., Java, Python, or Assembler). In this second activity,
it is important to mention that there could be several translation layers from the DSL
specification until the target language; the essential step here is to retain the semantics
of the program across the different translation layers. Finally, the third activity is re-
lated to language usage; this activity is essential to determine whether the design and
implementation of the language meet the established objectives.

Moreover, the LOP success also requires development of proper tooling for interact-
ing with the resulting DSL. This is an active research field focused on designing and
building user-centered tools that help users during their programming activities. Build-
ing such tools is an essential aspect because users require intelligent tools that allow
them to express the solution of a problem in a friendly manner, which is a challenge
in the LOP domain. This is a challenge but also an opportunity because development
teams and communities behind DSL development are considerably smaller than the
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people behind a GPL. Thus, engineers using LOP require tools that help them reduce
the time and costs involved in developing tools. As a result, in the academic community
there is an active research line on programming environment generation [54, 68, 87, 98,
99, 148, 267, 287]. The current thesis presents contributions in this research line.

In the remaining of this chapter, we present the common building blocks required to
understand the contributions of this thesis. This thesis explores different user interfaces
that rely on different technologies. Therefore, as introduced by Kurtev et al. [195], we
refer to each technology as a Technological Space.

technological spaces A Technological Space (TS) is a shared context in which
there is a standard body on knowledge, concepts, methods, tools, literature, and
required skills to solve problems [195]. For instance, Objectware, Javaware, Pythonware,
Grammarware, Modelware, and XMLware are typical examples of TSs. Each of these TS
offers various benefits and drawbacks, which depend on the problem domain in which
they will be used. Nowadays, developers have different TS for solving problems: they
are often faced with choosing which TS is more convenient for the problem they are
trying to achieve. Sometimes, the desired solution requires more than a single TS:
developers need to travel across different TSs, which might be challenging. This thesis
allows developers to use different interfaces that rely upon different TS (Grammarware,
Computational Notebooks, Block-based environments, and Projectional editors).

domain-specific language (dsl) As introduced before, a DSL is a small pro-
gramming language tailored to solving problems in a particular domain. There are
two main types of DSLs, internal and external DSLs. The first one is characterized by
reusing the concrete syntax and the parser of a host language (e.g., a library), while
the latter requires the definition of a custom syntax, parser, and language processors
(e.g., compiler, interpreter, and type checker). Since DSLs focus on solving problems
in a particular domain, they often include domain concepts in their concrete syntax,
which allow users to express solutions to problems in a more concrete and less verbose
manner than a GPL. Moreover, DSLs allow users to focus on the domain’s problem and
forget about the implementation details, as this is the responsibility of the language
engineer that develops the underlying code generator, compiler, or interpreter.

The DSL syntax uses domain concepts based on a domain analysis in which the
language will be used, and this allows more people to develop software and better
quality in less time than when using GPLs. DSLs offer these benefits because they are
easier to use and more expressive than GPLs [235]. As we mentioned before, tooling is
essential for the success of DSLs. Developing a programming system for a DSL requires
a huge effort [167]. That is why tools and research on programming environment
generation are essential.
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language workbenches (lwb) An essential aspect for the success of LOP tech-
niques relies upon the technologies that support the design, prototyping, and develop-
ment of software languages [197]; these tools are also known as language workbenches.
A language workbench [99, 110] is an Integrated Development Environment (IDE) for
developing software languages. They offer a set of meta-languages for defining the
syntax and semantics of a language and also features for developing IDE services
(e.g., syntax highlighters, error marking, and auto-completion) for the language. Al-
though all Language Workbenches (LWBs) help engineers in the language development
process, there are mainly three different types of LWBs [62, 99, 197] namely textual
(e.g., JastAdd [98], Rascal [180] , Spoofax [166], and Xtext [102]), graphical or modelware
(EMF [60], MetaEdit+ [171] and GME [203]), or projectional (e.g., JetBrains MPS [62],
the Intentional Domain Workbench [321], and SmartTools [19]). Based on the previous
description of technological spaces, we can argue that each type of language workbench
is a technological space where their communities have a shared body of knowledge,
tools, and common practices.

It is crucial to mention that language engineers must choose from picking up the
right type depending on the business requirements. All three types are powerful, and
they all have some drawbacks, but depending on the requirements, one might be more
appropriate than the other. In this thesis, we explore in detail textual and projectional
LWBs; the study of modelware is out of the scope of this thesis.

textual language workbench The main characteristic of textual language
workbenches is that they rely upon context-free grammars for the language specifica-
tion. Thus, language engineers must define the language’s formal syntax through a
grammar that often follows the Backus–Naur Form (BNF) notation or BNF extensions
(e.g., extended BNF and augmented BNF). Then, an essential step within this techno-
logical space is the parsing technology. Programs are parsed against the specification,
and if the program conforms to all the rules described in the formal language defini-
tion (grammar), then the parser produces a parse tree. A parse tree contains all the
information and relationships between the program and the grammar. Some parsers
support ambiguous programs, and in such cases, the result is a forest of parse trees
instead of a single tree. In this technological space, it is often common to transform the
parse tree into an Abstract Syntax Tree (AST) because it is easier for language processors
to work with the program’s abstract representation since ASTs do not contain layout
information; they contain the essential elements of the program solely. In this thesis,
we used as a starting point Rascal, which is a grammar-based language workbench.

projectional language workbench This type of Language Workbench (LWB)
is different from the textual counterparts because, in a projectional LWB, users do
not interact with a textual representation of the program but with projections of the
ASTs. This means that users are directly manipulating the AST of the program during
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the program development. As a result, no parsing nor parsing technology is required.
Moreover, these platforms support the definition of several notations (AST projections),
which means that they can easily support the mixing of different notations (e.g., textual,
graphical, and cell-based) in the same program. In these platforms, it is common to find
a textual projection of the AST to offer users a text-like experience when developing
software. In this thesis, we explored the use of JetBrains MPS as a projectional LWB.
Based on the definition that a projectional LWB allows users to directly manipulate
the AST of a program, we can consider that a block-based environment is also a sort
of projectional LWB. However, for this thesis, the decision was to present block-based
environments later in a separate section, since a deeper study on these platforms
(Chapters 6 and 7) was performed; therefore, this decision created an overlap because a
block-based editor could be seen as a block-based projection of an AST.

computational notebooks Computational notebooks are interactive program-
ming environments that allow users to interleave documentation and executable code
in the same document. We can think about them as a contemporary type of literate
programming [183].

Essentially notebooks are composed of two parts, the front-end and the back-end. The
first is represented as a cell-based document as shown in Figure 1.1. This type of
documents contain three main types of cells, namely documentation (top part of Fig-
ure 1.1), input (Figure 1.1 cells containing the prefix in [n]), and output cells (Figure 1.1
cells. Documentation cells are used for writing prose, which is meant to describe the
executable code or describe the results of the current notebook. Users use the input cells
to write executable code snippets, and as a result of their execution, output cells might
be obtained. Likewise, there are mainly two types of output cells, one that renders
static content (e.g., text or charts) and interactive output (e.g., interactive visualizations
that allow users to manipulate variables, and their change is reflected in the visual
representation).

The back-end of a notebook relies on a language kernel interface. Depending on the
notebook platform, they offer support for different languages. However, most popular
general-purpose programming languages are supported by them. These platforms offer
APIs to support additional languages. However, using these APIs is a cumbersome task
because developers must implement a low-level communication protocol, which might
not be significant in terms of Source Lines of Code (SLOC) , but it is difficult to debug.

block-based environments Block-based environments or block-based editors
are visual interactive programming environments that allow users to create programs
through visual representations of language constructs. These environments have some
unique characteristics that distinguish them from other programming environments.
First, block-based editors represent language constructs using visual blocks that re-
semble jigsaw puzzle pieces (see Figure 1.2). So that users can create programs as if
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Figure 1.1: Example of a computational notebook document. Image from [161].

they were completing a jigsaw puzzle. Each block (language construct) has a shape and
a color. Its shape restricts the options to which the block can be connected. Offering
different block shapes helps users identify valid and invalid connections by just looking
at their forms.

Block-based environments are often divided in three main parts, namely palette,
canvas, and stage. The palette (left part of Figure 1.2) contains all the language constructs.
It is like a cupboard that stores all language constructs grouped by categories, and
these categories are not standard, they change from one language to another. Another
essential aspect of a block-based editor is the canvas (middle part of Figure 1.2), which
is the place in which users develop their programs.

As presented in Section 1.1, textual languages rely on string-based documents to
create programs: creating programs is achieved by using the keyboard and writing
a sequence of language constructs. Instead, block-based editors rely on a different
interaction mechanism, drag and drop. With this mechanism, users select a block from
the palette, then drag and drop it from the palette into the desired location in the
canvas.

Finally, the stage (right part of Figure 1.2) displays the output of a program. This
component is not standard in block-based environments, but popular block-based
editors such as Scratch [240, 288] and Snap! [243] offer one. This space is used to render
the results of running the program written on the canvas. Depending on the nature of
the language, it can be used to display visualizations, animations, or output text.

Although there are many block-based editors, the number of available tools for
developing them is limited. Either developers implement everything from scratch or
they rely on these libraries. In this thesis, we used Google Blockly [119], which is one
of the most popular libraries for developing block-based editors. It allows language
engineers to implement block-based editors through a JavaScript API and compile such
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Figure 1.2: Example of a Block-based environment using Google Blockly [119].

programs into a target language (e.g., Python or JavaScript). However, this flexibility
means that the translation from the Blockly representation to the target language must
be implemented manually by developers.

1.2 research questions

In the previous section we presented the common knowledge required to understand
the rest of this thesis. In this thesis, we studied LOP as a technique for software
development that brings several benefits for developers (e.g., user’s productivity and
usability). This is situated in the domain of software language engineering, and more
concretely, in the space of programming environments generation. Offering different
user interfaces for the same DSL will provide benefits for different user groups. In this
context, the main challenge becomes the design and engineering of these different user
interfaces. So we defined a general research question and split it into nine more specific
research questions. The general research question is:

RQ: How to engineer different user interfaces for DSLs, so that language engineers
can choose the right technological space and notation for various types of users,
while reusing existing language components?

Addressing this question requires (i) to study different technological spaces, namely
computational notebooks, projectional editors, and block-based environments. Based
on the above, (ii) we can identify possible alternatives to allow language engineers to
travel from one technological space to another, and (iii) evaluate how these alternatives
can be used in practice. In particular, we show how to travel from the grammarware
space into the other three technological spaces.

Our first research question is based on the manifold benefits that computational
notebooks bring when experimenting with code and text (e.g., quick prototyping,
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immediate feedback, reproducibility). We noticed that these platforms were available
mainly for GPLs. The main reason is that developing tools for languages is expensive:
popular GPLs count on big communities that support their development. However, in
the case of unpopular languages, these resources are scarce, burdening the development
of such tools. Thus, we ask the following research questions:

RQ1.1: What is required to define a computational notebook at the language ab-
straction level?

RQ1.2: How can notebooks be offered as a generic service in language work-
benches?

Addressing these questions requires understanding what computational notebooks
are, their main features, and which programming languages these interfaces support.
Based on these abstractions, we can identify and define how to design and implement
a language-parametric notebook generator.

Notebooks can be seen as GUIs for command-line interfaces; however, some consider-
ations might differ (e.g., execution order). In this type of interface, users can type valid
commands that the underlying compiler or interpreter executes. However, not all lan-
guage constructs can be used within a command-line interface, only some commands
are valid, and they are called entry points. This implies some considerations from the
language-design perspective so that the syntax of the language and the interpreter (or
compiler) support different entry points. In other words, the syntax and interpreter of
the language should support the incremental definition of programs. If not, users must
write entire programs within a single command, which hampers the usability of this
type of interface.

Although most computational notebook platforms offer different mechanisms to
support additional programming languages, it is unclear whether there are special
requirements for using a language within a notebook interface. With this in mind, the
following two research questions arose:

RQ2.1: What are the requirements for designing a notebook-friendly language?

RQ2.2: How can we transform an existing language into a notebook-friendly lan-
guage?

Based on our findings from the answers to questions RQ1.1 and RQ1.2, we observed
that language design is essential for designing languages that are suitable to be used
within a notebook. Therefore, with the previous two research questions (RQ2.1 and
RQ2.2), we studied how to identify and design notebook-friendly languages, to open up
the notebook metaphor for DSLs to improve the end-user experience when interacting
with code and to increase DSLs adoption.
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Language engineers can develop tooling for their languages (e.g., notebooks) based
on the design decisions of notebook-friendly languages and their implementations.
In this way, language engineers can improve the user experience of their languages
through a notebook interface. This leads us to ask the following question:

RQ3: What language design guidelines could be used to improve the programming
experience of DSL users within a notebook platform?

As mentioned before, we explored different TSs, and in the following research
question, we studied projectional editors concretely within the domain of JetBrains
MPS. Our exploration starts from a textual LWB (Rascal) to enable traveling from
the grammarware to the projectional TS. Languages defined using this type of LWB
are often described using context-free grammars, while projectional LWB uses other
mechanisms. Given the heterogeneity of these TSs, it is necessary to study how these
different TSs can be bridged so that language definitions can be reused across them.
Therefore, we defined the following research question:

RQ4: What mechanism can be used to map context-free grammars to projectional
language definitions?

Based on the previous research question results, it is possible to travel to a different
TS. So now, we travel to a different TS, block-based environments. To do so, we address
the following two research questions.

Block-based environments or editors offer an interesting visual notation for software
languages, in which language constructs are represented as jigsaw-like puzzle pieces.
Their visual appearance can help users create their programs, as shown in different
contexts, such as in education and creative environments for children. However, it is
unclear how these programming environments are being used in the wild, how they
are being developed, and what are their main components. Moreover, it is uncertain
whether these programming environments are being used mainly by children. Therefore,
to better understand block-based environments, the following research question was
formulated:

RQ5: What are the main characteristics of block-based environments and how are
they implemented?

After analyzing block-based environments in detail, their characteristics, usage, and
development, we want to study and explore if specialized tooling for implementing lan-
guages (i.e., language workbenches) can be used to engineer block-based environments
in practice. Concretely, we ask:

RQ6: How can language workbenches support the development of block-based en-
vironments by reusing existing language components?
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Using specialized technology for creating and deriving block-based editors is an
interesting direction. Previous research has demonstrated that the generation of pro-
gramming environments increases developers’ productivity and speeds up the develop-
ment process of new tools. However, the resulting environments often require manual
intervention from the developers to improve their usability. Therefore, we wanted
to explore whether the usability of block-based programming environments can be
improved without manual intervention, so we defined the following research question:

RQ7: What techniques could be applied to improve the usability of generated block-
based editors?

In summary, there are three main concerns derived from our main research question
(RQ), (i) study of different technological spaces. (ii) identify possible ways of supporting
technological space traveling. (iii) evaluate how they can be used in practice. The first
one it is discussed in detail through research questions RQ1.1, RQ1.2, RQ4, and RQ5;
while the second and third concerns are studied from different perspectives and
technological spaces through questions RQ1.1-RQ4, RQ6, and RQ7.

The research questions are addressed using different technological spaces: research
questions RQ1.1-RQ3, are addressed from the notebook perspective, RQ4 is studied
from the projectional LWB view, and RQ5-RQ7 are studied from the block-based
perspective.

In the next section, we present how each research question is addressed.

1.3 origin of the chapters

This section presents the origin of each of the chapters in this thesis and the author’s
contributions to each of them.

Chapter 2 This chapter is the result of three publications. The main contribution
of this chapter is the definition of a Feature-Oriented Domain Analysis (FODA) of
computational notebooks. Moreover, it presents a design for creating a parametric
language interface to enable communication between notebook platforms and language
workbenches by reusing existing language components. Therefore, Bacatá is developed
to validate such an interface. Bacatá is a tool that enables DSLs defined within the
Rascal LWB to be used as Jupyter Notebooks. Also, Bacatá uses existing language
definitions to generate IDE services such as syntax highlighting and auto-completion. To
evaluate Bacatá, we created notebooks for different languages Calc, QL, Halide, and
SweeterJS. This chapter addresses research questions RQ1.1 and RQ1.2, and it is based
on the following publications.

• Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. “Bacatá: a generic notebook
generator for DSLs.” In: Domain-Specific Language Design and Implementation workshop, DSLDI
’17. Vancouver, British Columbia, Canada, 2017 [231].
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• Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. “Bacatá: A Language Parametric
Notebook Generator (Tool Demo).” In: SLE 2018 (2018), pp. 210–214. doi: 10.1145/3276604.
3276981 [356].

• Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. “Bacatá: Notebooks for DSLs,
Almost for Free.” In: The Art, Science, and Engineering of Programming 4.3 (2020). issn: 2473-7321.
doi: 10.22152/programming-journal.org/2020/4/11 [359].

Chapter 3 Based on some of the difficulties that we identified during the devel-
opment of the papers presented in Chapter 2, we observed that not all languages
were ’notebook-friendly’. Thus, to address research questions RQ2.1 and RQ2.2, we
present a principle approach for characterizing such languages and their interpreters
in this chapter. As a result, we introduce sequential languages and how to develop an
exploring interpreter for such a language. In addition, this chapter presents applications
of such interpreters for developing three types of REPL-like systems, namely note-
book, command-line interface, and a client-server interface. This chapter is based on the
following publication.

• L. Thomas van Binsbergen et al. “A Principled Approach to REPL Interpreters.” In: Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. Onward! 2020. ACM, 2020, pp. 84–100. isbn: 9781450381789. doi:
10.1145/3426428.3426917 [44].

Chapter 4 This chapter presents a possible application of the exploring interpreters
in the context of a notebook interface, and it exclusively answers our research question
RQ3. Mainly, we present how an interactive execution graph can be constructed based
on the definition of an exploring interpreter and how it can be beneficial for end-users.
Likewise, we present how to develop a variable-watcher on top of the exact definition of
an interpreter.

Chapter 5 This chapter addresses the research question RQ4 by presenting an ap-
proach for deriving projectional editors in MPS from a context-free grammar definition
in the Rascal LWB. To achieve this we used heuristics that address the problem of
pretty-printing, and we applied them to the context of bridging the gap between pro-
jectional and textual languages. As a result, we derive a mapping between a grammar
definition into the structure and editor of a projectional language. The content of this
chapter is based on the following publication.

• Mauricio Verano Merino et al. “Domain-Specific Languages in Practice with Jetbrains MPS.” In:
2021. Chap. Projecting Textual Languages. isbn: 978-3-030-73758-0. doi: 10.1007/978-3-030-73758-
0 [232].

Chapter 6 This chapter presents a systematic literature review of block-based en-
vironments and addresses research question RQ5. Based on this study, we identified

https://doi.org/10.1145/3276604.3276981
https://doi.org/10.1145/3276604.3276981
https://doi.org/10.22152/programming-journal.org/2020/4/11
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1007/978-3-030-73758-0
https://doi.org/10.1007/978-3-030-73758-0
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that not much attention had been paid to developing these environments from the soft-
ware language engineering perspective. Proper support for defining and implementing
block-based editors might increase and improve the development and adoption of these
interfaces, especially for end-user languages (e.g., DSLs). This chapter is based on the
following publication.

• Mauricio Verano Merino, Jurgen Vinju, and Mark van den Brand. “What you always wanted to
know but could not find about block-based environments.” In: (2021). [Under review at ACM
Computing Surveys]. url: https://arxiv.org/abs/2110.03073 [230].

Chapter 7 This chapter addresses the research question RQ6. It presents a first
step towards adding language workbench support for describing block-based envi-
ronments. Based on the lack of support for creating block-based editors, we designed
and developed a tool that analyzes context-free grammars and produces a block-based
environment. The resulting block-based environment can reuse existing language ma-
chinery (e.g., type checkers, interpreters, and REPLs). This chapter is based on the
following publications.

• Mauricio Verano Merino and Tijs van der Storm. “Language Workbench Support for Block-Based
DSLs.” In: BLOCKS+ Proceedings (2018) [226].

• Mauricio Verano Merino and Tijs van der Storm. “Block-Based Syntax from Context-Free Gram-
mars.” In: Proceedings of the 13th ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2020. Virtual, USA: ACM, 2020, pp. 283–295. isbn: 9781450381765. doi: 10.1145/
3426425.3426948 [355].

Chapter 8 As a result of Chapter 7, we found that it was possible to derive block-
based editors from context-free grammars. However, the resulting editors sometimes
contained too many unnecessary blocks, which led to verbose and lengthy programs.
In this chapter, we answer research question RQ7 by defining a pipeline for simplifying
the input grammars used to derive the block-based editors. The pipeline contains
different phases that transform the original grammar. As a result of applying this
pipeline, we show a reduction in the resulting number of blocks, which yields less
verbose programs. This chapter is based on the following publication:

• Mauricio Verano Merino et al. “Getting Grammars into Shape for Block-Based Editors.” In: Proceed-
ings of the 14th ACM SIGPLAN International Conference on Software Language Engineering. SLE 2021.
Virtual, USA: ACM, 2021. isbn: 978-1-4503-9111-5/21/10. doi: 10.1145/3486608.3486908 [360].

Chapter 9 Finally, in this chapter, we revisit all the research questions and summa-
rize the main contributions of this thesis.

https://arxiv.org/abs/2110.03073
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3486608.3486908


1.4 tools and software 15

1.4 tools and software

The following tools and languages were designed and implemented during the devel-
opment of this thesis. Each of these tools is used in one or more chapters, and they are
open source and available in their respective repositories.

• Bacatá [357]

• Rascal notebook [229]

• Execution graph [223]

• MiniJava [41]

• Rascal2MPS [27]

• Kogi [227]

• S/Kogi [32]

• PDFMiner [221]

• Halide* [222]

1.5 thesis structure

Figure 1.3 presents the general structure of the chapters of this thesis using block-
based notation. This thesis is divided into three main topics. The first one is about
computational notebooks and Chapters 2 and 3 addresses research questions RQ1
and RQ2, respectively. The second topic is about projectional editors, and Chapter 5

answers research question RQ3. The third topic is about block-based environments,
the answers to research questions RQ4 and RQ5 are described in Chapters 6 and 7,
respectively. Finally, we conclude this thesis by revisiting our research questions and
summarizing the main contributions of our work.

Figure 1.3: Thesis chapter structure.
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B A C ATÁ : N O T E B O O K S F O R D S L S , A L M O S T F O R F R E E

Context: Computational notebooks are a contemporary style of literate programming, in
which users can communicate and transfer knowledge by interleaving executable code,
output, and prose in a single rich document. A Domain-Specific Language (DSL) is a
software language tailored for an application domain. Usually, DSL users are domain
experts that may not have a software engineering background. Therefore, they might not be
familiar with Integrated Development Environments (IDEs). In brief, the development of
tools that offer different interfaces for interacting with a DSL is relevant.

Inquiry: However, DSL designers’ resources are limited. We want to leverage General
Purpose Programming Languages (GPLs) tooling in the context of DSLs. Computational
notebooks are an example of such tools. Then, our main question is: What is an efficient
and effective method of designing and implementing notebook interfaces for DSLs? By
addressing this question, we might be able to speed up the development of DSL tools, and
ease the interaction between end-users and DSLs.

Approach: In this chapter, we present Bacatá, a mechanism for generating notebook
interfaces for external DSLs in a language-parametric fashion. This mechanism is designed
in a way in which language engineers can reuse as many language components as possible
(e.g., language processors, type checkers, code generators). In addition, we present a Feature-
Oriented Domain Analysis that depicts language dependent and language independent
features of computational notebooks.

Knowledge: Our results show that notebook interfaces generated by Bacatá can be used
with little manual configuration. However, there are a few considerations and caveats
that should be addressed by language engineers that rely on language design aspects. The
creation of a notebook for a DSL with Bacatá becomes a matter of writing the code that
wires existing language components in the Rascal language workbench with the Jupyter
platform.

Grounding: We evaluate Bacatá by generating functional computational notebook interfaces
for three different non-trivial DSLs, namely: a small subset of Halide (a DSL for digital
image processing), SweeterJS (an extended version of JavaScript), and QL (a DSL for
questionnaires). Additionally, it is relevant to generate notebook implementations rather
than implementing them manually. To illustrate this, we measured and compared the
number of source lines of code that we reused from existing implementations of those
languages.

Importance: The adoption of notebooks by novice-programmers and end-users has made
them very popular in several domains such as exploratory programming, data science, data
journalism, and machine learning. Why are they popular? In (data) science, it is essential to
make results reproducible as well as understandable. However, notebooks are only available
for GPLs. This chapter opens the notebook metaphor for DSLs to improve the end-user
experience when interacting with code and to increase DSLs adoption.

19
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2.1 introduction

Computational notebooks are cell-based documents that allow users to interlace exe-
cutable source code and interactive computed results with prose that explains them.
Wolfram Mathematica is one of the first commercial frameworks for creating note-
books [132, 370]. Lately, notebooks have become popular in disciplines such as mathe-
matics, physics, data science, programming education, and machine learning due to
the benefits notebooks provide in terms of reproducibility and usability [25, 85, 153,
259, 271].

Currently, there are several dozens of platforms that support the creation of compu-
tational notebooks. Wolfram Mathematica was one of the first platforms for notebooks,
yet its appropriation was limited due to their commercial licensing model. Later, in 2014,
Project Jupyter [182] developed an open-source notebook platform that has increased
the adoption of the notebook metaphor among different disciplines thanks to their
open-source model.

Jupyter is one of the most popular open-source notebook platforms. It has millions
of users across different disciplines, and there are more than one million public Jupyter
notebooks available on GitHub repositories [271]. Jupyter uses language kernels to
introspect source code and, by default, it comes solely with an iPython kernel. Never-
theless, the platform also provides an API for creating language kernels to support new
languages. In Jupyter’s context, a language kernel provides programming language
support, and it is responsible for enabling the communication between the notebook
front-end and the desired language. Additionally, it is responsible of executing code,
handling computation results and errors, and returning the results to the front-end.
A kernel brings together different language-specific components (e.g., type-checkers,
interpreters, compilers, formatters, pretty-printers, syntax highlighters).

The development of new language kernels is a cumbersome task; implementing
Jupyter’s low-level wire protocol requires substantial effort. Language Workbenches
(LWBs) offer a default set of generic Integrated Development Environment (IDE) ser-
vices [99]. Prior research [54, 68, 98, 99, 148, 267, 287] has shown that IDE generation is
feasible for Domain-Specific Languages (DSLs). Nevertheless, no support is available
for generating language kernels for computational notebooks. The addition of generic
language kernels to the LWBs toolbox opens up the notebook metaphor for software
languages in a generic fashion.

In this chapter, we present an extended version of a tool demo about Bacatá [356].
Bacatá is a language-parametric notebook generator that implements and hides the
complexity of Jupyter’s low-level wire protocol. Additionally, Bacatá offers a set of
generic hooks for registering language-specific services. We included Bacatá as part of
the generic IDE services offered by the Rascal LWB [180]. Thus, creating a language
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kernel for a DSL becomes a matter of writing a few lines of code. The implementation
of Bacatá, along with documentation and examples is available on Github1 .

The contributions of this chapter can be summarized as follows:

• We motivate the computational notebook metaphor from the software language
engineering perspective. To illustrate this, we provide a Feature-Oriented Domain
Analysis (FODA) [164] based on 16 computational notebook platforms (Section 2.2).

• We present Bacatá-Core, a generic language protocol implemented in Java. This
protocol simplifies Jupyter’s language kernels development process (Section 2.3.2).

• We introduce Bacatá-Rascal, a lightweight bridge between Bacatá-Core and Rascal
that enables the communication between Jupyter and Rascal. We highlight how to
use this bridge to generate language kernels for DSLs developed using the Rascal
LWB (Section 2.4).

• We evaluate Bacatá by generating language kernels for three different languages,
implemented in Rascal, namely, Halide* (a subset of Halide [280]) a DSL for digital
image processing, SweeterJS an extended version of JavaScript, and QL [99] a DSL
for defining questionnaires. Moreover, We measure the amount of reused code
for generating a language kernel (Section 2.6).

We conclude the chapter with a discussion of related work and future research directions
(Sections 2.7 and 2.8).

2.2 computational notebooks

Storytelling is a pedagogical strategy and a robust communication and collaboration
tool [92]. For instance, computational notebooks enable end-users to teach, learn, and
share knowledge. Notebooks are a contemporary style of literate programming [183].
They allow users to interleave documentation, executable source code, and output
results in a single linear document.

2.2.1 Anatomy of a Notebook

In its purest form, a computational notebook is a cell-based document. There are three
different types of cells, namely, documentation, input, and output cells. The first is used
to write prose. The second contains executable source code. The last one exposes the
result of executing input code.

For instance, Figure 2.1 shows a tiny notebook with three cells. The first row is a
documentation cell that contains prose text explaining what is going to happen. The
second cell displays an input cell where the user has entered the expression 1 + 2 in

1 https://github.com/cwi-swat/bacata

https://github.com/cwi-swat/bacata
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Figure 2.1: Notebook that calculates the addition of two integers.

some programming language. Finally, the last cell shows the output of evaluating the
expression.

Furthermore, notebooks are interactive: readers can tweak input parameters, change
code snippets, and observe different ways of representing the output. For instance,
changing the expression in the input cell will trigger the recomputation of the current
output cell. More advanced styles of notebooks feature interactive visualizations of
computed results as well, which support interactive exploration of (large) data sets.

Computational notebooks are usually persisted as a single document (e.g., a Jupyter
notebook is stored in a JSON-format file), which facilitates sharing. The notebook’s
results can be relatively easy reproduced since all the documentation, source code, and
computed results are part of the same document.

2.2.2 Notebooks for DSLs

Most existing language kernels for computational notebooks (e.g., for Python, R,
Julia), are based on full-fledged programming languages. DSLs, however, are software
languages tailored to solve a particular problem domain. They are designed as a mean
of communication between domain experts and software engineers. This fact motivates
us to explore if it might be useful to develop notebooks for DSLs. Below we analyze
four reasons why DSL users and DSL engineers may benefit from interactive notebooks.

end-user programming . Unlike general-purpose programming languages, DSLs
are often used by domain experts who are not necessarily proficient in software devel-
opment or computer science. Interactive notebooks provide a more friendly interface
for interacting with source code and documentation than full-fledged IDEs or basic
text editors. Additionally, the fact that notebooks run on ordinary web browsers avoids
installation hassle. In sum, notebooks make interaction with code less intimidating.

experimentation and simulation. Interactive notebooks deviate from the
traditional software development setting where the goal is to build production-quality
software, towards a setting where exploration and experimentation take center stage.
In the context of DSLs, this allows domain experts to experiment with the language,
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enjoying immediate feedback and reproducibility. As soon as the design and require-
ments are stabilized through a DSL, notebooks can provide input to production-level
code generators that create the actual software. As such, notebooks reinforce the di-
vision of labor between domain engineers and application engineers promoted by
Domain-Specific Software Engineering (DSE) [59].

dsl education. DSLs are typically small languages, designed for a specific au-
dience. They are developed by smaller teams than general-purpose programming
languages like Java or C#. As a result, the use of DSLs incurs costs regarding documen-
tation and training. Computational notebooks can function as live tutorials, providing
interactive walk-throughs for a DSL. Notebooks may thus complement standard forms
of documentation (e.g., user guides, reference manuals, API documentation), to allow
domain experts to familiarize themselves with a new DSL.

language engineering benefits . The engineering trade-offs in the construction
of DSLs are different from general-purpose programming languages. DSLs are often
developed in-house, by smaller teams, and require a faster design iteration cycle.
Notebooks can provide a valuable tool in the language engineer’s toolbox for testing and
debugging a language implementation. Especially, since various language engineering
aspects can be exposed as part of the notebook. For instance, as we will show in
Section 2.6, notebooks can display outputs of language implementation components,
such as generated code, static analysis results, and test results.

2.2.3 Feature-oriented Domain Analysis.

Computational notebooks are a form of literate programming. There are several plat-
forms for creating them. Each platform offers unique features, yet there are certain
features that are shared among them all. We performed a Feature-Oriented Domain
Analysis (FODA) [164] to identify common and unique features. Thus, we studied 16

computational notebook platforms (the list of studied tools and the mapping is shown
in Appendix A.1), and the result is a feature model shown in Figure 2.2, Figure 2.3,
and Figure 2.4. We split the complete feature model into three parts for readability. The
first diagram (Figure 2.2) shows an overview of the diagram, while the other two parts
display details of two features, namely Editor and Platform.

The root of the feature model in Figure 2.2 represents the concept of a computational
notebook. In the feature model, we only use two kinds of features, namely, mandatory
for common features (depicted as a box in Figures 2.2 to 2.4), and optional for unique
features (depicted as a box with a blank circle on top in Figures 2.2 to 2.4). All features
are described in Figure 2.2.
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Figure 2.2: Feature model of computational notebooks.
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Figure 2.3: Detailed view of the editor feature of the feature model of computational notebooks.

editor . The notebook editor is the Graphical User Interface (GUI) for creating
computational narratives. Figure 2.3 shows a more detailed view of the editor. The
Editor feature has five sub-features, namely Editing mode, Keyboard shortcuts, Execution,
Cell-based, and Comments.

editing mode . The only editing mode supported is Free-form in which the users
freely edit both code and documentation cells.

keyboard shortcuts . Keyboard shortcuts is a tool for increasing the productivity
of experienced users. Not all platforms consider this a must-have feature, so we consider
it as an optional feature.
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execution. The execution mode is the process of evaluating input code and render-
ing a response. We found four different modes, and often there is at least one of them
in a notebook platform. The default mode is Interactive, which means that the response
is immediate (not necessarily live [301, 351, 4em]) after pressing the execution button.
The other execution modes, included as optional features, are Background, Batch, and
Asynchronous. The inclusion of these execution modes is domain-specific. This means
that there are domains where these types of processing are needed to satisfy functional
and non-functional requirements. For instance, in data science, a big corpus of data
is scheduled to be analysed in batch. This is needed given the amount of time and
resources required for its processing.

cell-based. Notebooks are often divided into two types of cells, namely Input and
Output. The first can be either Prose in different formats (e.g., plain, markdown, LATEX)
or Code. We call a notebook polyglot when it allows users to create and execute code cells
in different programming languages in a single environment. Traditional IDEs offer a
set of Syntactic editor services [99] to improve user’s productivity and experience. The
primary syntactic services offered by notebook platforms are Syntax highlighting, Tab-
completion, Formatting, and Folding. Finally, Line numbers are helpful for error handling
and code review. Conversely, output cells are mainly used to display language kernel
results (e.g., the result of executing some code cell). These results can be displayed
either as Rich format elements or Plain format elements. Notebooks usually support the
following types of rich output media: HTML widgets, Plots with either static or dynamic
content, Multimedia (e.g., images, animations), and Tables.

comments . We found that some platforms allow users to add comments to the
notebook itself, and not only as code comments.

text editor . Text editors are included as part of a notebook platform to edit file
documents other than single notebooks. This feature is not present in all the platforms,
so it is marked as an optional feature.

vcs . Version control is fundamental for managing changes, yet there is not a stan-
dardised way of tracking changes in a notebook environment. We found two ways
of doing versioning of notebooks, either Document-oriented or Cell-oriented. The former
keeps track of all the changes at a document level, there’s no notion of cells. The latter
keeps track of all the changes at a cell level, which means the VCS show modifications
per cell and not per document.

licensing . There are three different types of licenses used by most of the studied
notebook platforms, namely, Open-source, Academic, and Commercial.
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Figure 2.4: Detailed view of the platform feature.

platform . It embodies all the additional components of a notebook framework,
beyond the editor. We have divided the platform into five sub-features, as shown in
Figure 2.4. The meaning of each sub-feature is explained below.

deployment. Two main deployment models are used for notebook platforms,
Standalone and Software as a Service (SaaS). In the first model, users require a local
infrastructure to install and run the platform, so they are responsible for all maintenance
activities (e.g., updates, security). In the second model, users do not require a proper
infrastructure, and they do not have to install anything. They can use the notebooks
straight out of the box, yet the only requirement is a computer with an internet
connection and a web browser.

extensibility. Some platforms come with a lot of plugins and built-in integration,
yet some others come with a limited set of features. Platforms of the latter kind allow
developers to enhance the default behaviour through a set of APIs. There are two ways
of extending these platforms, either by integrating Third-party applications or services,
or by building Extensions.

programming language . Notebook platforms can support either one or multiple
programming languages. In this context, we consider that a platform supports multiple
programming languages if it allows users to create notebooks with different program-
ming languages. For instance, MATLAB live editor [142] only supports Matlab as a
programming language, while Jupyter supports several programming languages [158].

shareability. Notebooks can be easily shared to have multiple users working
on the same notebook. Each user may be focused on different cells in the document.
The sharing can be done online or offline. On the one hand, online sharing means that
two or more users can modify the same notebook at the same time, while visualising
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modifications made by other users. On the other hand, offline sharing does not allow
the modification of the notebook simultaneously. Instead, a user works on his own
document, which is then easily shared with other users. This feature encourages
collaboration among different people. Sharing capabilities are supported by the single
document metaphor adopted by notebooks.

reproducibility. Notebooks are often used in scientific contexts, so reproducibility
is essential for peer review, validation, and verification. Notebooks can contain both
the explanation and development of a scientific result and provide the ability to
reliably reproduce previous interactive computations using the same data to obtain
identical results. There are two different means of sharing a notebook, either by sending
a Document that contains the notebook or by sharing a Link that points out to the
notebook. In general, there is no standard format for notebooks, so each platform
has its own. However, most platforms allow users to export the notebook’s content,
including its results (output cells) in different file formats such as PDF or as slides.

Summary

Looking at the feature model, we can observe that some features are language-specific,
and some are independent of the actual language. The following features are in the
first category: highlighting, completion, formatting, folding, and rich media. The other
features are orthogonal to the language-specific features and are handled generically
by notebook frameworks such as Jupyter.

Apart from rich media output, perhaps, the language-specific features are already
part of the standard toolset of LWBs [99], which opens up the possibility to reuse
language components. In the following section, we present Bacatá, and we describe
how we generate Jupyter language kernels using a LWB. Besides, we demonstrate
how language engineers can reuse existing language-specific components within a
computational notebook.

2.3 bacatá

Bacatá is a language-parametric interface between the Jupyter platform and the Rascal
LWB. It provides a mechanism to generate Jupyter language kernels in a way that
language engineers can reuse existing language components such as grammars, parsers,
type checkers, code generators, and interpreters. According to Jupyter’s documenta-
tion [159], a language kernel "is a program that runs and introspects the user’s code". In
other words, it is a language component that is capable of both evaluating an input
piece of code and resolving object types at runtime.

In the reminder of this section, we detail Bacatá’s design and implementation. First,
we present its architecture; second, we explain in detail Bacatá’s language service
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interface (Bacatá-Core) and Bacatá-Rascal; and third, we show an example of how to
generate a language kernel for a toy language using Bacatá.

2.3.1 Architecture
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Figure 2.5: Bacatá’s general overview architecture.

Figure 2.5 shows Bacatá’s architecture general overview. This diagram highlights
its most essential components and users (roles). There are two different Bacatá roles,
namely language engineer and end-user. Language engineers use Bacatá to generate
language kernels, whereas users interact with the generated kernel through the Jupyter
notebook interface.

Bacatá is divided into two components, Bacatá-Core and Bacatá-Rascal. Bacatá-Core
is responsible for enabling the communication between the Jupyter platform and a
LWB. It exposes the ILanguageProtocol, which is a generic language protocol interface
(comparable to Microsoft’s Language Server Protocol (LSP) [200]). This interface can be
implemented to work with any LWB because it is independent of Rascal. Bacatá-Core
is also responsible for collecting the user’s input code and sending it to the respective
language interpreter.

On the contrary, Bacatá-Rascal is Rascal-dependant. It implements the ILanguageProtocol
interface and provides the means for connecting Rascal-based languages to Bacatá-Core.
A Kernel type is Bacatá-Rascal’s entry point. It is an Algebraic Data Type (ADT) designed
to capture some required language-specific information. This ADT is actively used to
complete two essential tasks in the kernel generation. First, it generates the language
kernel; and second, it is the input for generating language-specific artefacts, such as
syntax highlighter modes and tab-completion functions.
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Bacatá’s language kernels are registered automatically as part of Jupyter’s supported
languages (in the current environment). Therefore, these language kernels also become
available to be used through any of the Jupyter’s interfaces.

End-users do not interact directly with Bacatá; from their perspective, Bacatá-Core
and Bacatá-Rascal are hidden components. They have to choose a language kernel
from Jupyter’s notebook interface, and afterwards they can start interacting with the
language. When a language kernel is chosen, Jupyter makes a callback to Bacatá to
instantiate a language Read–Eval–Print Loop (REPL). A language REPL is a language
artefact capable of reading expressions, evaluating them, and printing the result of their
evaluation. This REPL is needed to execute user’s code in the desired language.

2.3.2 Bacatá-Core

Jupyter’s mechanism to support new languages is through language kernels. A language
kernel is a program that executes the user’s code and implements the wire protocol [157].
This protocol can be implemented in two ways, by creating a Python wrapper kernel or
by hand. The former reuses all the IPython [268] kernel infrastructure and is meant
to be used by languages with Python bindings (e.g., Hy 2) [160]. The latter has to
be implemented by hand in the target language, yet it gives language engineers full
control. In this chapter, we focus on the second approach since it gives full control from
the language engineering point of view.

The wire protocol is Jupyter’s communication protocol, and it is implemented using
ZeroMQ sockets [4]. Bacatá-Core is responsible for implementing it. This protocol
involves five different types of sockets (control, heartbeat, IOPub, shell, and stdin) and
more than a dozen messages.Each message with its structure can be sent only through
a specific socket. Each socket and message has just one responsibility, but the right
composition allows the interaction between Jupyter’s notebook interface and language
kernels. Given the number of sockets and messages, its implementation is error-prone
and difficult to debug. The protocol is implemented at the session and presentation
layer in the OSI model [396].

To prevent language engineers from having to deal with Jupyter’s protocol, Bacatá-
Core offers an abstract class called MetaJupyterServer and an interface called ILanguageProtocol

(Appendix A.3). MetaJupyterServer hides all the complexity of the wire protocol, in-
cluding its socket management; while the ILanguageProtocol focuses on the language
engineering aspects, such as user’s code evaluation, code fragments auto-completion,
and statements completion.

Bacatá-Core is LWB-agnostic. To use Bacatá with a new LWB, language engineers
have to fulfill two conditions. First, they need to implement ILanguageProtocol. Second,
they have to implement the abstract methods of the MetaJupyterServer class (further
details on the abstract methods are shown in Appendix A.2).

2 https://docs.hylang.org/en/stable/

https://docs.hylang.org/en/stable/
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In the next section, we discuss implementation details and design decisions of the
ILanguageProtocol and MetaJupyterServer. We also show the integration with the Rascal
LWB and how to generate language kernels in a language-parametric way.

2.4 bacatá-rascal

Language kernels are Jupyter’s mechanism to support new languages. Bacatá-Rascal is
a language kernel generator for Rascal DSLs. To enable the communication between
a Rascal DSL and Jupyter, we implement a Java class DSLNotebook that extends the
abstract class MetaJupyterServer. DSLNotebook provides a definition of the language-specific
methods declared in the MetaJupyterServer class, such as code completion and code
execution. Additionally, it requires the definition of an interpreter. This interpreter is a
generic implementation of the ILanguageProtocol, which is used to introspect and evaluate
user’s code for all Rascal DSLs. It is designed as a language-parametric mechanism
for hooking the DSL’s REPL into Bacatá. Concretely, the generic interpreter takes as
input the DSL’s source code path and the REPL’s qualified name. Bacatá-Rascal uses
this information to load the language and to execute the user’s code in the desired
language.

For creating a new language kernel with Bacatá, language engineers have to define
an interpreter for their language. To implement an interpreter they have to instantiate
a REPL ADT (Listing 2.1). This REPL object is the language’s interactive interpreter. It is
used to evaluate the user’s input code (using the handler function) and to complete code
fragments (using the completor function). The result type of each function (completor and
handler) is also shown in Listing 2.1, lines 4-8.

Listing 2.1: REPL type definition.

1 data REPL

2 = repl(Result(str) handler, Completion(str) completor);

3

4 alias Completion

5 = tuple[int position, list[str] suggestions];

6

7 data Result

8 = text(str result, list[Message] messages);

The walk-through to create a language kernel for a DSL using Bacatá is explained
below.

1. Language engineers have to specify language’s information through a value of
type Kernel (Listing 2.2). This ADT defines configuration parameters for obtaining
language-specific information (e.g., name and location of the logo of the language)
required either by Bacatá-Core or Bacatá-Rascal. Additionally, it contains informa-
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tion about relevant resources such as the language’s project path and the REPL’s
qualified name.

2. The language engineer calls bacata (Listing 2.4), which has two overloaded function
definitions. On the one hand, the first definition (Listing 2.4, line 1) takes an
argument value of type Kernel (Listing 2.2) and two optional boolean parameters,
namely, debug and Docker [234]. The first, as its name suggests, is used for
language kernel debugging. The second is used to generate a Dockerfile that
assembles all the required dependencies to run the generated computational
notebook (including the generated language kernel). The second bacata definition
(Listing 2.4, line 2) has an extra parameter, namely grammar. We included this
parameter in case the language engineer wants Bacatá to offer syntax highlighting
support through CodeMirror modes. We explain syntax highlighting details in
Section 2.5.1.

3. As a result of calling bacata, there are several side-effects. First, Bacatá verifies
Jupyter’s correct installation and the definition of the required environment
variables. Second, it generates a JSON serialised dictionary (a.k.a. kernel.json) that
contains language-specific information (including Bacatá’s wiring) and Jupyter’s
connection details (e.g., ZMQ socket ports). Third, it constructs a value of type
Notebook (Listing 2.3) that encapsulates either two or three functions (depending
on the selected overloaded constructor). The serve function starts Jupyter’s server,
while the stop function is used to shut down the server. Moreover, to capture
Jupyter’s server logs, we use the logs function. Fourth, it installs the generated
language kernel in the current Jupyter environment. Finally, to obtain an updated
version of the front-end, Bacatá automatically recompiles all Jupyter’s assets
(including DSL-specific artefacts such as generated CodeMirror modes).

Listing 2.2: Kernel type definition.

data Kernel

= kernel(str languageName, loc projectPath, str replFunction, loc logoPath = |tmp:///|);

Listing 2.3: Notebook type definition.

data Notebook

= notebook(void() serve, void() stop)

| notebook(void() serve, void() stop, void() logs);

Listing 2.4: Bacata function.

1 Notebook bacata(Kernel kernel, bool debug = false, bool docker = false) {...}
2 Notebook bacata(Kernel kernel, type[&T <:Tree] grammar, bool debug = false, bool docker =

false) {...}
3 Notebook bacata(Kernel kernel, Mode mode, bool debug = false, bool docker = false) {...}
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2.5 concrete example : the calc language

So far, we have introduced Bacatá’s components; now, we are going to explain how
to generate a language kernel using Bacatá for a simple calculator language (Calc).
This language already existed and it was already implemented using the Rascal LWB.
However, all the Rascal code could also be written in Java or using other LWB. We
present Calc’s grammar in Listing 2.5. It consists of commands (Listing 2.5, lines 5-7)
and expressions (Listing 2.5, lines 11-15). There are two types of supported commands,
namely assignments and expression evaluation. Calc’s expressions are variables, num-
bers, multiplication, and addition. To execute commands, there is an exec function
(Listing 2.5, line 19) that returns a tuple containing an integer, and a possibly updated
environment (value of type Env, Listing 2.5, line 18). Finally, expressions evaluate to
numbers (eval function in Listing 2.5, line 21).

Listing 2.5: Calc’s grammar definition using Rascal’s built-in formalism.

1 module Syntax

2 extend lang::std::Id;

3 extend lang::std::Layout;

4

5 syntax Cmd

6 = Id "=" Exp

7 | Exp;

8

9 lexical Num = [\-]?[0-9]+;

10

11 syntax Exp

12 = Id

13 | Num

14 | left Exp "∗" Exp

15 > left Exp "+" Exp;

16

17 alias Env = map[str, int];

18

19 tuple[int, Env] exec(Cmd cmd, Env env) { ... }

20

21 int eval(Exp exp, Env env) { ... }

Based on this existing language definition, we now explain how to get a REPL
(Listing 2.6). calcREPL returns a value of type REPL (Listing 2.1). As explained before,
the REPL requires the definition of two functions, handler and completor. First, Calc’s
handler is shown in Listing 2.6 (lines 7-15). It takes the user’s input as a parameter
and tries to parse it. If the parsing phase is successful, it proceeds to execute the parsed
command and returns a text(Listing 2.1, line 8) result (line 11, Listing 2.6). Otherwise,
if there is a parsing error, the function (calcHandler) returns an error message with an
empty result (line 14, Listing 2.6). Second, calcCompletor implements a straightforward
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completion function. It iterates over all the variables stored in the current environment
(env, line 5 Listing 2.6), and returns the set of variables that match with the prefix

parameter. Finally, line 22 (Listing 2.6), we construct and return a value of type REPL

containing the functions mentioned above (calcHandler and calcCompletor).
Note that code in Listing 2.5 and Listing 2.6 is entirely independent of Bacatá.

Therefore, all the code can be reused outside the notebook environment. For instance,
the concrete syntax definition, the evaluation, the execution, and the REPL functions may
all be used in a standalone IDE for Calc.

In particular, in Listing 2.7 we detail how to generate a Jupyter language kernel with
Bacatá. We use the REPL function calcRepl defined in Listing 2.6. We first create a Kernel

value, consisting of the language’s name, the project’s path, and the REPL’s function
qualified name. Bacata’s function (line 4 in Listing 2.7) returns a Notebook value, and
as a side effect, it generates a kernel.json file. The Notebook value may be used to start
Jupyter’s notebook server within the same session. Alternatively, it can also be started
from the command-line outside Rascal Eclipse.

Listing 2.6: A REPL implementation for
Calc.

1 module Repl

2 import Syntax;

3

4 REPL calcREPL() {

5 Env env = ();

6

7 Result calcHandler(str line) {

8 try {

9 Cmd cmd = parse(#Cmd, line);

10 <n, env> = exec(cmd, env);

11 return text("<n>", []);

12 }

13 catch ParseError(loc l):

14 return text("", [message("Parse error"
, l)]);

15 }

16

17 Completion calcCompletor(str prefix)

18 = <pos, [ x | x ← env, startsWith(p,

x) ]>

19 when /<p:[a-zA-Z]*$/ := prefix,

20 pos := size(prefix) - size(p);

21

22 return repl(calcHandler, calcCompletor

);

23 }

Listing 2.7: Rascal’s interactive session.

1 > k = kernel("Calc", |project://Calc|,
2 "Repl::calcRepl");
3 >> ...
4 > nb = bacata(k);

5 >> ...
6 > nb.serve();

7 The notebook is running at:

8 |http://localhost:8888|

Listing 2.8: Syntax Mode data type.

data Mode

= mode(str name, list[State] states);

data State

= state(str name, list[Rule] rules);

data Rule

= rule(str regex, list[str] tokens,

str next = "", bool indent = false,

dedent = false);
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2.5.1 Input Cells: Syntax Highlighting

Jupyter’s input cell editor is based on the CodeMirror editor [131], thereby for syntax
coloring, Jupyter uses CodeMirror modes. They are similar to so-called “Textmate
grammars”3 that are used by editors such as Textmate, VS Code, SublimeText, and
many others. Listing 2.8 shows the definition of the Mode type. A Mode is defined by a
name and a list of states, and each state has a name and several rules that apply to each
state. Finally, a Rule defines a regular expression that matches a particular substring and
assigns a list of tokens that determine its visual appearance. After a rule has matched, it
may transit to another state via the next property. There are two optional Booleans indent

and dedent. They are responsible for controlling auto-indentation in block constructs.
Bacatá allows language engineers to describe and generate CodeMirror modes in

an automatic or manual fashion. The first approach is a built-in feature of Bacatá. It
takes the language’s grammar and analyzes it to generate simple modes for keyword
highlighting using reflection. The second approach is by manually defining a Mode, and
sending it as a parameter to the bacata function. A simple mode for the Calc language
is implemented as follows:

Mode calcMode =

mode("Calc", [state("ini", [rule("[0−9]+", ["number"]), rule("[a−zA−Z][a−zA−
Z0−9_]∗", ["variable"])])]);

This mode defines a state with two rules, one for numbers and the other one for
variables. To create a Calc notebook using the calcMode mode, one can call the bacata

function as shown bellow:

bacata(k, calcMode);

2.5.2 Output cells: Interactive Visualizations

Jupyter’s notebook interface runs in the browser, so this allows cells to contain arbitrary
HTML/CSS/JS widgets, beyond the plain output shown in Listing 2.6 (line 11) for
the Calc language. Bacatá supports fully interactive, stateful graphical user interfaces
as output cells. Said support is achieved through the integration between Bacatá and
Salix [326], Rascal’s web UI framework. Salix offers support for standard HTML and
SVG elements, and integration with several graph frameworks and chart frameworks
such as DagreJS[81] and Google Chart [123].

Salix emulates Elm’s architecture4; it is divided into three parts, namely model, update,
and view. In Salix, these three pieces are encapsulated as an App[&T] type, where &T

represents the application data model. An App encloses a view to draw UIs, and the

3 https://manual.macromates.com/en/language_grammars
4 https://guide.elm-lang.org/architecture/

https://manual.macromates.com/en/language_grammars
https://guide.elm-lang.org/architecture/


2.5 concrete example : the calc language 35

update function to update the application’s model when the user triggers an event. The
way Bacatá uses Salix Apps is by allowing its usage as a REPL output. To achieve this,
we extend the definition of the Result type (Listing 2.1) as follows:

data Result

= ...
| app(App[&T] app, list[Message] messages);

As a result of extending the Result type definition, a REPL can return fully functional
stateful output cells, leveraging all UI features of Salix.

Now we are going to extend our Calc language with a tiny expression debugger.
This debugger is used as a way of interactively debugging variables values, and see the
effect of changing them in the evaluation of expressions. The following code snippet
reflects the required changes to integrate the expression debugger in the current
implementation of the Calc language. First, we add a new production rule to the Cmd

non-terminal that triggers the debugging visualization as follows:

syntax Cmd

= ...
| "show" Exp;

As a result of the previous change, when the user types and executes the expression
show x + y, the resulting output cell will contain a debugger of the expression x + y.

Listing 2.9 shows the implementation of the expression debugger for the Calc

language using Salix. The application model for this debugger is the environment
Env and the Msg type, binds the unique event, which keeps track of changes in the
variable’s value. In Listing 2.9 (Lines 3 to 20) we show a function named expDebugger

that takes as arguments an expression Exp and an environment Env and produces a
Salix application (App[&T]). This type encapsulates three functions, namely, init, view,
and update. The first one initializes the application model. The second function takes
the current environment and draws the UI based on that information. The UI shows a
textual representation of the expression, including its computed value. Also, for each
variable in the environment, the UI creates a label and a slider. Finally, the last function
is responsible for updating the model.

Finally, to complete our expression debugger, we have to include it as part of the
Calc’s REPL. As said before, we want to display the debugger whenever a user executes
a show command. To achieve this, we added the following if-statement just after parsing
the user’s input code (Listing 2.6, line 9).

Cmd cmd = ...
if ((Cmd)‘show <Exp e>‘ := cmd) {

return app(expApp(e, env), []);

}

The last if-statement uses Rascal’s concrete syntax pattern matching to check whether
cmd is a show command or not. If cmd is a show command, it binds e to the argument
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expression. If the match succeeds, it returns a value of type Result (using the app

constructor) that encapsulates the Salix application defined in Listing 2.9.

Listing 2.9: Expression debugger defined using Salix.

data Msg = var(str x, str val);

App[Env] expApp(Exp e, Env env) {

Env init() = env;

void view(Env env) {

div(() {

for (str x ← env) {

text("<x>: <env[x]>");
input(type("range"), value(env[x]),

onInput(partial(var, x)));

}

text("<e>: <eval(e, env)>");
});

}

Env update(var(x, v), Env env)

= env + (x:toInt(v));

return makeApp(init, view, update);

}

Figure 2.6: Calc notebook that includes an interactive debugger for expressions.

Figure 2.6 displays a Calc notebook, including a debugging interface (output cell
3). In this notebook, a user has defined two variables, x and y. Then a showcommand
was executed to debug the effect of changing the value of the current variable bindings
on the expression 2 * y. When the user changes the slider for y, the new result is
simultaneously updated.
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2.6 case studies

We have used Bacatá to generate notebook interfaces for three different languages,
namely, Halide*, SweeterJS, and QL. All these languages have been implemented using
the Rascal LWB and are available on GitHub [358].

2.6.1 Halide*

Halide [280] is an embedded language for image processing and computational photog-
raphy. Bacatá requires a grammar and a REPL written in Rascal to create a notebook.
However, for Halide, we did not have an existing grammar nor REPL. Therefore, we
implement Halide*, a Halide grammar, and a REPL that enables the interaction with
the DSL through a notebook interface. Halide* captures a subset of the Halide language.
It is important to remark that the notebook way of working influences the design of the
Halide* ’s grammar and the REPL. Also, the current implementation was written in
Rascal, but it could have been done in Java or using other LWB. Halide* was designed
for Océ, a Canon company that develops, and manufactures printing and copying
hardware. As part of their development process, one of their needs is the construction
of digital image processing algorithms. In this process, there are people with different
backgrounds (e.g., mathematicians, physicists, electrical engineers) not necessarily with
a background in computer science. However, most of them were already familiar with
a notebook way of working. They wanted a mechanism to implement said algorithms
in a notebook environment that speeds up their development cycle.

Halide* divides the program into three different categories, namely, data loading,
algorithms, and execution. The data loading category includes the language constructs
used to load data into buffers (e.g., images, arrays); the algorithmic category describes
the data transformation the user wants to express algorithmically (e.g., blur, gradient);
finally, the execution category takes the data and applies algorithms over it.

Halide* generates, compiles, and executes native Halide source code; the Halide
compiler is responsible for the compilation and execution steps. We introduced some
syntactic sugar to the Halide grammar to detect particular language constructs using
the categories mentioned above. Mainly, we added function wrappers to differentiate
between main functions, image pipeline definitions, compilation strategies (e.g., ahead
of time or just in time compilation), and execution. Halide*’s cell execution is performed
through the REPL in two steps. First, we compile Halide* code into Halide code, then
Bacatá delegates the compilation and execution process to g++. Bacatá intercepts those
results, parses them into HTML, and then displays them within the output cells of the
Halide* notebook.

A prototypical session using the Halide* notebook is shown in Figure 2.7. It highlights
the visualization of multimedia results and inspection of artifacts generated by the
compiler. In Figure 2.7a, the user loads a png image (as shown in the output cell [1]).
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(a) Loading an image and defining a function blur
(snipped). (b) Calling blur and inspecting generated artifacts.

Figure 2.7: Halide notebook.

Then a blur function is defined in the input cell [2], which does not produce an output
but is now available for use. Then, in Figure 2.7b, the blur function is invoked on
the input image in. The result shows a tabbed interface built to inspect loop nesting,
execution metrics, lowered code, assembly code, C code, and LLVM assembly code.
Alternatively, the resulting image can be shown.

2.6.2 SweeterJS

SweeterJS [80] is a framework for language extension of Javascript (ECMAScript 5),
and it is used to teach source-to-source transformations (desugaring) using Rascal.
SweeterJS was already implemented as a Rascal language, although it did not have
a REPL. Therefore, we created a SweeterJS’s REPL that mostly reuses the existing
SweeterJS IDE. To illustrate the benefits of notebooks from the language engineering
perspective, we have generated a notebook interface for SweeterJS. The notebook
interface allows students to experiment with the language by writing, executing, and
transforming SweeterJS’s code snippets. Therefore, students obtain the computed result
and the desugared version (ECMAScript 5) code.

Figure 2.8 shows a SweeterJS notebook that contains as input some JavaScript code
with an SQL-like query expression (In[16], line 5). Furthermore, it also shows the result
of executing the desugared version of the code and the desugared code itself. For
instance, the query expression (line 5 in the input cell) is transformed into a JSLINQ
query constructor (Out[16], lines 5-7).

2.6.3 Questionnaire Language (QL)

QL is a DSL for defining interactive questionnaires that has been used to benchmark and
evaluate LWBs [99]. Indeed, QL is interesting from the notebook metaphor perspective
since QL specifications define interactive GUI forms. There is already a Rascal imple-
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Figure 2.8: Desugared output from a SweeterJS notebook.

mentation of QL [325], so like we did for SweeterJS, we reused the existing language
definition and IDE for QL to built on top of that a REPL. In particular, a questionnaire
consists of a form that may contain one or more questions, and each question has a
type. There are three different types of questions, namely labeled, conditional, and
computed. QL programs in a notebook environment can be visually represented as
interactive HTML widget forms implemented using the Salix library. Besides, the QL
notebook supports the visualization of control dependencies between questions, which
is a valuable feature for questionnaire designers to understand the conditional logic of
a questionnaire.

Figure 2.9 shows a QL notebook for a simple tax filing questionnaire. The user first
defines a questionnaire myForm using the form-command (Figure 2.9a). Then, in Fig-
ure 2.9b, the form is rendered as an interactive HTML widget using the html command.
Note that the output is a fully working questionnaire, as if we have deployed it in
a production environment. Thus, this supports testing interactive questionnaires at
design time. Alternatively, to understand the conditional logic of a form, the user can
visualize the control dependencies using the visualize command (Figure 2.9c).

2.6.4 Effort

To assess Bacatá’s flexibility for creating Jupyter language kernels, we compare the
number of Source Lines of Code (SLOC) that are Bacatá independent versus the number
of SLOC required to define the notebook itself. These results are shown in Table 2.1.

The Calc language is included as a baseline, and it is the code discussed in Sec-
tion 2.5. On the one hand, the reused code that is independent of Bacatá is the grammar



40 bacatá : notebooks for dsls , almost for free

(a) QL form definition. (b) QL form execution. (c) Question control dependen-
cies.

Figure 2.9: Tax filing questionnaire using a QL notebook.

Table 2.1: Number of reused SLOCS and notebook-specific SLOCS.

Language Reused SLOC Notebook SLOC

Calc 37 50

Halide* 51 647

SweeterJS 579 162

QL 771 120

definition and the exec and eval functions. On the other hand, the notebook specific
code includes the definition of the REPL and the expression debugger.

The Halide* implementation differs from the other case studies because we imple-
mented the whole language from scratch. We reverse-engineered the Halide language
to design Halide* and make it notebook-friendly. The amount of notebook specific code
is higher than the reused code because it required a reengineering process of an existing
non-notebook-friendly language. It required changes in several language components.
The syntax definition is the only completely reusable component. When implementing
the Halide* notebook, we have found some language-specific design considerations that
should be addressed to change an existing language into a notebook-friendly language,
but these details are out of the scope of this chapter.

In the remaining case studies, namely SweeterJS and QL, the ratio between reused
and notebook specific code is much higher. In the case of SweeterJS, the reusable code
includes JavaScript’s syntax definition, language extensions for state machines, queries,
and a variant of HAML [337], and the required transformations to desugar language
extensions to vanilla JavaScript.

In addition, the REPL for QL was already defined and it included a Salix visualization,
so that we could reuse it automatically. The same holds for other language components
such as syntax definition, name resolution, and type checking. The new code includes
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the code for the REPL and the control-dependency visualization. However, this code
can also be used outside the notebook environment.

Table 2.1 shows that creating a language kernel for Jupyter notebook using Bacatá
requires limited effort. Its main requirement is a REPL definition, which in some
cases is as simple as wiring some existing components together as we did with QL
and SweeterJS. In contrast, other languages may require more profound language
modifications due to the different execution models. However, even in those cases,
language engineers benefit from the Jupyter’s protocol implementation.

Bacatá can be used across several domains by various DSLs. In this chapter, we used
it for four languages, namely Calc, Halide*, SweeterJS, and QL. Therefore, we can
conclude that Bacatá is functional and effectively applicable to various domains and
languages. However, as discussed above, the benefit of using Bacatá may differ between
domains and languages. For instance, the Halide* notebook required more effort due
to the language reverse-engineering and REPL development. While, in Calc, SweeterJS,
and QL, we reused the existing DSL machinery.

2.7 related work

In the context of software language engineering, tooling support is vital to increase and
improve the adoption of language-oriented programming. Bacatá contributes to the
research line on program environment generation [54, 68, 98, 99, 148, 267, 287].

Fowler [110] popularized the term LWB. In one of his essays, he described the
foundations of language-oriented programming, its benefits, and drawbacks. Also,
he explains the critical role of IDE tool support in language-oriented programming.
Primarily, proper tool support for DSLs may reduce the learning curve and boost their
viability.

LWBs make use of metalanguages and meta-programming techniques that reduces
the costs of building DSLs and its tooling. Our work aims to follow the same trend
by offering a mechanism of generating a computational notebook interface based on
a language specification. Mainly, notebooks offer a different GUI for interacting with
code and documentation. This interface does not clash with the more traditional GUIs
such as IDEs or text editors, but it offers an enhanced interface mainly for end-user
programming [184] and exploratory programming [39, 172, 303].

Interactive computing has emerged as another software development paradigm. So
far, researchers have highlighted its importance and benefits for programming related
tasks [72, 253]. Cook [72] highlights the main benefits of using interactive programming
in software development. He illustrates the main differences between interactive and
non-interactive programming. Likewise, Nagar [253] presents a case study about using
Python in an interactive computing setting. Mainly, he highlights the importance
and value of being able to experiment with code; mostly, the capability of executing
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commands and expressions, and its output. Also, the impact it has on the programming
language learning curve for end-users.

Computational notebooks integrate different research areas such as literate pro-
gramming, interactive computing, and end-user programming. However, the primary
rationale probably is literate programming [183, 281, 308]. The basis of a computational
notebook is the capacity of writing executable source code and narrative text. Also, the
ability to document and explain results using multimedia formats such as charts and
visualizations.

Moreover, one of the benefits of using notebooks is its sharing capabilities [317].
Turner et al. [349] explored them as an appropriate mechanism for supporting coopera-
tive work and sharing information with non-technical staff. Bacatá follows this direction
because we are getting DSLs closer to end-user programmers through a notebook
interface.

Currently, there are several studies tackling usability, cognitive, and reproducibility
aspects of computational notebooks. For instance, in reproducibility [189, 270, 271, 309],
education [258], exploratory programming [39, 133, 172, 173], documentation [388],
and data journalism [393]. However, no attention has been paid from the language
engineering point of view. There is some work about interactive DSL usage, e.g.,
domain-specific debuggers [52] and live DSLs [301, 344, 351].

2.8 conclusions & future work

Computational notebooks offer a different GUI for interacting with prose, executable
source code, and interactive feedback. Contrary to traditional IDE and text editors,
notebooks focus on a different way of working focused on computational storytelling
and end-user programming (e.g., exploratory programming and data science).

To better understand computational notebooks and their features, we conducted a
FODA in which we studied 16 notebook platforms. Based on our findings, we created
a feature model that depicts both common and unique features of these platforms.

Jupyter is one of the most popular open-source notebook platforms. Therefore, in this
chapter we implemented our approach in the Jupyter context. In general, developing a
new language kernel for Jupyter requires much effort. In the context of DSL’s, it is even
more expensive because their design and implementation cycle is different from general-
purpose programming languages. Thus, we introduce Bacatá, a language-parametric
kernel generator for Jupyter notebooks. These language kernels reuse existing language
components, such as language processors, language formalisms, and type checkers.
Thus, implementing a notebook interface for a new language becomes a matter of
writing a few lines of code that wire language components together as a REPL.

Moreover, we present Bacatá’s architecture and how we implement it within the
Rascal LWB. In addition to the default features offered by Jupyter (code execution,
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code tab-completion, and syntax highlighting), we integrate Rascal’s web-based GUI
framework (Salix) to support fully interactive output cells.

We use Bacatá-Rascal to define language kernels for three languages, namely Halide*,
SweeterJS, and QL. With these case studies, we exercised multiple aspects of the
framework with different kinds of DSLs. As a result, we find that embedding a language
into a notebook setting may have an impact on its design. In Section 2.6.4, we compare
the number of reused SLOCs versus the number of notebook-specific SLOCs and we
observed that Bacatá-generated language kernels require little effort. All the effort is
focused on language-specific tasks and not in notebook-specific tasks.

As an on-going part of this project, we plan to study in more detail what are both the
limitations and consequences of embedding a DSL into a notebook ecosystem. Moreover,
we want to evaluate if it is feasible to embed visual languages into this setting. Finally,
we plan to consolidate Bacatá’s interface (ILanguageProtocol) with Microsoft’s LSP [200].
This consolidation would allow language engineers to implement a single interface
once and for all.





3
A P R I N C I P L E D A P P R O A C H T O R E P L I N T E R P R E T E R S

Read-eval-print-loops (REPLs) allow programmers to test out snippets of code, explore
APIs, or even incrementally construct code, and get immediate feedback on their actions.
However, even though many languages provide a REPL, the relation between the language
as is and what is accepted at the REPL prompt is not always well-defined. Furthermore,
implementing a REPL for new languages, such as DSLs, may incur significant language
engineering cost. In this chapter we survey the domain of REPLs and investigate the
(formal) principles underlying REPLs. We identify and define the class of sequential
languages, which admit a sound REPL implementation based on a definitional interpreter1,
and present design guidelines for extending existing language implementations to support
REPL-style interfaces (including computational notebooks). The obtained REPLs can then
be generically turned into an exploring interpreter, to allow exploration of the user’s
interaction. The approach is illustrated using three case studies, based on MiniJava, QL (a
DSL for questionnaires), and eFLINT (a DSL for normative rules). We expect sequential
languages, and the consequent design principles, to be stepping stones towards a better
understanding of the essence of REPLs.

3.1 introduction

“The top level is hopeless”, Matthew Flatt2

Read–Eval–Print Loops (REPLs, also known as command-line interfaces, or interactive
shells) are a popular way for programmers to interact with programming languages.
They allow incremental definition of abstractions, testing out snippets of code with
immediate feedback, debugging executions, and explore APIs.

Some languages, such as scripting languages or interpreted languages, are more
naturally compatible with the REPL mode of interaction and the styles of programming
that it enables (and that programmers have come to expect). For example, a sequence of
valid code snippets written in the REPL of Python can be itself a valid Python program.
On the other hand, JShell, for instance, allows programmers to write expressions,
statements, variable declarations and method declarations as code snippets, even
though these constructs are not allowed at the top-level in Java programs.

Consider the following example JShell interaction (every line is a code snippet sent
separately):

1 A definitional interpreter is an interpreter that simultaneously defines and implements the operational
semantics of a language.

2 https://gist.github.com/samth/3083053
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class Example {}

Example obj = new Example();

class Example { public int meth() { return var; } }

int var = 1;

This example raises the questions whether classes can be redefined, whether obj can
be accessed after Example is redefined or if obj is migrated, and, if so, what methods it
has and, if meth is available, whether a call obj.meth() returns 1. Without giving answers
here, the example shows that the relation between a programming language and the
behavior of its REPL is not immediately obvious. Matthew Flatt’s ceterum censeo quoted
above bears witness to the fact that the relation can actually be strenuous and cause a
lot of confusion. The above questions are fundamentally about language design: several
sensible answers are possible and the answers have a significant impact on programmer
experience.

In some sense, JShell can be seen to implement its own language, which, even
though strongly reminiscent of Java, is markedly different. In this chapter, we take this
observation and run with it: we assume that a REPL interpreter for L effectively defines
its own language R, often as an extension or modification of L, whose programs are
sequences of valid code snippets according to the REPL.

To this end we identify and define the class of languages that underlie REPL in-
terpreters as sequential languages. The essence of sequential languages is that the con-
catenation of two programs is again a program. Or, to put it more precisely, a language is
sequential if it features an associative sequencing operator o

9, such that the following
equation holds:

Jp1 o
9 p2K = Jp2K ◦ Jp1K

The meaning of a sequence of program fragments is defined by composing the meanings
of the individual fragments, including any impure effects of these fragments.

The notion of sequential language informs a methodology to make a language
sequential, and hence suitable for sound REPL interpreters. The methodology enforces
certain design principles on the REPL engineer to ensure that questions like the ones
asked about the JShell interaction are answered precisely and are explicitly addressed
as matters of language design, instead of an implementation concern. Furthermore,
sequential languages are amenable to interfaces which allow exploring execution traces
resulting from REPL interactions.

We have applied this methodology in three case studies. The first extends an existing
implementation of MiniJava [11] in the Rascal language workbench [180], to make it
sequential. This extended MiniJava is then the base interpreter for a computational
notebook interface through Bacatá, Rascal’s bridge to Jupyter [359]. The second case
study involves QL, a DSL for defining spreadsheet-like interactive questionnaires [99,
100]. This case study show that it is feasible to obtain REPLs for languages that are not
statement- or expression-oriented. The third case-study applies the methodology to
obtain interactive services for eFLINT, a DSL for executable normative specifications [45].
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The resulting services allow users and policy-aware software to navigate choices and
decisions in the realm of law and regulation.

To summarize, the contributions of this chapter are:

• A feature-based analysis of the landscape of REPLs for a selection of the most
popular programming languages (Section 3.2).

• A formalization of the notion of sequential language as the underlying principle
of REPLs (Section 3.3).

• A language-parametric exploring interpreter algorithm on top of existing inter-
preters, allowing users to navigate user interaction history (Section 3.4).

• A methodology for developing REPL interpreters by sequentializing languages
with a definitional interpreter (Section 3.5).

• Three case studies to illustrate the feasibility of the approach (Section 3.6).

The chapter is concluded with a discussion of limitations, related work, and directions
for further research.

3.2 repl domain analysis

Table 3.1: Surveyed REPL implementations.

REPL Reference

CLing (C/C++) https://cdn.rawgit.com/root-project/cling/master/www/index.html

JShell (Java) http://openjdk.java.net/jeps/222

Python https://docs.python.org/3/tutorial/interpreter.html

C# https://www.mono-project.com/docs/tools+libraries/tools/repl/

Node.js (Javascript) https://nodejs.org/api/repl.html

PHP https://www.php.net/manual/en/features.commandline.interactive.php

PsySH (PHP) https://psysh.org/

SQLite (SQL) https://sqlite.org/

R https://www.r-project.org/

Swift https://swift.org/lldb/

Gore (Go) https://github.com/motemen/gore

GNU Octave https://www.gnu.org/software/octave/

Rappel (assembly) https://github.com/yrp604/rappel

iRB (Ruby) https://github.com/ruby/irb

This section provides a study of existing REPL interpreters and their main features.
We have studied freely available REPL implementations, listed in Table 3.1, for the
15 most popular languages from the TIOBE index [61], with the exception of Visual

https://cdn.rawgit.com/root-project/cling/master/www/index.html
http://openjdk.java.net/jeps/222
https://docs.python.org/3/tutorial/interpreter.html
https://www.mono-project.com/docs/tools+libraries/tools/repl/
https://nodejs.org/api/repl.html
https://www.php.net/manual/en/features.commandline.interactive.php
https://psysh.org/
https://sqlite.org/
https://www.r-project.org/
https://swift.org/lldb/
https://github.com/motemen/gore
https://www.gnu.org/software/octave/
https://github.com/yrp604/rappel
https://github.com/ruby/irb
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Figure 3.1: Feature model for REPL interpreters.

Basic, for which we could not find an freely available implementation. For MATLAB
we have selected GNU Octave as a substitute. We performed a feature-oriented domain
analysis [163], resulting in the feature model of Figure 3.1. Below we briefly describe
the main mandatory and optional features.

mandatory features An interpreter must have certain features to be considered
a REPL. In particular, a REPL has the ability to execute multiple code snippets across
multiple interactions in a single session (as opposed to executing one full program
per session). In most of the investigated REPL implementations, the REPL maintains
execution context and executes snippets incrementally (the “Incremental” alternative of
the “Snippet Execution” feature). Optionally, a REPL may provide a way to undo the
execution of snippets (roll-back). An alternative to incremental execution is composing
all snippets into a single program and execute the program from scratch (the “Full”
alternative). REPLs are expected to provide feedback after evaluating snippets, showing
at least the snippet’s printed output, and perhaps any result values or newly declared
types (“Summary of Snippet Effects”).

optional features Next to these mandatory features, the investigated REPLs
implement several additional features such as auto-completion of snippets (“Snippet
Completion”). This can target either language keywords or previously defined identi-
fiers. Completion can take into account the syntactic context in which the user is typing,
can be extended to fully qualified identifiers, and may also take into account the type
of identifiers (through static typing or type hinting).



3.2 repl domain analysis 49

Even though the language itself might not support modifying an existing definition
(“Definition Modification”), most REPLs allow this behavior to some extent. Common
ways include overriding the previous definition, either through a new definition snippet
or by editing it from an external text editor. Other REPLs also allow opening up
definitions (such as classes) for additions (“Open & Extend”).

Another common feature is the help (meta-)command (“Help Command”), which
can document either the language, the REPL and its meta-commands, or both. The
history of commands (including snippets) is usually made available to the user, in
order to find and resubmit previous commands (“Command History”). It can be
consulted sequentially through the arrow keys, but often includes a search facility as
well. Some REPLs assign identifiers to commands in order to retrieve them arbitrarily.
Some REPLs support saving and loading sessions (“Save and Load Session”). This may
involve storing the execution context, or simply storing all user inputs to reproduce the
execution context after loading. For some languages, the session can also be saved as a
valid program outside of the REPL.

REPLs behave differently when multiple code snippets are input at once (“Multiple
Input”). Output is either provided for all of the snippets or only for the last snippet
(which could result in no output at all). Most REPLs allow inspection of the current
execution context to the user (“Summary of Current State”). And finally, some REPLs
allow the results of previous snippets to be used in new snippets (“Access to Previous
Results”), either for the last executed snippet or for all by, for instance, assigning result
values to variables.

feature support of existing repls Table 3.2 shows how the investigated
REPLs support the features identified in the feature model of Figure 3.1. The table
illustrates that no two REPLs share the same set of features. IPython supports most
features, whereas PHP supports a minimal set of features. Interestingly, PHP is the only
REPL that does not print computed output values. The Go REPL (Gore) is the only
REPL that simulates incremental execution by compiling a complete compilation unit
in the back-ground. Type-aware completion is not applicable to Node.js and R since the
languages are dynamically typed and do not support type hinting. Sessions exported
from SQLite and R include the snippets to reproduce data, but not the results of
querying the data. Octave exports variables and their values, but not declared methods.
Only three REPLs support exporting sessions as valid programs. Although IPython
provides additional commands, they are all implemented in Python and can therefore
be exported. As explained before, a valid Go program is produced as part of every
interaction with Gore. The interactive interpreter for Swift also provides debugging
facilities. This feature was observed but not discussed as a REPL feature because the
behaviors are accessed by running the interpreter in different ‘modes’. Interestingly,
the decision to provide both modes in a single tool was made from observing that the
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Table 3.2: REPL Interpreter Features ( = full, G# = partial, − = not applicable).
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N
ode.js

PH
P

PsySH

SQ
Lite

R Sw
ift

G
ore

O
ctave

R
appel

iR
B

Snippet Execution Incremental               

Full  

Undo  

Summary of Current State         

Summary of Snippet Effects               

Access to Previous Results Access to last       

Access to all    

Multiple Input Last output          

All outputs     

Snippet Completion Keywords          

Syntax-aware    

Identifiers               

Type-aware  − − −
Hierarchy-aware           −

Definition Modification Redefine         −  

Open & Extend −  

Help Command REPL commands            

Language use      

Command History (User Access) Sequential                

Search              

Arbitrary    

Save and Load Session Current state   G#

REPL code snippets    G# G#

Valid programs   G# G#  

The previous definition can be opened in an external editor for editing

modes shared similar features such as expression evaluation, data monitoring and step
by step execution.

The wealth of features and diversity observed in REPLs motivated this chapter’s
study into the foundations of REPLs.

3.3 sequential languages

This section defines the class of software languages for which the semantics can be
expressed as a deterministic transition relation (a transition function). A subclass of
these languages – the so-called sequential languages – is defined as the set of languages
in which programs are written as sequences of smaller programs. A language is defined
as a set of syntactically valid programs3 with an interpreter assigning to each program
the effect of the program, expressed as mutations on the context in which it is executed.
The context is called a configuration in reference to Plotkin’s Structural Operational

3 The abstract syntax of the language.
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Semantics [272]. A program’s effect is thus modeled as a function from configuration
to configuration4. This model is sufficient to describe the semantics of real-world,
large-scale, deterministic programming languages as is demonstrated by the body of
literature on big-step, small-step and natural semantics [15, 162, 239, 247, 272] and
does not exclude languages with non-deterministic aspects when these aspects can be
captured algebraically [372].

Definition 3.3.1. A language L is a structure 〈P, Γ, γ0, I〉 with P a set of programs, Γ
a set of configurations, γ0 ∈ Γ an initial configuration and I a definitional interpreter
assigning to each program p ∈ P a function Ip : Γ→ Γ.

Definition 3.3.2. A language L = 〈P, Γ, γ0, I〉 is sequential if there is an operator ; such
that for every p1, p2 ∈ P and γ ∈ Γ it holds that p1; p2 ∈ P and that Ip1;p2(γ) =

(Ip2 ◦ Ip1)(γ).

Any two programs of a sequential language can be combined to form a new program
whose effects are equal to the composition of the effects of the individual programs.
If a language L does not have an operator ; with Ip1;p2 = Ip2 ◦ Ip1 , then the language is
easily extended to have such an operator by taking Ip1;p2 = Ip2 ◦ Ip1 as the definition of
its semantics.

If the set P of the definition of a sequential language L is taken as the set of code
snippets accepted by the REPL for L, then the ; operator describes the (snippet-related)
behavior of the REPL. This is under the assumption that REPLs should always ac-
cumulate the effects of the code snippets they are asked to execute. The definitional
interpreter of the language determines the effects of individual code snippets as well as
the effect of their compositions. These observations show that, when it comes to the
syntax and semantics of code snippets, REPL engineering can be considered as a matter
of language design and engineering. On top of this there are several benefits to basing
a REPL on a sequential language, i.e. to having the sequential composition operator as
a language construct. These benefits are discussed throughout this chapter.

The ; operator of the Definition 3.3.2 does not necessarily correspond to the sequence
operator of imperative or statement-based languages (often written as a semicolon).
This is best exemplified by errors and exceptions. A sequence of statements typically
terminates upon the occurrence of an exception, whereas a REPL is not expected to
terminate if a code snippet raising an exception is submitted. As an example, consider

4 Corresponding to a big-step transition relation or the transitive closure of a small-step transition relation.
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the following JShell interaction:

jshell> (1/0); System.out.println(5)

| Exception java.lang.ArithmeticException: / by zero

| at (#1:1)

jshell> (1/0)

| Exception java.lang.ArithmeticException: / by zero

| at (#2:1)

jshell> System.out.println(5)

5

This example shows that the effect of executing a snippet throwing an exception
is to output information about the exception and to ensure that control flow returns
to normal. In the first snippet, the print-statement is not executed, because of the
exception. But after the second snippet, the user can continue printing a value.

Definition 3.3.3. Given a language L = 〈P, Γ, γ0, I〉, the reachability graph from γ ∈ Γ
is the graph 〈V, E〉 with V and E the smallest sets of nodes and labeled edges such
that γ ∈ V and for every triple 〈γ1, p, γ2〉, with γ1 ∈ V and γ2 = Ip(γ1), it holds that
γ2 ∈ V and that 〈γ1, p, γ2〉 ∈ E.

The reachability graph encodes, as paths, every possible execution run resulting from
executing some sequence of programs in the context of configuration γ.

Lemma 1. The reachability graph from any configuration in a sequential language is
closed under transitivity, with 〈γ1, p1; p2, γ3〉 ∈ E if and only if there exists a γ2 ∈ Γ
with 〈γ1, p1, γ2〉 ∈ E and 〈γ2, p2, γ3〉 ∈ E.

Proof. Follows from the definitions of sequential languages and reachability graphs.

The effect of a program can be defined as the difference between the source and target
configuration of an edge in a reachability graph, i.e. if 〈γ, p, γ′〉 is in some reachability
graph, the effect of p in γ is the difference between γ′ and γ. Lemma 1 states that
the reachability graph for a sequential language is closed under transitivity. It follows
that the effects of a path in the reachability graph, i.e. the effects of the sequence of
programs occurring as labels on the edges of that path, is simply the difference between
the start and end configuration of the path. The effects of a path can thus be computed
without the need to compute the effects of all individual programs separately. Moreover,
every path describes a valid program that can be saved (possibly together with its
effects). Sequential languages thus admit simple implementations of the "Save and
Load Session" feature of REPLs.

3.4 exploring interpreters

This section defines a generic algorithm for executing programs by calling an underlying
definitional interpreter and recording the resulting configurations. Specialized to a
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particular language L, this algorithm is the exploring interpreter for L. The exploring
interpreter for L records configurations in a subgraph of the reachability graph for L
and is capable of reverting to a recorded configuration. Exploring interpreters admit
exploratory programming by enabling programmers to revert to previous execution
states in order to explore the effects of alternative sequences of code snippets.

The formal definition of exploring interpreters follows naturally from the definitional
interpreter component of the definition of languages. However, definitional interpreters
that form the basis for exploring interpreters have much stronger implementation
requirements than definitional interpreters for REPLs without exploration. In particular,
exploring interpreters require all program effects to be represented by changes in data,
i.e. the definitional interpreter has to be a pure function. Without exploration, REPL
implementations can be based on definitional interpreters that use real, rather than
simulated, IO, memory and network communication (while still respecting their formal
definition). Although exploring interpreters form the basis of the MiniJava and eFLINT
case studies in this chapter, the core of the methodology we propose in Section 3.5 is
also applicable to implementations without explicit state representation (as discussed
in Section 3.5.1).

Definition 3.4.1. An exploring interpreter for a language
〈P, Γ, γ0, I〉 is an algorithm maintaining a current configuration (initially γ0) and an
execution graph (initially containing just the node γ0) and iteratively executing one of the
following actions. At any moment the execution graph is a subgraph of the reachability
graph from γ0.

• execute(p): transition from the current configuration γ to the configuration γ′ =

Ip(γ), where p ∈ P is provided as input, and subsequently:

– add γ′ to the set of nodes (if new),

– add 〈γ, p, γ′〉 to the set of edges (if new),

• revert(γ): take γ as the current configuration for the next action, where γ ∈ Γ is
provided as input.

• display: produce a structured representation of the current graph, distinguishing
the current configuration in the graph from the other configurations.

The exploring interpreter algorithm is generic in that it has the language components
P, Γ, I and γ0 as inputs (type parameters in implementations). The display action can
be used by interfaces to visualize the execution graph and to enable users to choose a
node to revert to (see the MiniJava notebook discussed in Section 3.6).

REPL interpreters typically do not support the kind of exploration enabled by the
revert action (only CLing has the “Undo” feature of the feature model). For practical
purposes, such as space-efficiency, it may be desirable to implement a less powerful
version of the algorithm in which the execution graph is maintained as a tree, a single
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path or even just a single node. For example, an implementation of revert(γ) that
removes all descendants of γ requires less space as it maintains only a single path
(the exploring interpreter behaves like a stack). For another example, if a execute(p)
is implemented to always create a new node for every γ′, then the execution graph
is actually a tree in which multiple nodes may hold the same configuration. There
are advantages to both execution graphs (with sharing) and execution trees (without
sharing). With sharing, there is the potential to avoid redoing (potentially costly)
computations. This situation arises if the current node with configuration γ has an
outgoing edge labeled q. If in this situation the action execute(q) is performed, then
there is no need to interpret q as there is already an edge 〈γ, q, γ′〉 in the graph (for
some γ′). The potential to avoid costly computations significantly increases if the graph
is kept closed under transitivity (which is possibly for sequential languages according
to Lemma 1) and if program transformations are used to label the edges with normal
forms. Without sharing, there is exactly one path from the root node to every other
node, i.e. every node has a unique ‘history’. By reverting to a particular node, the user
has not only chosen a configuration, but also the sequence of programs that led to that
configuration. This is helpful, for example, when printing the effects of the snippets
that gave rise to the current configuration after a revert. If, after reverting, the current
node has multiple incoming edges, then it is not clear what output should be printed.

3.5 methodology

In this section we propose a methodology for developing REPL interpreters based on
the definitions and observations of the previous sections. The methodology proposes
to build a REPL for some base language on top of an exploring interpreter for a
sequential language defined as an extension of, or modification to, the base language.
An exploring interpreter is essentially a bookkeeping device on top of a definitional
interpreter and provides the “Incremental Snippet Execution” and “Undo” features
directly (cf. Section 3.2). Additional motivation for using the exploring interpreter (for
a sequential language) is that it promotes certain design principles while preserving the
ability to implement many desirable features. These principles and their consequences
are discussed in this section, together with a summary of the proposed methodology.

The core principles underlying our methodology are:

• the effects of a code snippet manifest as changes to an explicit state representation
(a configuration)

• the effects of a code snippet are determined by the definitional interpreter used
by the exploring interpreter

• the effects of a sequence of code snippets is the composition of the effects of the
individual snippets

• only code snippets change configurations
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For users of the REPL, the most important consequence of these principles it that
an understanding of the definitional interpreter is enough to understand the precise
behavior of the REPL for the language. In practical terms: to know the effects of code
snippets, a user needs to understand the base language and its extension or modification
to a sequential variant. The extension or modification is made explicit by the definitional
interpreter and should be communicated clearly (as precise documentation, a formal
semantics, or an open-source implementation).

For engineers of the REPL, the most important consequence of the principles is that
every feature (on top of “Incremental Snippet Execution” and “Undo”) is implemented
either:

• as a language extension (e.g. the features “Definition Modification” and “Access
to Previous Results”),

• as a series of interactions with the exploring interpreter (e.g. “Multiple Input”,
explained below),

• based on information stored in the execution graph (e.g. “Summary of Snippet
Effects”, “Summary of Current State” and “Snippet Completion”) or

• independently of the exploring interpreter, when the feature does not involve
snippet execution (e.g. “Help Command” and other meta-commands).

The methodology of this chapter is based on the hypothesis that many of the features of
existing REPLs, including at least those in Figure 3.1, fall into the four categories listed
above. This hypothesis is tentatively supported by the various feature implementations
described across Section 3.6.

To prelude the example feature implementations of Section 3.6, consider the alterna-
tives of the “Multiple Input” feature (“All outputs” and “Last output”). A “Multiple
Input” snippet is parsed as, for example, p; q; r. In the implementation of a REPL fol-
lowing our methodology, such a snippet can be handled by performing three execute
actions with respectively p, q and r as inputs (because the language is sequential). The
REPL has then seen the four configurations γ0, γp, γq and γr corresponding to the
configuration before executing p, after executing p, after q and after r respectively. The
output of the last input r is found by computing the difference between γq and γr, the
output of all three inputs is found by computing the difference between γ0 and γr.

The methodology for developing a REPL for any base language L is formulated as
the following steps (and has certain commonalities with the approach of [152]).

1) definitional interpreter Formulate L as a language in terms of its concrete
and abstract syntax, and a definitional interpreter that captures the effects of programs
as a function over some set of configurations, thus forming the components of a
language according to Definition 3.3.1. If the language is sequential according to
Definition 3.3.2, then steps 2–5 can be skipped.
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2) phrase nonterminal To define a sequential variant L′ of L, reuse the syntax
definitions of the previous step to define a new sort phrase with an alternate for each
of the sorts of L that describe the syntax of a valid code snippet of the envisioned REPL.
The syntax can also have other extensions or modifications, as long as phrase is the
entry point of the syntax (the first component of a language in Definition 3.3.1).

3) phrase interpreter Define a definitional interpreter for L′ to capture the
semantics of phrases, reusing as much as possible the definitional interpreter of step 1,
ideally by applying modular extension mechanisms (e.g., Object Algebras [125, 260],
Rascal’s extend [28]). Special consideration needs to be given to the effects of phrases to
ensure the next phrase is executed in the right context. For example, if the result value
of a phrase needs to be available to the next phrase through a binding, this binding
needs to be introduced as one of the effects of the first phrase.

4) “;”-phrase Extend the sort phrase with an alternate that combines two valid
phrases to form a phrase. For example, with the semicolon as a separator, let p; q be a
valid phrase if p and q are valid phrases.

5) interpreter for “;” Extend the definitional interpreter of L′ such that the
effect of a phrase formed by combining two phrases is the composition of the effects of
the combined phrases, e.g. Ip;q = Iq ◦ Ip. The language L′ is sequential by definition as
a result of this and the previous step.

6) instantiate explorer Obtain an exploring interpreter for L′ by instantiating
the generic exploring interpreter algorithm with the definitional interpreter for L′. The
implementation may be simplified compared to Definition 3.4.1 in that it maintains a
simpler form of execution graph, if desirable. Instead of an exploring interpreter, the
definitional interpreter for L′ can also be used directly. In fact, any implementation that
respects the semantics of the definitional interpreter can be used, e.g. an implementation
with real rather than simulated effects.

The chosen interpreter can then be offered through various user interfaces, such as
command-line interfaces, a network service, or a computational notebook. The interface
displays visualizations of the effects of phrases, e.g., by showing output, computed
values and new bindings, and can optionally implement additional REPL features.

3.5.1 Pragmatics

In the context of language workbenches [99] and DSLs [235], a common language
implementation strategy is to define interpreters, consisting of functions traversing an
abstract syntax tree whilst modifying a propagated configuration to express effects
(following the Visitor design pattern). The case studies of the next section include such
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interpreters. The REPLs in these case studies are obtained through generic implemen-
tations of the exploring interpreter algorithm (in Java and in Haskell) that are easily
specialized by providing the entry points of the abstract syntax and the interpreter. The
presented methodology is based on an exploring interpreter because it is a relatively
natural and simple layer to add on top of the described definitional interpreters typi-
cally built with Rascal [28, 180]. Moreover, the generic exploring interpreter forms a
suitable abstraction for reasoning about sequences of interactions between programmer
and REPL – e.g. saving and loading sessions and extracting base language programs –
and for implementing advanced REPL and notebook features that support exploratory
programming and live programming.

In theory, our approach can also be used for developing REPLs for (general-purpose)
programming languages, as many languages can have their semantics expressed as a
transition function. In practice, however, very few programming languages have an
interpreter implemented as a pure function or have a complete operational semantics
from which such an interpreter can be derived. REPLs are not typically implemented
with explicit state representation and few enable backtracking (in our survey only
CLing supports “Undo”). However, an impure interpreter implementation can be used
at step 6 (Instantiate Explorer) of the methodology. Although some advanced features
– such as “Undo” – may then be harder to realize, the most important principles of
our methodology still hold. In particular, the differences between base language and
REPL should be formulated as extensions or modifications of the base language. This is
achieved by updating the semantics of the base language such that repeated execution
of its interpreter (i.e. the composition of effects) gives the behavior expected of the
REPL of the language. The details of how this can be achieved depend on the language
and the techniques used to implement the language. Discussed next are the general
patterns that have been observed in our survey.

3.5.2 Common REPL Language Extensions

As mentioned in Section 3.3, languages rarely provide an operator that corresponds
precisely to the REPL top level. For example, a snippet with an uncaught exception is
not expected to prevent subsequent snippets from being executed, whereas termination
is expected when an exception occurs within a sequence of (;-separated) statements. Of
the surveyed REPLs, only Gore prevents subsequent snippets from executing once a
previous snippet raises an exception (a consequence of its “Full” execution model). In
the other languages, the REPL top level catches any otherwise uncaught exceptions and
presents them to the programmer after which a subsequent snippet can be executed. In
languages with constructs for catching and handling exceptions, one might explain or
implement this feature with a top-level catch and a handler that prints the exception.
For example, a snippet {System.out.println(1); (1/0);} can be considered as implicitly
wrapped in a try/catch block in JShell as follows:
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try {{System.out.println(1); (1/0);}} catch (Exception e) {

... // print the exception in a helpful format
}

This clarifies, in reference to the Java semantics, that any effects produced by a snippet
before, but not after, an exception is thrown are preserved. However, the translation
is inaccurate as a JShell snippet is not an isolated block, unlike a try-block. Bindings
produced by top-level declarations are active when subsequent snippets are executed,
i.e. all snippets are in the same scope and the top-level catching exceptions does not
change this. In the next JShell fragment, the meta-variable $1 is available to subsequent
snippets despite the exception.

jshell> 5; (1/0);

$1⇒ 5

| Exception java.lang.ArithmeticException: / by zero

| at (#2:1)

This example also highlights the importance of presenting new bindings, assignments,
and any other effects to the programmer, providing the information required by the
programmer to update their mental model of the REPL’s execution state.

Another common example of a modification to the base language is the “Access to
Previous Results” feature available in several REPLs of the survey (demonstrated by
the variable $1 in the above fragment). JShell and IPython (“Access to All”) implement
this feature as follows. Whenever a code snippet produces a result value (other than
void), this result value is assigned to a fresh variable. For example, if the second snippet
sent to IPython produces result value 5, then the variable _2 is assigned 5. The behavior
differs between JShell and IPython when a code snippet contains multiple statements.
In IPython (“Last Output”), the result of a sequence of statements is the result of the
last statement5, e.g., the snippet print(1);2;print(3) prints 1 and 3 but has no result
value. In JShell, the result of a sequence of statements is the result of each statement
with a (non-void) result. If a snippet has multiple results, each result is assigned to a
fresh variable. For example, if 3;2;System.out.println(1); is sent as the first snippet to
JShell, then the variables $1 and $2 are assigned the values 3 and 2 respectively and 1

is printed. In Node.js (“Access to Last”), a statement such as console.log(1) produces
undefined as a result, which is then assigned to the variable _. PsySH also assigns the
last uncaught exception to the variable $_e. This feature is helpful in situations where
the exception is not easily reproduced, e.g., when caused by a (rare) non-deterministic,
pseudorandom or timed event.

Most languages of the survey enable definitions to be redone (“Definition Mod-
ification”), with only iRB also allowing extensions to existing definitions (“Open &
Extend”). The main challenge to redefining or modifying existing definitions is checking
whether an updated definition is consistent with definitions that depend on it. This

5 Even when void. A possible alternative is to use the last non-void result.
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is particularly challenging for statically typed languages such as Java. In JShell, any
inconsistencies are reported when a (now incorrect) definition is used, as shown by the
following interaction:

jshell> class B {int mymethod(){return 0;}}

| created class B

jshell> class A {int mymethod(){return new B().mymethod();}}

| created class A

jshell> class B {long mymethod(){return 0;}}

| replaced class B

jshell> int x = 4; int y = new A().mymethod(); int y = 5;

x⇒ 4

| attempted to use class A which cannot be instantiated or

| its methods invoked until this error is corrected:

| possible lossy conversion from long to int

| class A { int mymethod() { return new B().mymethod(); }}

y⇒ 5

Note that the last snippet is neither type-checked and rejected as a whole nor that
the error keeps the other statements from being executed. Statements appear to be
type-checked individually, with any errors causing only the individual statement to be
rejected. However, the following JShell interaction shows that this is a simplification:

jshell> int x = 1; new A(); int y = 2;

x⇒ 1

| Error:

| cannot find symbol

| symbol: class A

A downside of showing inconsistencies just before they cause problems is that a
menial mistake can cause a cascade of avoidable mistakes to go undetected, perhaps
requiring tedious efforts to resolve. A downside of reporting inconsistencies as soon
as they arrive is that they may be considered redundant and a nuisance when a
programmer is aware and about to resolve the inconsistencies.

The C# REPL does not update method definitions affected by an update to another
class. So when, in the example above, mymethod is called on a new instance of A, the
behavior is that of the old mymethod of class B. (A similar example using fields rather
than methods causes the C# REPL to hang.)

A general theme in the discussed language extensions is that they relate to the effects
of code snippets on their successors. A REPL engineer should consider all the different
kinds of (side-)effects code snippets can produce and decide for each effect whether it
should propagate and, if so, how the programmer is informed of the effect, enabling
them to update their mental model of the REPL’s state. To help the programmer further,
the ability to request an overview of the currently active bindings is desirable, especially
together with a mechanism for inspecting (modified) type definitions.
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3.6 case studies

This section discusses several REPL implementations for a number of languages with
different user interfaces. The section is structured according to three case studies for the
Rascal-defined languages MiniJava and QL, and the Haskell-defined language eFLINT.
The case studies implement novel sequential variants of these languages.

3.6.1 A Jupyter Notebook for MiniJava

The MiniJava language is a subset of Java that retains the essential object-oriented
features of Java [11, 64]. The semantics of a MiniJava program is given by its inter-
pretation as a Java program. It is implemented as a definitional interpreter in the
Rascal language workbench [180]. The extension to a sequential MiniJava uses Rascal’s
modular extension mechanisms and demonstrates the methodology of the previous
section.

The first part of the extension is choosing the top-level constructs of the language. As
for JShell, these are expressions, statements, variable, class, and method declarations,
and their associative composition. The syntax of MiniJava is extended by adding the
Phrase construct:

syntax Phrase

= Expression ";" | Statement

| VarDecl | ClassDecl | MethodDecl

| assoc Phrase Phrase;

syntax Statement

= ...

| "throw" "new" StringLiteral ";";
syntax Expression

= ...

| Identifier "(" ExpressionList? ")";

The extension also includes a new method call variant, enabling (global) methods to be
called without a receiver. The throw-keyword is added to demonstrate an implementation
of handling uncaught exceptions. Exception values are simplified to string literals rather
than than arbitrary objects.

The definitional interpreter of extended MiniJava is defined in Rascal as the function
Config eval(Phrase, Config), shown6 in Listing 3.1. The type Config, shared by both

6 The notation (NT)‘...‘ is used to pattern match against or construct concrete syntax trees of type NT,
where NT is some nonterminal defined in Rascal’s native grammar formalism; the parts between fish-angle
brackets represent typed holes of the pattern.
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MiniJava interpreters, is defined as the following tuple type:

alias Config = tuple[

Env env, Sto sto,

int seed, Out out,

Val given, MaybeFailure failed,

Val result

];

data MaybeFailure

= failure(FailureType e)

| no_failure()

;

data FailureType

= failed()

| exception(str msg)

;

Configurations have the following fields: the current execution environment (env),
the store (sto), a seed (seed), the output of all executed phrases represented as a list of
strings7 (out), a given value (given) of type Val used for passing arguments, the field
failed to indicate if and why the execution got ‘stuck’, and a value with the execution’s
result (result). The Val Algebraic Data Type (ADT) (not shown) defines constructors for
references, integers, booleans, vectors (arrays), environments, lists, closures, classes,
objects, and null. The alternative failed() of FailureType indicates the execution got
stuck because the evaluated program is invalid (e.g. due to unbound variables). The
alternative exception(str msg) indicates an exception has been thrown with exception
value msg.

The cases of Listing 3.1 that handle declarations (class, variable, or method) first pro-
duce an environment by calling the respective functions declareClass, declareVariables
and declareGlobalMethod. These functions also produce output that informs the pro-
grammer of the successful binding of the respective class, variable or method. If
a class is redefined, the programmer is also informed. The collectBindings function
(not shown) adds the bindings in the computed environment (result) to the execu-
tion environment (env). The function catchExceptions (not shown) checks whether a
phrase has failed or raised an exception. If so, the failure or exception is reported
and removed, ensuring that the next phrase executes normally. Note that a MiniJava
code snippet of the form 1;(2/0);3; is parsed as a sequence of three phrases and
not a code block consisting of three statements. Since the division by zero error is
removed, the next phrase (3;) is executed normally. So, contrary to JShell, there is
no distinction between phrases executed as separate code snippets or as a single,
semi-colon separated code snippet. This arguably makes the language more consis-
tent. The behavior of statements separated by a semi-colon in code blocks is unaf-

7 The implementation converts the integers printed by MiniJava to strings and inserts a newline, corre-
sponding to Java semantics.
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fected and an exception will terminate the execution of a code block when it arises.

Listing 3.1: Interpreting MiniJava phrases.

Config eval((Phrase)‘<Expression e> ;‘, Config c)

= catchExceptions(collectBindings(

setOutput(createBinding(eval(c, e)))));

Config eval((Phrase)‘<Statement s>‘, Config c)

= catchExceptions(collectBindings(

setOutput(exec(s, c))));

Config eval((Phrase)‘<ClassDecl cd>‘, Config c)

= catchExceptions(collectBindings(

declareClass(cd, c)));

Config eval((Phrase)‘<VarDecl vd>‘, Config c)

= catchExceptions(collectBindings(

declareVariables(vd, c)));

Config eval((Phrase)‘<MethodDecl md>‘, Config c)

= catchExceptions(collectBindings(

declareGlobalMethod(md, c)));

Config eval((Phrase)‘<Phrase p1> <Phrase p2>‘, Config c)

= eval(p2, eval(p1, c));

The first two cases of Listing 3.1 deal with expression and statement phrases, reusing
the original interpreters for expressions and statements (eval and exec respectively).
A statement, which may be a code block consisting of multiple statements, either
computes null or an environment that contains the bindings for all variables that have
been assigned a (new) value. The function setOutput (not shown) inspects the computed
bindings, if any, and prints the variable and its assigned value, matching the behavior
of JShell. An expression computes a value such as an integer, a boolean or an object
reference. The function createBinding (not shown) assigns the computed value to a fresh
variable, using the seed field of the current configuration, and binds the fresh variable
to the identifier $<i>, where <i> is generated from the seed. The applications of setOutput

and collectBindings ensure that the new binding is reported to the programmer and is
active when the next phrase is executed, matching the behavior of JShell.

The final case confirms that two consecutive phrases are evaluated by function-
composition. The implementation of method calls without receiver expression is not
given.

The definitional interpreter of the extended language forms the interface to language
services such as REPLs and computational notebooks. The connection between the
definitional interpreter and Rascal’s notebook framework Bacatá is discussed next.



3.6 case studies 63

exploring interpreters in bacatá Bacatá [359] is a generic Jupyter [161] ker-
nel generator for languages developed within the Rascal Language Workbench. Bacatá
is extended to support notebooks based on exploring interpreters. The generic imple-
mentation of the exploring interpreter maintains a full execution graph (in accordance
to Definition 3.4.1). Bacatá relies on the definition of a language repl, a value of the REPL

ADT shown below:

data REPL[&T]

= repl(&T initConfig, &T (str, &T) handler,

Completion (str, int, &T) completor, Content (&T, &T) printer);

A value of REPL contains all required information to build a REPL command-line
interface for a language, or, together with Bacatá, a computational notebook. The type
parameter &T represents the configuration (e.g., Config of MiniJava). The handler takes a
line of input and a configuration and produces a new configuration. The completor can
be provided for tab-completion services. Finally, the printer produces (HTML) content
from the previous and/or current configuration.

Bacatá is used as an interface between a Jupyter server and the language’s REPL.
The workflow that describes the communication among these components is as follows:
Jupyter takes the user’s code snippets and sends them to the language’s interpreter
through Bacatá. Bacatá takes the user’s code and calls the language’s handler (defined
in the repl value), which is responsible for calling the parser and then the interpreter of
the language. Finally, the handler produces a result, which is then displayed to the user,
using the printer.

Figure 3.2 shows a simple notebook for MiniJava, produced with Bacatá. The right
shows the execution graph for exploring the user’s interaction with the notebook. The
edges of the graph are labeled with the corresponding cell number, and the node
representing the current configuration is highlighted in green. The user can click any
other node to make it active. The following cell will then be executed in the context of
that exact configuration, resulting in a split in the graph if the resulting configuration
differs from the activated one.

a notebook interface for minijava Obtaining a REPL-style command-line
or notebook interface for MiniJava amounts to instantiating the REPL data type with
the appropriate handlers, printers, and completors. In the case of a Bacatá-generated
notebook Jupyter interface, the programmer has access to a visual representation of the
execution graph of the exploring interpreter, as shown in Figure 3.2.

The handler for MiniJava parses the incoming input as a Phrase and calls the extended
definitional interpreter, which returns a new configuration. The printer takes the old
and new configuration and prints relevant output. After a successful execution, the
differences between the out components of the new and old configuration is shown.
In the case of a declaration, the difference between the two env components gives the
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Figure 3.2: Notebook example.

new bindings. The completor uses the bindings in its input configuration to suggest
possible completions for identifiers.

3.6.2 QL: A DSL for Questionnaires

QL is a little language for defining interactive questionnaires [99, 100], like tax filing
forms or online surveys. A QL form defines a sequence of questions, where each
question has a label, an identifier, a type (boolean, integer, or string), and an optional
expression if the question is computed. Expressions contain the usual arithmetic and
comparison operations, and allow referring to the current value of another question.
Furthermore, questions can be made conditional using if-then and if-then-else con-
structs.

The meaning of a QL program is a rendering as an interactive GUI program, where
the user enters values for the (non-computed) questions. Depending on this input,
conditional questions may be shown or hidden, and the value of computed questions
may be recomputed, similar to a spreadsheet. A simple example is shown in Figure 3.3,
including its rendering as an interactive UI.

From a REPL perspective, QL is interesting, because a form specifies a conditional
data-flow network rather than a program consisting of instructions. Nevertheless, in
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Figure 3.3: QL questionnaire and its rendering.
A QL questionnaire (left) and its rendering (right).

this section we introduce a prototype REPL for QL, both as an instructive thought
experiment, and to stress the concept of sequential language.

Abstractly, the semantics of QL can be described with the following (Rascal) function
signature:

tuple[UI, Env] eval(Form form, Env env, Event evt);

Given a form, an environment mapping question identifiers to values (Env), and a user
event (Event), the function eval produces a rendering (UI) and an updated environment.
Running a QL questionnaire then amounts to constructing an initial rendering, and
then updating the current environment and redrawing the UI after every user action.

To provide a REPL interface for QL, we extend the language with a new start
nonterminal, Cmd, the definition of which is shown in Listing 3.2. Commands are the
snippets that the user can enter at the command line.
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Listing 3.2: Language extension for ReplizedQL.

syntax Cmd

= Form // define form
| Question // append a question
| Question "..." // prepend question
| "@" Addr Question // replace question
| Expr // evaluate expression
| Id "=" Value; // perform user action

syntax Script

= Cmd* commands // batch perform commands

The first four alternatives of Cmd capture constructs to manipulate forms. The user
can define complete forms, append or prepend individual questions to the current
form, and replace questions arbitrarily nested in the form using a positional reference
mechanism (Addr).

The last two alternatives can be used to evaluate expressions, which shows the result,
or update the value of a (non-computed) question, if the current state of the UI allows
it. The update-value action simulates a user interaction if the form would have been
rendered as a proper UI. Finally, Listing 3.2 defines a Script nonterminal to combine
multiple commands in sequence.

The interpreter for commands is a function from a command and the current config-
uration to a new configuration:

Config eval(Cmd cmd, Config cfg) { ... }

The Config type captures the current environment, the current form, and a list of output
values (UI renderings and expression evaluation results).

That our definition of QL is sequential can be seen from the definition of the inter-
preter for Scripts:

Config eval(Script scr, Config cfg) =

( cfg | eval(cmd, it) | Cmd cmd ← scr.commands );

This function simply composes the eval function for commands for every command in
the script8. This follows the definition of sequential language of Section 3.3.

a sample interaction The above interpreter for commands can be hooked to
Rascal’s standard REPL infrastructure to obtain a command-line interface for QL. We
illustrate the semantics of sequential QL below, using a sample user interaction. The
code snippets use > as prompt, the output of a command is shown directly below.

First, let’s define a simple form:

8 The notation ( init | ... it ... | gen ) is Rascal syntax for writing a reduce operation.
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> form simple { }

·

The result is the empty rendering of the UI, indicated by ·. Then we append a (computed
question), labeled “A”, of type integer:

> "A" a: integer = c + b + 1

A ·

The a question is not conditional, so it is shown in the UI rendering; note however that
the value of the question is still undefined because questions c and b have not yet been
defined.

The b question could be defined as follows:

> if (a < 20) "B" b: integer = c + 1

A ·

Since b is still undefined (because c is), a remains undefined as well, and as a result, the
visibility condition of b evaluates to false. This all changes, however, after defining c:

> if (a > 20) "C" c: integer

A 2

B 1

The question c is not computed, so it receives an initial default value (in this case 0).
Both a and b can now be computed, as well as the condition of b, causing b to be shown
in the UI. Now let’s change the value of c:

> c = 10

A 22

C [10]

Setting c to 10 disables b, but changes the visibility condition of c to true, making it
appear in the UI. The square brackets around the value of c indicate it is editable.

Changing the value of c to 5 updates the UI accordingly:

> c = 5

A 12

B 6

Now b becomes visible, and c is hidden again.
It is possible to add questions to the beginning of the form:

> "D" d: integer = 3 * a...

D 36

A 12

B 6



68 a principled approach to repl interpreters

Or using the path-based address notation:

> :form

form simple {

[0] "D" d: integer = 3 * a

[1] "A" a: integer = c + b + 1

[2] if (a < 20)

[2.0] "B" b: integer = c + 1

[3] if (a > 20)

[3.0] "C" c: integer

}

> @2.0 "c + 1 is:" b: integer = c + 1

D 36

A 12

c + 1 is: 6

The :form meta-command pretty-prints the current form annotated with addresses for
every question. Using the @-notation, the user can replace any question in the form, in
this case to change the label of the b question.

Note that the append-, prepend-, and position-based adding and replacement of
questions can be considered a rather low-level (maybe even pathological) way of editing
a program (reminiscent of the line-based editors of the past). Nevertheless, without
necessesarily claiming this is a realistic way of evolving programs, it does illustrate
a kind of REPL “completeness”, where every program and program change can be
realized using commands at the prompt.

3.6.3 eFLINT: Executable Normative Specifications

eFLINT is a DSL for developing executable normative specifications used to reason
about compliance with regulations, contracts and/or policies [45]. eFLINT programs are
used to simulate or verify normative decision making processes. The methodology of
Section 3.5 has been applied to develop two REPLs on top of one exploring interpreter
for eFLINT. The implementation of eFLINT is available at GitLab [40].

repl interfaces The first REPL is a command-line tool for exploring compliant
and non-compliant behavior. Figure 3.4 shows an example session where the user
explores the norm “children can ask their parents for help”. As a meta-command, a user
can choose actions and events to trigger from a given list of options. Choosing an action
or event has the effect of updating a database of ‘facts’, representing the state of the
world at a particular moment in time. A fact is said to ‘hold true’ if it is present in the
database. Some facts are reifications of actions and correspond to acceptable behavior
when they hold true and when they are enabled by their pre-conditions. Disabled
actions can be executed in order to explore non-compliant behavior (although causing
a violation). Other facts represent duties, which need to be ‘terminated’ before one of
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#0 > Fact person. Placeholder parent,child For person
new fact-type person
no enabled actions or events
#3 > +person(Alice). +person(Bob) // introduce persons
+"Alice":person
+"Bob":person
no enabled actions or events
#5 > Fact parent-of Identified by parent * child
new fact-type parent-of
no enabled actions or events
#6 > +parent-of(Alice,Bob)
+("Alice":person,"Bob":person):parent-of
no enabled actions or events
#7 > Act call-for-help Actor child Recipient parent

Holds when parent-of()
new fact-type call-for-help
+("Bob":person,"Alice":person):call-for-help
enabled actions & events:
1. ("Bob":person,"Alice":person):call-for-help
#8 > :choose 1 // Bob asks Alice for help
enabled actions & events:
1. ("Bob":person,"Alice":person):call-for-help
#9 > :revert 7 // to before the action was declared
+("Alice":person,"Bob":person):parent-of
#7 > :current // show the current set of facts
"Alice":person
"Bob":person
("Alice":person,"Bob":person):parent-of
#7 > ?Enabled(call-for-help(Bob,Alice)) // query
undeclared type: call-for-help

Figure 3.4: A session with the eFLINT command-line REPL.

their violation conditions holds true. The phrases of the language are declarations of
fact-, act-, event- and duty-types, action or event triggers, insertion and removal of facts
and queries on the database. After a phrase is executed, the user is presented with the
changes in the database, newly defined types, any violations and a new list of options.

The second REPL is a TCP server that listens on a chosen port for incoming phrases
and responds with the same information as the command-line REPL (in JSON form).
The TCP server is used as a general method for connecting other languages with
eFLINT to benefit from the normative specification written in eFLINT. For example, a
program can send queries to the eFLINT server to check whether certain actions are
enabled before actually performing them. In this way, software can be developed that
is ‘compliant by design’.

The REPLs are developed on top of an exploring interpreter for eFLINT, briefly
explained next.
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execution tree The type Explorer is an alias for functions that receive an Instruction
and return a Response in the IO monad (Haskell’s mechanism for input and output).

type Explorer = Instruction→ IO Response
data Instruction = Execute CPhrase | Revert Int | Display
data Response = Success Node CPhrase Node | ExecError Error
type Node = (Int, Config)

The values of Instruction correspond to the actions of the generic exploring interpreter
algorithm. There are two types of response, for successful executions and failing
executions respectively. One of the values of Error indicates that the integer given as
part of some revert action does not correspond to a known configuration. The success
response contains the elements of an edge in the execution graph: two nodes and a
label (phrase). The edge gives the effects, in terms of an input and output configuration,
of the last phrase executed by the exploring interpreter. A node is a configuration and
an integer that uniquely identifies the node. The label is a value of type CPhrase, a
phrase that has been compiled.

A configuration contains information about declared types (a type environment), a
database of facts and a list of output holding any reported violations:

data Config = Cfg {tyenv :: TyEnv, state :: Set Fact, out :: [String ]}

The algorithm maintains a tree rather than a graph, and does so in a way that makes
it very simple to find the path from the root to any given configuration in the tree. The
type SIDMap is an alias for a map mapping integers to the configurations with which
they form a node. The type History represents a tree as a collection of edges.

type SIDMap = IntMap Config
type History = IntMap (Int, CPhrase)

If x maps to (y, p) in the History map, this means that there is an edge 〈γ, p, γ′〉 in the
tree where y is the integer identifying γ and x is the integer identifying γ′.

repl features The function getPath :: Int → SIDMap → History → [CPhrase ]
receives an integer identifying a node and uses the maps to compute the sequence of
phrases labeling the path from the root of the tree to the node. The function is used to
save a session by pretty-printing and storing the returned phrases in a file.

The definitional interpreter of eFLINT receives compiled phrases (CPhrases) as input.
The tool-set for eFLINT contains a compiler that translates from Phrase to CPhrase.
The compiler checks whether a Phrase is well-typed and applies conversions to make
explicit certain implicit operator applications. Compilation is performed by the function
compile : TypeEnv→ Phrase→ CPhrase, receiving as input the type environment of the
current configuration held by the exploring interpreter.
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When the command-line or TCP server REPL receives a String for execution, the
string is parsed as a Phrase. If successful, the Phrase is type-checked and compiled to
a CPhrase. The CPhrase is sent as an execute action to the exploring interpreter, which
invokes the definitional interpreter and responds either with an error or with the edge
of its graph representing the latest execution. This edge is given to a function called
effectsOf to compute the effects of executing the phrase. The function effectsOf finds
any new bindings by computing the difference between the two type environments
of the input configurations, finds any created or terminated facts by computing the
difference between the two state components and finds new violations by computing
the difference between the two output components.

3.7 discussion & related work

limitations & future work The techniques described in this chapter are appli-
cable to languages that can be implemented by deterministic interpreters with explicit
state representations Moreover, if an execution graph is not needed, then state does not
have to be represented explicitly (see Section 3.5.1), as long as the effects of top-level
phrases still compose and are communicated clearly to REPL users. This requirement
does not necessarily rule out concurrent, non-deterministic, compiled or data flow lan-
guages. In some cases it is possible to model the complicating aspects of these languages,
e.g., with thread models, data flow graphs and lists to capture non-deterministic results.

Purely functional interpreters with explicit state representation are, however, further
removed from actual implementations and may be less suitable for developing practical
REPLs. For instance, a definitional interpreter for C can model memory (pointers)
rather than providing real memory access. A REPL for C can also be based on an
interpreter that invokes a C compiler, wrapping current and previous code snippets in
int main() {...}, before compiling and executing the resulting program (similar to the Go
REPL). It is possible to obtain a REPL interface in this way, but it would not be based
on a sequential language and the explorative quality of exploring interpreters is lost.
The applicability of our approach in the context of such compilation-based REPLs is to
be investigated further.

The interpreters discussed in this chapter are all implemented in functional program-
ming languages (Rascal and Haskell) with immutable data. Maintaining the execution
graph is therefore easy to implement, but it may come at a cost of performance and
memory footprint. Further research is needed to represent the graph more efficiently, for
instance by maximizing sharing, caching intermediate results, or selectively culling the
graph. The pragmatics of a REPL (small snippets, immediate feedback, etc.), however,
suggest that such optimization might be premature.

Although not shown in this chapter, exploring interpreters can also be used to realize
additional features not typically found in REPLs by performing sequences of execute
and revert actions in response to a single user action. For example, if a user edits a cell
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Figure 3.5: Early user interaction using JOSS.
Early user interaction using JOSS [316].

in a notebook, this could cause the exploring interpreter to revert to the configuration
in which that cell was originally executed, keeping track of all cells undone this way,
re-executing the (now modified) cell, and executing all the remembered cells in the
order they were first executed. Further research is needed to establish how this relates
to live programming [334, 351]. The QL language described in Section 3.6.2 has a live
programming environment and forms a natural staring point for this study.

The MiniJava notebook discussed in Section 3.6.1 displays the execution graph of
the exploring interpreter, allowing arbitrary roll-backs to explore alternative execution
paths. In future work we will explore the ability of the exploring interpreter to support
exploratory programming. More generally, we aim to describe algebraic operations
over execution graphs for both live and exploratory programming.

The methodology of Section 3.5 starts from a single base language. The methodology
is easily generalized to take multiple base languages as a starting point and defining
a single sequential language as an extension of all the base languages, which is then
used as the basis for a so-called polyglot REPL. The definitional interpreter for the
sequential extension may not be easy to define, however, when the effects of the phrases
of the different base languages are not easily reconciled. In a future study we hope to
formulate and demonstrate the more general methodology and to show its benefits to
developing polyglot REPLs and notebooks.

related work REPLs have long history and documentation on this history is
scattered across sources. The Flexowriter system of Lisp I from 1960 is perhaps the
oldest REPL implementation [216]. An early description of REPL behavior can be found
in Peter Deutsch’s memo on PDP-1 LISP [89]:

Each S-expression typed in will be evaluated and its value printed out.

The PILOT system [341] is one of the earliest and most advanced interactive REPL
systems, also based on a LISP, in that it supports fully incremental and interactive
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evolution of programs. Teitelman writes that REPL-style interaction with Interlisp
happened with the introduction of time-sharing at MIT in 1964 [342]. It is very well
possible, however, that earlier Lisps and pre-1968 FORTH implementations [283] had
REPL interfaces as well. The earliest programming language REPL that is not a Lisp
we could find documentation of is the JOHNNIAC Open-Shop System (JOSS) [316].
Figure 3.5 shows an example of interacting with JOSS.

REPLs have a close relation to computational notebooks, which were pioneered
in the Mathematica system [387]. More recently, this style has been adopted in the
context of other programming languages. IPython [268] and Jupyter [182] provide a
means for computational story telling, where cells containing code are interleaved with
output and prose cells. The language workbench framework Bacatá allows a language
engineer to provide a notebook feature by reusing existing language artifacts [359].
In Section 3.6.1 we have adapted Bacatá to include the generic exploring interpreter
algorithm of which the execution graph is shown in the notebook

Reynolds first employed definitional interpreters as a vehicle for reasoning about
languages [289, 290]. His analysis took advantage of the formal similarity between
denotational and interpretative semantics [291]. The formal similarity between various
approaches to formal semantics is captured by Initial Algebra Semantics [116]. Modular
extension mechanisms have been developed for semantics, such as monad transform-
ers [209, 242], entity propagation in Modular Structural Operational Semantics [20],
and copy-rules and forwarding in Attribute Grammars[332, 353]. These mechanisms
greatly enhance the practicality of definitional interpreters. In modern languages, we
see advanced use of monads in Haskell [214, 269], Object Algebras [260] in Java, C#
and Scala and intrinsically-typed definitional interpreters in Agda [299].

The usage of an execution graph containing all intermediate configurations of a user’s
interaction is related to back-in-time debugging [211, 275], also known as omniscient
debugging [52, 208], allowing programmers to go back in time of an execution history.
In contrast, however, exploring interpreters allow users to go back in session time,
obtaining both a new run-time state and program state.

conclusion REPLs provide programmers with a direct interface to a program-
ming language, supporting exploration, testing, and incremental development. All
mainstream languages have REPL interfaces, indicating the value they represent to
programmers. However, the actual language that is accepted by the REPL is often not
well-defined, and engineering REPLs lacks solid design principles.

In this chapter we have surveyed existing REPLs in a feature-oriented domain
analysis, showing a wide diversity in feature support. To make the relation between a
REPL and its language precise, we have defined and formalized the notion of sequential
language, and used it as the basis of a methodology to construct REPL interpreters. The
versatility of the approach has been demonstrated in three case studies, one based on
MiniJava, and two based on DSLs (QL and eFLINT). The case studies show notebook,
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command-line, and client-server REPL interfaces, developed using the methodology by
extending base languages and reusing existing interpreters.

The concept of sequential language and its associated language design and engineer-
ing guidelines may provide better insight into the essence of REPLs, and promote a
principled approach to the construction of REPLs.
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4
M A K I N G T H E I N V I S I B L E V I S I B L E I N C O M P U TAT I O N A L
N O T E B O O K S

Computational notebooks are an increasingly popular tool for experts from various fields, not
necessarily skilled in software engineering, to experiment with programming and develop
software. The kind of interactive and exploratory programming for which computational
notebooks are often used is not naturally supported by their design as insights into program
state can only be achieved indirectly through executing program fragments and updating
one’s mental model. In this chapter, we discuss the possibility of defining widgets to improve
notebooks by providing direct insights into the program state. The widgets are enabled
by previous work in which a novel approach to incremental programming is suggested
based on the notion of an exploring interpreter. As examples, we present widgets for
visualizing execution history and variable assignments, thereby reducing the cognitive load
on end-users, and evaluate the widgets using the cognitive dimensions framework.

4.1 introduction

End-user Development (EUD) emerged as a human-computer interaction field in which
methods and technologies are studied to enable users to extend or customize their
software [210]. EUD has received much attention in recent years due to its focus on
empowering people, mostly non-professional programmers, from various domains to
create software. There are different ways to support EUD, such as the development
of software languages (e.g., high-level programming languages and domain-specific
languages), development tools (e.g., IDEs, REPLs, and computational notebooks),
development frameworks, Tangible User Interface (TUI), and Graphical User Interface
(GUI). There is an enormous potential for EUD since end-users significantly outnumber
professional programmers [297].

In this chapter, we focus on computational notebooks, offering end-users a friendly
programming environment for simultaneous application and creation of programs.
Computational notebooks are cell-based documents that allow end-users to interleave
prose, code, and results in a single document. Notebooks have become popular in a
wide range of disciplines such as mathematics, physics, data science, programming
education, data journalism, and machine learning. They have proven to lower the
barrier to entry to programming for novices [303], compared to the traditional toolkits
employed by professional programmers such as Integrated Development Environments
(IDEs) or plain-text editors and command lines. There are more than 60 notebook
platforms [201], with the most popular provided by the Jupyter project [181]. Jupyter
notebooks have millions of users, and notebook documents are readily available on

75
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GitHub repositories [304]. Besides their ease of use, notebooks are popular because of
their reproducibility, allowing analyses on data to be shared among colleagues and the
public [271].

Although notebooks offer manifold features for end-users, little attention has been
paid to displaying feedback of the notebook’s state, as identified by Chattopadhyay et
al. [69]. Likewise, notebooks miss some useful features, such as debugging, offered by
traditional IDEs. These features might empower end-users further, when available in a
user-friendly manner.

This chapter presents the benefits of using a so-called ‘explorer interpreter’ as the
backend for a computational notebook and explains how to develop interactive widgets
for a notebook based on an exploring interpreter. As examples, we discuss two widgets
– an execution graph and a variable watcher – helping the end-user visualize the
program state in order to better predict the effects of subsequent actions. The presented
widgets are stepping stones towards computational notebooks with various (generic or
domain-specific) widgets directly interacting with the program state.

4.2 incremental program development

Read–Eval–Print Loops (REPLs) are interactive programming environments in which
programmers develop programs incrementally by executing code fragments one-by-
one, receiving immediate feedback for each fragment. A REPL takes as input the
user’s code (read), evaluates the code (eval), and displays a summary of the code’s
effects on the current program state (print). Most REPLs also print the computed value
in the case the evaluated code is an expression. REPLs are used for various tasks,
such as testing library functions or APIs, debugging programs, learning new language
constructs and exploratory programming (discussed below). In Section 3.2, we analyzed
15 REPLs for some of the most popular languages, mapped out their features, and
proposed a principled approach to building a REPL for a language as an extension
of a definitional interpreter1 for the language [44]. This work also defines the class
of sequential languages, in which every sequence of programs is itself a valid program,
capturing those languages that naturally support the kind of incremental program
development discussed above. This work further concludes that the command-line
tool commonly referred to as a REPL is one type of interface for incremental program
development that can be built on top of sequential languages, as laid out in Figure 4.1.

Based on a definitional interpreter for a sequential language, an exploring interpreter
is an algorithm that keeps track of execution context and executes code by applying
the definitional interpreter within a chosen context. Execution context (or program
state) is represented using configurations, in reference to Plotkin’s Structural Operational
Semantics [273], and is maintained in an execution graph as defined in Definition 3.4.1.

1 A definitional interpreter is an interpreter that simultaneously defines and implements the operational
semantics of a language.
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An edge in the execution graph is between two configurations and is labeled with a
program, denoting that the program was executed in the context provided by the source
configuration and resulted in the target configuration. The difference between the target
and source configuration reflects the effects of the program execution represented by
the edge. Since the definitional interpreter is for a sequential language, every path in
the execution graph is also a valid program (transitivity). The exploring interpreter
makes it possible to revisit configurations by changing the execution context to any
configuration in the execution graph. The exploring interpreter, therefore, naturally
supports exploratory programming.

Figure 4.1: Architecture of REPL-style interfaces on top of an exploring interpreter.

REPL-style interfaces are used in a broad variety of contexts, yet they are particularly
well-suited for exploratory programming. Exploratory programming is a software
development style based on an (open-ended) activity in which the requirements or
goals are not fully defined upfront but still to be discovered [284, 345]. In exploratory
programming, code is used as a medium for prototyping, and it is during the experi-
mentation process that users find both questions and answers [39]. This programming
style is supported by programming environments that allow users to create, edit,
and incrementally evaluate partial programs and provide users with feedback during
these activities. Designing and implementing a REPL-like interface is cumbersome and
might provoke significant engineering costs. The exploring interpreter of [44] provides
modularity through indirection, separating language design (to meet the sequential
language requirements), implementation (as a ‘standard’ definitional interpreter) and
the maintenance of execution state (by the exploring interpreter). In other words, an
exploring interpreter enables engineering REPL-style interfaces with replaceable parts.
The hypothesis investigated in this chapter is that a wide variety of interface compo-
nents (i.e., widgets) can be built on top of the output of an exploring interpreter. As
explained earlier, this investigation is done in the context of computational notebooks.

Computational notebooks form a modern incarnation of literate programming in
the style of Knuth [183]. These documents consist of a sequence of three types of
cells: documentation, code, and output cells [132, 181, 359, 370]. This definition is slightly
different from the technical definition of Jupyter, in which the output cell is defined to
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be part of the code cell. In notebooks, programs are developed incrementally, executing
code cells one-by-one similarly as code snippets are executed in a REPL. The output for
each code cell is displayed in a corresponding output cell. A notebook interface can be
connected to multiple back-ends to support different languages. Figure 4.2 displays
an example of a Jupyter notebook that contains three cells. The first cell contains
documentation, the second cell Python code, and the third cell displays the output of
the Python interpreter.

Figure 4.2: Jupyter notebook example.

Notebooks are designed to be written and executed in a linear, top-down fashion.
However, notebooks are often used for exploratory programming tasks (e.g., to analyze
data), which inherently proceeds non-linearly. When computational notebooks are used
for exploratory programming tasks, users wish to modify and re-execute previous cells.
However, when these actions occur, users only have access to the information displayed
in the notebook (e.g., cell-numbers, input, and output cells); they do not have direct
access to the underlying interpreter’s state. Thus, users have to keep track of changes
and execution order themselves, increasing cognitive load. To support exploratory
programming in notebooks, we develop widgets based on an underlying exploring
interpreter.

The implementation of the widgets is based on an implementation of a generic
exploring interpreter developed in the Rascal language workbench [180]. The notebook
interface is implemented using Bacatá [359]. Bacatá is a language-agnostic notebook
generator that enables the communication between the Rascal language workbench
and the Jupyter notebook platform. A notebook interface in Bacatá is defined using the
following Algebraic Data Type (ADT):

data Notebook[&T] = notebook(&T initialConfig, &T (str snippet, &T config)

interpreter);

This ADT receives an initial configuration of an arbitrary type &T and a function that
takes a code snippet as a string (snippet) and a configuration (config) as parameters
and produces an updated configuration of type &T. This definition fits naturally with
the exploring interpreter’s definition. Each evaluation (interpreter invocation) produces
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an updated configuration. In a traditional interpreter, when users execute a snippet,
the interpreter returns only the output. Instead, the exploring interpreter produces a
configuration reflecting the entire execution context, including output values. From the
computational notebook perspective, this approach is interesting because the response
to each code evaluation request is the new and previous configuration, reflecting all the
effects of executing a code cell. Notebook platforms can use the additional information
provided by configurations to help users gain better insights, increase their productivity,
reduce errors, and overall, provide a better programming experience.

4.3 widgets in computational notebooks

This section presents two widgets, an execution graph, and a variable watcher. These
widgets are developed on top of a notebook interface derived from using an exploring
interpreter. Therefore, they have access to all the effects produced after executing a
code snippet as specified in the configuration. In this context, we use the word widget
to refer to an interactive Graphical User Interface (GUI) capable of displaying and
manipulating the program state. Widgets used in this section are in a 1-1 relationship
with computational notebooks. This relationship transforms the traditional notion of
notebooks as a sequence of cells into a document that contains a sequence of cells
and input GUI components that reflect the interpreter state. This section uses the
Calc language to illustrate the use and benefits of developing widgets on top of an
exploring interpreter. Calc is a tiny calculator language that supports basic arithmetic
operations. It consists of commands (variable declaration and expression evaluation)
and expressions (variables, numbers, addition, and multiplication).

The following code snippet presents the definition of the configuration for the Calc
language; it encapsulates the effects that must be stored after executing a valid program.
More precisely, this configuration contains the environment (env), the possible output
produced by the interpreter (output), and the result of evaluating the current code
snippet (val). The environment env stores all the available variables in a dictionary that
uses the variables’ names as keys and the variables’ content as values.

data Config = config(Env env, list[int] output, int val);

4.3.1 Execution Graph

In a notebook environment, when a user executes a cell, the underlying notebook
interface (REPL-like interface) returns either the result of evaluating the code snippet
or void. Instead, a notebook interface implemented on top of an exploring interpreter,
as described in Section 4.2, produces a configuration after each snippet execution. It
is important to remark that a configuration encapsulates all the effects of executing
a snippet (including both the status of the interpreter and any possible output). In
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sum, a configuration reflects everything relevant to the computation as proposed by
Plotkin’s Structural Operational Semantics [273]. The execution graph widget provides a
visual representation of the execution graph maintained by the underlying exploring
interpreter. In the execution graph, nodes represent configurations resulting from
executing code snippets (programs), and the edges represent program executions
that make changes to configurations. The widget enables users to ‘travel in time’ by
selecting a previously encountered configuration as the execution context for the code
cell executed next.

When a new notebook is created, the execution graph only has a single node (root
node), representing the initial (empty) configuration, and it has no edges. When users
execute a code snippet, the notebook interface receives the snippet and the current
configuration. The notebook interface then calls the exploring interpreter to evaluate
the snippet and return an updated configuration with all the effects that the snippet
produced. Currently, the node labels display the configuration’s id in the execution
graph. However, these labels should summarize the contents of a configuration so that
end-users can use this data to make sense of it without having to depend solely on their
mental abilities. To improve the execution graph’s readability, its edges are labeled with
the corresponding cell number, and the node representing the current configuration is
highlighted in green, as shown in Figure 4.3.

Each snippet execution creates an edge in the graph from the current configuration to
an updated configuration. If the updated configuration is the same as an existing one,
no new node is created, only the edge connecting the nodes, but if the new configuration
does not exist in the graph, a node is created. When the number of executions increases,
the number of nodes and edges in the execution graph also increases; this impacts
the widget’s readability, as it can quickly run out of space. One way to mitigate this
could be to introduce a zooming in/out capability or define a different visualization
mechanism after the graph reaches a certain number of nodes.

The left-hand side of Figure 4.3 shows an example of a Calc notebook, which contains
two code cells. The first one assigns the value 1 to a variable x. Hence, the execution
graph creates a node and an edge that goes from the root node (initial configuration)
to the new node (new configuration obtained after executing the first cell). Then, the
second cell assigns the value of the expression x+5 to a variable y. Once more, this
creates a new node and an edge; since this is the latest execution, the last node is
highlighted in green as the current node (configuration). However, the user has found
that the value of y is incorrect, and instead of x+5 should be x+3. To make this change,
the user then clicks the 2nd node (the result of executing the first cell) in the execution
graph to use that configuration as the current one. After this, the user changes y and
executes the second cell again. As a result, the current node has edges pointing to two
nodes, the old one and the new one, as shown in the right-hand side of Figure 4.3. If
users want to try a different alternative, they can change the current configuration to
one of the older configurations, as explained earlier.
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Figure 4.3: Resulting execution graph for the Calc language with a single execution path from
the root node (left), and the execution graph using an alternative path obtained from
selecting a previous node as the current node (right).

4.3.2 Variable Watcher

The execution graph widget discussed in the previous section is a powerful tool that,
besides exploratory programming, has the potential to reveal the full execution state and
history to the user (when, for example, human-friendly summaries of configurations
can be displayed). In this section, we discuss the variable watcher widget as an example
of a more fine-grained widget providing insights into the current execution state. The
variable watcher allows users to read the assignments made to variables, including
information about assigned objects (e.g., global variables) and the types or sizes of
variables. The current widget can be extended to become an interactive GUI, following
prior work, in which users get the flexibility to create/edit programs using both code
and GUI [135, 174]. To support this flexibility, coordination between code/GUI is
required, making necessary to have a common shared underlying state [174]. For
instance, the variable watcher can be extended to become interactive and allows users
to use Create, Read, Update, and Delete (CRUD) operations. This provides a different
interactive interface for end-users, which is naturally supported by the underlying
exploring interpreter, yet this is out of this chapter’s scope.

The example of Figure 4.4 shows how the variable watcher for the Calc language
displays the environment of the current configuration. The variable watcher is always
up-to-date because it is updated by extracting the environment whenever the underlying
exploring interpreter changes its execution context. This widget is useful to end-users to
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mitigate commons mistakes, such as variable duplication, related to otherwise hidden
program states.

Figure 4.4: Resulting variable watcher for the Calc language.

4.4 evaluation : cognitive dimensions of notebook widgets

We selected seven dimensions from the Cognitive Dimensions Framework [126, 127]
for evaluating the impact of adding an execution graph and a variable watcher to
a notebook. The selected dimensions are hidden dependencies, premature commitment,
visibility & juxtaposability, secondary notation, progressive evaluation, and hard mental
operations. Each widget is evaluated using different dimensions because not all are
relevant for both widgets, yet some are shared. Table 4.1 presents a summary of the
dimensions used for this evaluation.

Dimensions Description Widgets
Execution

graph
Variable
watcher

Hidden dependencies Essential links between entities are not visible X

Premature commitment Restraints on the order or doing things X

Visibility & juxtaposability Capacity to view components easily, and to place them side by side X X

Hard mental operations High-demand on cognitive resources X X

Role-expressiveness The connotation of a component is inferred easily X

Secondary notation Additional information in syntaxes other than the formal syntax X

Progressive evaluation Results can be monitored at any moment X

Table 4.1: Summary of the cognitive dimensions used to evaluate the execution graph and the
variable watcher. The description of each dimension is based on [126, 127].

The dimensions involved in evaluating the execution graph are hidden dependen-
cies, premature commitment, visibility & juxtaposability, hard mental operations, and role-
expressiveness. Similarly, the dimensions used to evaluate the variable watcher are
visibility & juxtaposability, hard mental operations, secondary notation, progressive evaluation.

hidden dependencies . Code cells in a notebook are not always executed linearly
from top to bottom, and notebooks lack a mechanism for displaying the execution de-
pendencies between cells. The only mechanism offered for this purpose is the input and
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output cell ids, yet this is not intuitive enough to understand the notebook’s execution
flow. The execution graph shown in Section 4.3.1 makes explicit to notebook users the
execution dependencies between cells, and may be used to compare alternatives, as
shown on the right-hand side of Figure 4.3, which might be handy for exploratory pro-
gramming tasks. It is important to remark that it only displays dependencies between
the executions of cells and not data dependencies.

premature commitment. Notebook users must keep in mind the order in which
cells have been executed and their relationships; this forces users to make decisions
upfront if they are not sure about the notebook’s current status. Thanks to the execution
graph, users have access to extra information upfront. The information represented by
the graph allows users to understand the current execution state of the notebook. How-
ever, the current status of the execution graph can be improved to display additional
information that might be helpful for end-users and its look and feel.

visibility & juxtaposability. Standard notebooks only display the toolbar and
the set of cells in the top and bottom part of the document, respectively. Thus, there are
no additional components that might help users develop their programs in a notebook
environment. The execution graph is always visible to remind users about the execution
flows of the current REPL session. Likewise, as shown in Figure 4.3, the graph is placed
side by side, so it does not interfere with the rest of the notebook (documentation,
input, and output cells). Similarly, the variable watcher is always visible to end-users,
as shown in Figure 4.4. However, it only displays the variable’s name and value, yet
this can be extended depending on what information is relevant for the users within
a domain. It is essential to keep in mind that widgets’ juxtaposability depends on
the size of the widgets that are being displayed. If both widgets are to be displayed
simultaneously, some adjustments must be made because their size depends on the
amount of information. The more executions in the notebook, the bigger the graph
is; likewise, the variable watcher will require more space as the number of variables
increases.

hard mental operations . As mentioned earlier, in a standard notebook setting,
end-users must keep track of the changes made to the notebook’s cells, the impact those
changes might have in the REPL’s state, and the order in which the cells have been
executed. The execution graph reduces this cognitive load by making this information
available to end-users all the time. Likewise, the main goal of the variable watcher is
to unveil hidden information to the user. Therefore, it helps users because they can
always observe the environment’s current values within a notebook. This information
can be used for further executions or to fix previous executions when used together
with the execution graph.
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role-expressiveness . The purpose of a notebook interface is evident at first
glance; it offers a document based on cells, and after a cell is executed, a result is
obtained. However, there is no way to identify the relationship between cells’ execution
quickly. Therefore, the execution graph is an appealing addition to the traditional
notebook interface. Its design makes it easier to understand the execution paths in a
notebook session. Likewise, the graph allows users to ’go back in time’ and try different
alternatives (paths). In a traditional setting, users must restart the notebook kernel; this
also means users have to re-execute all the involved cells.

secondary notation. A variable watcher allows users to query information about
the current state of the underlying REPL. However, this GUI can also be adapted in such
a way to make changes to the environment. For instance, to change a variable’s value
directly from such an interface. This does not interfere with the traditional notebook
environment but offers an alternative to make this type of data manipulations. In the
same way, one can think of other artifacts that enable a secondary notation for concrete
actions within a language.

progressive evaluation. Notebooks allow users to obtain feedback after each
cell’s execution. However, the execution’s result is often a single output. With the
development of the variable watcher, users can have access to the whole environment
all the time. Therefore, the widget keeps up to date with the most recent changes
because it is updated after each cell execution to reflect the latest version of the REPL.

4.5 discussion & conclusion

Computational notebooks have become popular in different communities among differ-
ent users such as data experts, domain experts, and novice programmers because they
have lowered the entry barrier to programming compared to traditional programming
environments that require a compile-edit-run loop. However, it is still possible to enrich
the end-users’ programming experience by revealing the system’s state and different
ways of creating programs (e.g., using GUIs together with code). For this purpose, we
presented in Section 4.3 an example of how software developers can use an exploring
interpreter to create notebook widgets that provide additional information (e.g., state
of both the notebook and the underlying interpreter) to users. Likewise, the widgets
built on top of an exploring interpreter can be extended in such a way that users can
interact with them to create programs (based on the configurations maintained by
the underlying interpreter). Providing additional information and different interfaces
for creating programs within a programming environment is particularly relevant
for End-user Development (EUD). This can be achieved by fluid, bidirectional moves
between widget actions and executed code [135, 174, 175].
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In conclusion, this work is a stepping stone towards improving notebooks by devel-
oping widgets capable of providing data about the underlying interpreter’s state and
creating domain-specific notebook widgets. Both activities are naturally supported by
exploring interpreters. To illustrate this, we developed two notebook widgets, as shown
in Section 4.3, which are generic, and can be used for various software languages. For
instance, in the Geographic Information Systems (GIS) domain, notebooks are used to
integrate different distributed components used in the geospatial scientific stack [49],
and widgets can be built to provide extra information to users based on information
provided by the distributed components. These opportunities are to be explored in
future work.
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P R O J E C T I N G T E X T UA L L A N G UA G E S

Projectional editors allow engineers to mix different notations (graphical, tabular, textual,
etc.) within the same program. Many existing languages, however, are fully textual and are
defined using grammar technology. To allow such languages to be used from within MPS,
language engineers have to manually recreate the syntax of a language using MPS concepts.
In this chapter we present an approach to automatically convert grammar-based languages
to MPS languages, by mapping context-free grammars to MPS concept hierarchies. In
addition, parse trees of programs in those languages are mapped to MPS models. As result,
MPS users can import textual languages and their programs into MPS without having to
write tedious boilerplate code. We have implemented the approach in a tool, Rascal2MPS,
which converts grammars in the built-in grammar formalism of Rascal to MPS. Although
the tool is specific for the Rascal context, the underlying approach is generic and can be
instantiated for other grammar formalisms. We have evaluated Rascal2MPS by generating
an importer for a realistic programming language (ECMAScript 5). The results show that
useable MPS editors for such languages can obtained, but that further research is needed to
improve their layout.

5.1 introduction

Language Workbenches (LWBs) [99] are Integrated Development Environments (IDEs)
that support engineers in the design and development of software languages [197].
These tools are aimed to improve and increase the adoption of Language-oriented
Programming (LOP). LOP is a technique for solving software engineering problems
through the use of multiple Domain-Specific Language (DSL) [110]. DSLs are small and
simple languages tailored to solve problems in a particular application domain [235].
There are two types of DSLs, internal and external [110]. The first one reuses the
concrete syntax of the host language and its parser, much like a stylized library. An
external DSL, however, typically requires the implementation of a parser and compiler.

Jetbrains MPS is a projectional language workbench that obviates the need for parsing,
and as a result, allows the engineer to define DSLs with a multiplicity of notations,
varying from textual, and tabular, to diagrammatic, or prose-like. MPS provides editor
support that allows users to directly edit the abstract syntax structures of a language,
rather than reconstructing such structure from the linear sequences of characters entered
in text editors.

Nevertheless, many existing languages are defined purely textually. For instance, all
mainstream programming languages are textual (e.g., Java, C#, JavaScript etc.). But
many DSLs, like GNU Make, GraphViz, SQL etc. are strictly textual languages too.
To make such existing languages available for (re)use from within MPS, language
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engineers have to redefine the syntax of such languages using the concepts and editor
features of MPS, which is a tedious and error-prone endeavor.

In this chapter we detail an approach to take an existing context-free grammar
(e.g., from a parser generator tool) of a textual language, and convert it automatically
to MPS concept definitions. As a result, such languages can be imported into MPS
without having to write abstract syntax definitions by hand. Furthermore, the approach
supports loading parse trees of existing programs into automatically generated MPS
editors, so that they become available for reuse immediately.

Companies in the Eindhoven (The Netherlands) region (e.g., Canon Production Print-
ing, and ASML) have been using DSLs for several years [220]. Some of these companies
use textual LWBs, projectional LWBs, or both, such as Canon Production Printing.
When companies are using both types of LWBs, it is often desired to reuse existing
textual languages within a projectional LWB and vice versa. If such a reuse facility
exists, companies will avoid the costs of reimplementing features and maintaining the
same functionality in different platforms. Likewise, developers can be more productive
from the engineering point of view and invest more time in developing new features or
improving existing ones. Finally, the reuse strategy could reduce time to market for
new products.

In this chapter, we present an approach towards bridging the gap between textual and
projectional LWBs, which has been implemented in the context of the Rascal (textual)
and MPS (projectional) language workbenches. Our tool, Rascal2MPS [26], takes a
Rascal grammar and converts it to equivalent concept hierarchies and editor definitions
in MPS.

The contributions of this chapter can be summarized as follows:

• A generic bridge between textual and projectional LWBs. Employing this bridge,
developers can obtain a projectional language in JetBrains MPS from a context-free
grammar written in Rascal.

• A mechanism to generate projectional editors from a context-free grammar. This
mechanism uses a set of pretty-printing heuristics that takes into account the
production rules’ structure.

• A tool to import existing programs written in a textual language as projectional
models of the generated language.

The structure of this chapter is as follows: in Section 5.2, we describe the motivation
that supports this work and the problem statement. Then, in Section 5.3, presents
background information about software language engineering. In Section 5.4, we
present our solution and its architecture. Then, we evaluate the current approach
by comparing an ad-hoc implementation of JavaScript against a generated version
(Section 5.5). In Section 5.6, we discuss the limitations of the current approach. We
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conclude this chapter with related work and future research directions (Sections 5.7
and 5.8).

5.2 motivation

A DSL offers programming abstractions that are closer to domain requirements than
general programming languages [244]. Likewise, DSLs offer syntax closer to the domain
expert’s knowledge. DSLs have been around for a few decades, but they have not been
widely adopted in the industry yet [88, 192]. The limited adoption of DSLs in the
industry is partly due to the lack of mature tools [254, 361].

Nowadays, language engineers have different tools and metalanguages to choose
from when implementing a new language. The right selection of such tools is essential
for the language’s success. Likewise, this means that companies end-up with diverse
ecosystems of languages and tools. These tools are continuously changing to support
diverse business requirements, depending on what they want to achieve or the organi-
zation’s needs. Communication between tools and languages is often required to share
functionalities among different components. When there is no communication between
platforms, developers could reimplement these features. However, reimplementing
these functionalities is a cumbersome activity, and it does not fix the problem in the
long term because, at some point, it might be required to reimplement those features
again.

For instance, there are several textual languages at Canon Production Printing that
they have been developing and maintaining over the years. However, they have more
recent languages that were developed using a projectional LWB. They have recently
found that they require to interoperate languages, which means reusing language
concepts across LWBs. This interoperation allows them to address new business needs
and reduce the time to market. Therefore, they demand a bridge that supports the
reuse and translation of existing languages across heterogeneous LWBs.

5.3 background

In this section, we present some of the basic concepts used in this chapter. The con-
cepts described below are mostly about Software Language Engineering (SLE). Mainly,
we focus on discussing the language’s syntax and its definition in both textual and
projectional LWBs.

5.3.1 Software Language Engineering

Software Languages. A software language is a mean of communication between program-
mers or end-users and machines to develop software. Languages are often divided
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into three main components, namely, syntax, semantics, and pragmatics [113, 197]. A
language’s syntax is a set of rules that define valid language constructs, such as defining
a group of rules that captures expressions or statements. The language’s syntax can be
expressed in a concrete and abstract way. The concrete syntax is designed as the user
interface for end-users to read and write programs, whereas the abstract syntax is the
interface to the language implementation. The semantics of a language is a mapping
between syntactic elements and their meaning. Such mapping can be defined in differ-
ent manners, such as operational semantics or model-to-model transformations [197].
Language pragmatics describes the purpose of the language constructs, and it is defined
informally often in natural language through narrative and examples.

Language-oriented Programming (LOP). LOP is an approach to software development
where the main activity in development consists of defining and applying multiple
DSLs [93, 110]. Programmers define custom languages to capture aspects of a software
system in a structured way. The idea is that each language captures the essential
knowledge or aspects of a domain problem so that the productivity increases, and
domain knowledge is decoupled from implementation concerns. In other words, a DSL
captures the “what” of the domain, whereas compilers, code generators, and interpreters
define the “how”.

Language Workbench (LWB). To help language engineers develop software languages,
they rely on metaprogramming tools called LWBs. These tools simplify and decrease
the development cost of software languages and their tooling [110]. A LWB offers two
main features: a specialized set of metalanguages for defining the syntax and semantics
of DSLs and affordances to define various IDE services such as syntax highlighting,
error marking, and auto-completion. In this chapter, we are going to focus on the
former. There are two types of LWBs, namely, textual (also called syntax-directed) and
projectional (also called structural) [62, 99, 197]. The main difference between these
types is how languages are described and how programs are edited. A textual LWB
employs plain text and parsing to map concrete syntax to the internal structures of the
LWB. For instance, Rascal uses context-free grammars as formalism [79] for defining the
language’s syntax. A projectional LWB allows a program’s Abstract Syntax Tree (AST) to
be edited directly [95]. For instance, MPS uses an AST Concept Hierarchy [62] to define
the language’s structure, and MPS implements a projectional editor for manipulating
programs. A projectional editor is a user interface for creating, editing, and manipulating
ASTs.

5.3.2 Syntax of Textual and Projectional Languages

As mentioned before, a software language’s syntax is a set of rules that describe valid
programs [197]. Usually, it is divided into two, namely, concrete syntax and abstract
syntax. In this subsection, we describe how different LWBs represent both types of
syntaxes.
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Language Rascal MPS

Concrete Syntax Context-Free Grammar Projectional Editor Definition
Abstract Syntax Algebraic Data Type AST Concept Hierarchy

Table 5.1: Comparison between notations used for describing languages in textual and projec-
tional LWBs.

In textual LWBs, a language’s concrete syntax is usually specified using Context-free
Grammars (CFGs), while in projectional LWBs, the concrete syntax is expressed as AST
projections. Below we explain both approaches and highlight their main differences. To
clarify the differences between textual and projectional LWBs, we will use Rascal and
MPS. Table 5.1 shows a comparison of the notations used by these two platforms to
define language’s syntax.

context-free grammars A CFG is a formalism for describing languages using
recursive definitions of string categories. A CFG C is a quadruple:

C → (S, NT, T, P)

Where S is the start symbol (S ∈ NT), NT is a set of syntactic categories also known as
nonterminals, T is a set of terminal symbols, and P are production rules that transform
expressions of the form V → w. V is a nonterminal (V ∈ NT), and w could be zero or
more nonterminal or terminal symbols (w ∈ (T ∪ NT)).

For example, a CFG that describes the addition of natural numbers N is shown
below:

G = (Exp, {Exp, Number}, {+} ∪N, P)

The production rules P are defined as follows:

start→ Exp

Exp→ Number

Exp→ Exp + Exp

Number → i(i ∈N)
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start syntax Exp = number: Nat nat | addition: Exp lhs "+" Exp rhs;

lexical Nat = digits: Natural;

Listing 5.1: Concrete syntax of addition and numbers in Rascal.

Listing 5.2: Lexical library.

lexical BasicString = [a-z]*[a-z];
lexical Natural = [0-9]+;
lexical String = "\"" ![\"]∗ "\"";

By applying the previous production rules we can write the arithmetic expression
a + b ( where a, b ∈N) as:

start→ Exp

Exp→ Exp + Exp

Exp + Exp→ a + Exp

a + Exp→ a + b

a + b

Once there are no more nonterminals (NT), we cannot rewrite the expression a + b
because there are no production rules that can be applied. We say that a program is
syntactically valid if there is a derivation tree from the start symbol to the string that
represents the program.

For instance, the concrete and the abstract syntax of the language described above can
be implemented in Rascal, as shown in Listings 5.1 and 5.3, respectively. The first one
defines two nonterminals, namely, Exp and Nat. The Exp rule contains two productions,
for literal numbers and addition. The Nat nonterminal defines natural numbers. The
AST Listing 5.3 defines an Algebraic Data Type (ADT) that captures the structure of the
language with two constructors: nat(...) and add(...). The terminals of the expression
grammar (i.e., Nat) are represented using built-in primitive types of Rascal (i.e., int).

Listing 5.3: Abstract syntax of addition and numbers in Rascal.

data Exp = addition(Exp lhs, Exp rhs) | number(int n);
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Figure 5.1: Concept definition of addition (left) and numbers (right)

Figure 5.2: Reflective editor for the operation a + b, where a = 1 and b = 6.

syntax in projectional lwbs In a projectional LWB, the syntax is also divided
into its concrete and abstract representation. The concrete syntax corresponds to an
editor definition, whereas the abstract syntax is defined in a concept hierarchy.

Projectional editors do not share a standard formalism for defining abstract syntax;
therefore, each platform provides its own formalism. MPS uses a node concept hierar-
chy [62]. For instance, the AST representing a language for describing the addition of
natural numbers is shown in Figure 5.1. The MPS implementation uses an Expression
interface and two concepts, namely Addition, and Number. To represent integer numbers,
we use the built-in integer data type.

How the users will edit expressions of this kind is defined by an editor definition.
However, MPS also offers a generic reflective editor, so that every concept in MPS comes
with a default editor. A reflective editor is a projectional representation of an AST that
developers can use out-of-the-box. An example of an arithmetic expression program
using the reflective editor is shown in Figure 5.2.
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5.4 approach : projecting textual languages

This section presents a mechanism for enabling textual languages usage in a projec-
tional editor by generating a projectional language from a grammar. In other words,
the current approach translates existing textual languages into equivalent projectional
languages, including both structure and editor aspects. Then the translation of existing
textual programs into equivalent models of a generated projectional language is dis-
cussed. We first show a general overview of the approach. Then, we explain a generic
mapping between CFGs and the structure of a projectional language. Afterward, we
describe the derivation of a projectional editor from a grammar; we show how to derive
the editor aspect for each generated concept in the language structure. Finally, we
explain the translation of textual programs to projectional models that conform to a
generated projectional language. Although the current approach is implemented using
Rascal and MPS, its principles can be adopted in the context of other LWBs.

5.4.1 Mapping Grammars to Concept Hierarchies

This section contains the description of the mapping between a grammar and the struc-
ture of a projectional editor. The current approach analyzes a CFG, namely, production
rules, nonterminal, terminal, and lexical symbols. To illustrate each of the concepts of
the mapping, we use the grammar for the Addition language shown in Listing 5.1.

Nonterminal symbols. The counterpart of a nonterminal symbol in MPS is an
interface.

An interface is a programming concept that may define the public, shared structure
of a set of objects (typically described by classes). In MPS, interfaces are represented as
concepts and their instances are called nodes. In the same way that interfaces may have
multiple implementations (the classes), a nonterminal is “realized” by one or more
productions. For instance, in Listing 5.1, there are two nonterminals, namely, Exp and
Number. Thus, these two nonterminals map to two interfaces with the same name in the
generated projectional language. The definition of the Exp interface in MPS is shown in
Listing 5.4.

.
Furthermore, one additional nonterminal that we have not mentioned is the start

symbol. Structure concepts in MPS have a property named instance can be root. This
attribute indicates whether the concept can be used to create an AST root node [62].
In our mapping, we take the start symbol of the grammar and create a concept in
MPS. This concept will have the property instance can be root set to true. For instance, in
Listing 5.5, we show an example using the expression language, assuming we have a
start symbol Program with a single production, prog.

Productions. A nonterminal rule has one or more productions. As we mentioned
before, a nonterminal in a CFG is mapped to an interface concept in MPS. Therefore,
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Listing 5.4: Definition of the Exp interface in MPS.

interface concept Exp extends <none>

properties:
<< ... >>

children:
<< ... >>

references:
<< ... >>

Listing 5.5: Mapping a CFG start symbol into a MPS concept.

concept prog extends <default> implements Program

instance can be root: true
alias: <no alias>
short description: Exp

children:
expression : Exp[1]

to keep the relationship between a nonterminal and their productions, we map each
production as an MPS concept. Each concept must implement the interface of the
nonterminal. Moreover, the AST symbols in the production rule are mapped to either
the children or the properties field. When the symbol is a nonterminal, it is defined in
the children field, and when the symbol is terminal or a lexical, it is mapped in the
properties field. Note that symbols that are only relevant to concrete syntax, such as
keywords and operator symbols are not mapped here, since they are not part of the
abstract syntax; they will be used to define the editor aspects (see below).

For instance, addition (Listing 5.1) is a production rule of the nonterminal Exp. This
production rule is mapped into an MPS concept that implements the Exp interface. The
resulting concept in MPS is shown in Listing 5.6.

Lexicals Lexical define the terminals of a language and are typically defined by
regular expressions. Rascal allows full context-free lexicals, but here we assume that
all lexicals fall in the category of regular languages that can be defined by regular
expressions.

To ease the mapping between Rascal lexicals and MPS concepts, we define a Rascal
module that contains a set of default lexicals. These lexicals define the syntax of
identifiers, string literals, and integer numbers. Developers can use these lexicals in
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Listing 5.6: Result of mapping a production rule to a concept in MPS.

concept addition extends <default> implements Exp

instance can be root: false
alias: +
short description: Exp + Exp

children:
lhs : Exp[1]
rhs : Exp[1]

Listing 5.7: Lexical mapping.

concept digits extends <default> implements <none>

instance can be root: false
alias: <no alias>
short description: <no short description>

properties:
nat: Natural

children:
<< ... >>

references:
<< ... >>

their Rascal grammars, but it is also possible for users to include their lexicals. In this
case, developers must describe the mapping to MPS manually.

Each lexical is mapped to a concept, like any other nonterminal, and a constrained data
type. To illustrate this, Listing 5.1 contains Nat’s definition, which consists of a single
production, called digits. This production rule references Natural, which is one of the
predefined lexicals (Listing 5.2). As a result, the lexical Nat is translated into a concept,
called digits (Listing 5.7), and a constrained data type, called Natural (Listing 5.8). The
digits concept has a single property of type Natural, a constrained data type capable of
capturing natural numbers using the regular expressions engine of MPS.

Listing 5.8: Result of mapping a Rascal lexical to an MPS constrained data type.

constrained string datatype: Natural

matching regexp: [0-9]+
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Listing 5.9: Concept mapping for a list of symbols.

concept groupExp extends <default> implements Exp

instance can be root: true
alias: <no alias>
short description: Exp

properties:
<< ... >>

children:
exps : Exp[0..n]

references:
<< ... >>

List of symbols. In CFG, it is possible to define a group of symbols of the same
type, often expressed using Kleene’s star (*) and plus (+). Kleene’s operators (star and
plus) are unary operators for concatenating several symbols of the same type. The
first one denotes zero or more elements, and the second one denotes one or more
elements in the list. The current approach detects both operators (Kleene’s star and
plus) in productions. The operators are represented in MPS as children of a concept
with cardinality zero-to-many (0..*) and one-to-many (1..*), respectively. For instance,
let us add to the language shown in Listing 5.1 the following production:

start syntax Exp = ... | groupExp: Exp* exps;

This production defines zero or more expressions (Exp). The resulting mapping of the
production groupExp is shown in Listing 5.9.

5.4.2 Mapping Grammars to Editor Aspects

This section presents the mapping between a grammar and the editor aspect in MPS.
For creating the editor aspect of the language, we use the language’s layout symbols,
namely, literal and reference symbols. In this context, a reference symbol is a pointer to
a nonterminal symbol (which can be lexical or context-free). come with the language.

Literals. Literal symbols may be part of productions to improve the readability of
code or disambiguate. They form an essential aspect of the concrete syntax and can be
leveraged to obtain projectional editors.

To create an editor, we first take each production rule; we look at each symbol and
keep track of its order. It is essential to keep track of the order because it affects how
the editor displays the elements. In this process, we consider two types of symbols,
namely, literals and references. If the symbol is a literal, it is added to the node cell layout
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Listing 5.10: Generated editor for addition.

<default> editor for concept addition
node cell layout:
[- % lhs /empty cell: % + % rhs /empty cell: % -]

inspected cell layout:
<choose cell model>

Listing 5.11: Editor mapping for a list of symbols.

<default> editor for concept groupExp
node cell layout:
[-

(- % exps % /empty cell: -)
-]

inspected cell layout:
<choose cell model>

as a placeholder text. Moreover, this is used to define the syntax highlighting of the
resulting editor. The literals are displayed with a different color to show the users that
they are reserved words of the language. As a result, the current approach offers a
binary coloring scheme: keywords are blue and the remaining symbols in black. Instead,
if it is a nonterminal symbol, we create a reference.

For example, the production rule that defines the addition between natural numbers
has three symbols: lhs, +, and rhs. Following the approach, we first take the lhs symbol
and create a reference to its type Exp; then, we take the literal, +, and copy it to the
editor, and finally, we create a reference to the rhs symbol, which is also of type Exp.
Listing 5.10 shows the generated editor for addition. This editor has two references,
namely, lhs and rhs. Editors use references to access concept properties. For instance, in
the editor, the reference lhs creates a link to the lhs children in the addition concept.
Moreover, the editor, for addition, has a literal (+) in between the two references. The
literal is shown as a placeholder text for users to write expressions like 5 + 6.

List of symbols. The editor aspect for a list of symbols (zero-to-many and one-to-
many) is based on creating a collection of cells. More concretely, each list of symbols is
translated into an indent cell collection. Listing 5.11 shows the generated editor aspect
for the groupExp production.
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5.4.3 Editor Improvement – AST Pruning

Having defined a mapping from CFGs to the editor aspect in projectional languages, we
will improve the generated projectional editor. The editor can be improved by pruning
the grammar to enhance IDE services (e.g., auto-completion). To prune the grammar,
we eliminate chain rules (also known as unary rules) from the productions. To eliminate
the chain rules, we first collect all the productions with a single parent and which are
referenced once in the grammar. Then, we merge the single reference with its parent.

To illustrate this process, let’s consider the following production:

A→ A|b|c|d

Long production rules are often split into smaller production rules for readability.
For example, a language engineer can also write the previous production as:

A→ A|B

B→ b|c|d

The second alternative impacts the language’s structure because it introduces a new
nonterminal B. This new nonterminal is translated in the AST as an extra node. To
illustrate the difference between both versions, Figure 5.3 shows a tree view of the
ASTs. From the right-most AST in Figure 5.3, we observe that node B is referenced once
in the language. Thus, production A → B represents a chain rule. This chain rule is
translated to the end-users as an extra keystroke to access the leaf nodes b, c, d via B.
If we remove the chain rule, we avoid creating an extra node (B) before accessing the
terminals (b, c, d) in the projectional editor.

For example, if users want to create a node b, they can call auto-complete, and
they will obtain two options, A or B. Based on the AST shown in Figure 5.3, they
select to create a node B. However, they have not reached b yet. Thus, they must press
tab-completion again, and then they get all the options of B: b, c, and d. In contrast,
if we prune the chain rule, meaning we remove concept B, we can omit the second
tab-completion because all the options will be visible from the first tab-completion.
Removing chain rules from a grammar impact both the structure and the editor of a
projectional language since removing a concept means the editor of such concept is
no longer needed. As a result, we enhance the user’s interaction with the projectional
editor by removing the chain rules.
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Figure 5.3: Tree-based view comparison.

5.4.4 Translating Textual Programs into Projectional Models

We extend the approach to translating existing textual programs into projectional
models. This extension’s motivation is that we want to offer a mechanism for importing
existing textual programs into the generated projectional language. We did not consider
a manual translation because it is cumbersome, and tools can automate it.

To this aim, we applied the same approach proposed for generating languages.
However, instead of only using a grammar as input, it takes both the program and
the grammar. We use the grammar for creating a parser; then, the parser creates a
parse tree of the program. Both Rascal and MPS offers support to write and read XML
files, so we define an XML schema to serialize and deserialize parse trees as XML files.
The former acts as an intermediate representation that supports the communication
between platforms. The current approach is implemented in Rascal and MPS. However,
it is possible to support other platforms by implementing the XML schema.In the
textual world, the schema serializes the parse tree; while in the projectional world, the
projectional LWB deserializes the XML and uses it to create the projectional model.

The current approach uses the XML file as the input of an MPS plugin. The plugin
traverses the XML tree and creates a model that conforms with the generated language.
If the translation is correct, the generated model should be a valid instance of the
generated projectional language.

5.4.5 Architecture

The approach to bridge textual and projectional LWBs contains five components:
Rascal2XML, XML2MPS, XMLImporter, ImportLanguage, and ImportProgram. The solution
has been implemented using Rascal MPL and Jetbrains MPS. We consider two different
architectures for the implementation of the current approach. The first one was based
on integrating Rascal directly into MPS, including Rascal as a Java library in MPS. This
architecture allows us to call Rascal parsers directly from MPS. However, this approach
does not allow reusability, and this integration should be repeated for any textual
LWB. Instead, the second architecture uses an intermediate format to communicate
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between a textual LWB and MPS. In the following paragraphs, we describe each of the
components of this architecture and how they interact with each other. All the code is
available on a GitHub repository1.

Rascal2XML. This module is written in Rascal, and it is responsible for generating
an XML representation of Rascal grammars and existing textual programs. This module
produces an XML file that is used as input for the module XML2MPS.

XML2MPS. This MPS project holds the logic for generating MPS language definitions
and model instances. It is responsible for creating MPS concepts and interfaces from an
XML file. Both ImportLanguage and ImportProgram use this library.

ImportLanguage. is an MPS plugin that enables the import of languages. It creates
the Graphical User Interface (GUI) for importing a textual language. The GUI displays
a pop-up that takes the grammar (in XML format) as input, calls the XMLImporter, and
produces a projectional language.

ImportProgram. is an MPS plugin that enables the import of programs. This plugin
takes as input an XML file that contains a program, and it produces a projectional
model. To create the projectional model, this plugin relies on the XML importer to read
the XMLFile and in XML2MPS to create the MPS nodes.

XMLImporter is a Java library for traversing the tree-like content of the XML files.
This is used to map textual languages to projectional languages and translate textual
programs as projectional models.

5.5 case study

In this section, we present a case study to evaluate our approach. The language we
have chosen for this purpose is JavaScript (ECMAScript 5) because there is an existing
implementation of it for MPS, and it allows a proper validation of Rascal2MPS. First,
we explain the definition of the language. Then, we show how we create a mapping
between the textual language and the generated projectional language. Afterwards,
we generate a projectional editor based on the language’s concrete syntax. Finally, we
import existing textual programs as valid MPS models that conform to the generated
projectional language. This section concludes with a brief discussion based on results.

1 https://github.com/cwi-swat/rascal-mps

https://github.com/cwi-swat/rascal-mps
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5.5.1 Language Description

So far, we have presented a way of applying the approach to a toy language of
expressions. Now we will apply it to a well-known and widely used language. To
show the applicability of the approach to a real-world language, we reused the existing
grammar definition for JavaScript, included in Rascal’s standard library. This grammar
can be found in GitHub2. This evaluation aims to use a Rascal implementation of the
JavaScript grammar, and obtain the equivalent language in MPS.

First, we must sanitize the existing grammar to meet our solution’s constraints, as
described in Section 5.6. It is essential to mention that this sanitization process is entirely
manual. In this grammar, the sanitization process consists of adding labels to all the
production rules and variable names to all symbols; and changing lexicals to use either
one of our predefined lexical types or a user-defined construct. The resulting sanitized
grammar can be found on GitHub3.

We then used this grammar as input to generate the XML that encodes the grammar
definition into the intermediate format. This XML representation is also available on
GitHub 4. The XML file can then be imported into MPS. In MPS, we use the plugin that
we built, and we use the XML file as an input to successfully generate the projectional
version of JavaScript.

To evaluate our generated version of JavaScript, we decided to compare it against
an ad-hoc MPS implementation of such a language called EcmaScript4MPS 5. Ec-
maScript4MPS is a fine-tuned implementation of JavaScript for MPS. In other words,
the implementation considers how developers use JavaScript editors and the features
offered for JavaScript in IDEs. For comparing both implementations, we show several
examples of language elements and programs of both implementations. For the rest of
this section, we will refer to the generated version as JsFromRascal and the MPS ad-hoc
implementation as JsManual.

5.5.2 Editor Aspect

To compare the editor of both languages, we present how a program looks like in
both editors. The JsFromRascal program was created using the approach described in
Section 5.4.4. This approach takes a textual program as input, the tool parses it and
produces an XML file with the resulting parse tree. It is important to mention that we
did not tweak the resulting program; we used the generated version as-is. Figure 5.4
shows the resulting program using the JsFromRascal editor.

2 https://bit.ly/3JDiP70
3 https://bit.ly/32JtRHp
4 https://bit.ly/32UZKfQ
5 https://github.com/mar9000/ecmascript4mps

https://bit.ly/3JDiP70
https://bit.ly/32JtRHp
https://bit.ly/32UZKfQ
https://github.com/mar9000/ecmascript4mps
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In contrast, the program for JsManual was written by hand because we did not have
a mechanism, like the one described before, for arbitrary textual programs. However,
the hand-written program is the same as the one used for JsFromRascal. The resulting
program in the JsManual editor is shown in Figure 5.5

Figure 5.4: The substring JavaScript program displayed using the JsFromRascal editor.

As can be seen from Figures 5.4 and 5.5, the program in the JsFromRascal editor takes
up more lines of code than its counterpart in JsManual. According to the JavaScript
standards, the JsManual editor makes the program look more readable due to the
ad-hoc implementation of the editor, which places break lines and whitespaces in the
right place. The JsFromRascal editor splits up statements and expressions into several
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Figure 5.5: The substring JavaScript program displayed using the JsManual editor.

lines based on the implemented heuristics. Instead, the JsManual editor does not break
these language constructs into several lines. However, it forces users to define variables
outside for statements due to the language’s name resolution implementation.

Another difference between the editors is the usage of the dot operator (.). This
operator is often used in programming languages to access fields or methods. For
instance, JsFromRascal identifies it as a binary operator (e.g., ’+’, ’-’), and therefore the
editor introduces whitespaces before and after the dot operator. This is an example of
the limitations introduced by the heuristics; they are rigid. A customization mechanism
might be needed to make such heuristics more flexible; thus, they can be adapted to
different languages and scenarios.

In sum, the JsManual editor is more appealing, and visually, it looks more like
a textual program written using a plain text editor than the one generated using
JsFromRascal. This kind of difference was expected because the JsManual editor is
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implemented in an ad-hoc way to offer the best experience for this language, while the
JsFromRascal editor is obtained through a generic tool that works for various languages.
However, the JsFromRascal editor can be manually fine-tuned to achieve the desired
editing experience. The knowledge of the JsFromRascal editor depends entirely on
two core elements, the information contained in the grammar and the set of heuristics
applied to such grammar. On the one hand, the creation of ad-hoc editors from scratch,
such as the one made for JsManual, is a cumbersome activity. On the other hand, a
generated editor speeds up editors’ development process because they use generic
abstractions that can be applied to several languages, so that developers can focus on
fine-tuning the generated editors on edge cases based on platform-specific features and
the language’s coding styles.

5.5.3 Program’s Usability

Now we are going to discuss the usability aspects of both editors. Here we only focus on
the ease of creating and editing programs with the editors mentioned above. First, we
investigate the tab-completion menu, which is one of the critical aspects of a projectional
editor since it allows users to navigate through the language’s structure (AST). In
Figure 5.6, we present a code completion menu for a for statement in JsFromRascal,
and in Figure 5.7, we present the equivalent using JsManual. Both editors show similar
information: the concept’s name and a brief description. However, the JsFromRascal
editor also displays the structure of the child nodes of such a concept, which might
help developers understand how to use concepts or remember the concept’s syntax.

Figure 5.6: JsFromRascal editor tab-completion menu of a for loop.

Figure 5.7: JsManual editor tab-completion menu of a for loop.
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5.5.4 Discussion

projecting grammars as language structures . The first goal and building
block for this project is to recreate the structure of a language in two different LWBs. This
goal was previously achieved and explained by Ingrid [369]. We wanted to try a different
solution in which we do not directly integrate both platforms, but instead, we define
an intermediate format to make the solution more general. Section 5.4.1 describes the
process for mapping a textual language definition into a projectional language definition.
As shown in Section 5.5.1, the current approach works, yet some considerations must
be taken into account to generate a proper language. We understand that the way we
treat lexicals might be cumbersome since the complex structure’s mapping must be
manually defined. We also think this could be solved by defining some pre-processing
strategies to capture lexicals and generate them into the second platform.

editor aspect – language usability The editor aspect of a language is essen-
tial because it is the user interface to the language. Nevertheless, implementing a good
editor is cumbersome. As shown in Section 5.5.2, usability is one of the main differ-
ences between ad-hoc and generated implementations. In the generated version, we
applied heuristics from the literature (e.g., well-known formatting and pretty-printing
approaches) to try to identify production rule patterns generically. However, these
heuristics have limited power, and of course, they might not fit every language, es-
pecially if we compare them against custom implementations. Nonetheless, with the
current approach, we show that it is possible to apply existing heuristics to create pro-
jectional editors based solely on the language’s grammar. Besides, the current approach
considers the language’s structure to generate a projectional editor that, in some cases,
might be more appealing than the reflective MPS editor.

To improve the current approach, we could have implemented more heuristics or
define a mechanism for customizing them. We might also require additional information
other than the information contained in the grammar. Also, languages’ coding style and
user feedback are fundamental to improve the quality of generated editors. In other
words, we need more information to implement the heuristics in a less rigid fashion,
and therefore improve the editor generation.

5.6 limitations

This section discusses the limitations of the approach, the rationale behind them, and
possible solutions to overcome them. These limitations are based on assumptions and
constraints in the grammar. Besides, there is also a technical limitation related to how
the mapping is implemented.
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Summary - Grammar Preconditions

• Non-terminal symbols name and production rules labels within a grammar must
be unique.

• Symbol labels within a production rule must be unique.

• Lexicals can be either one of the MPS predefined data types or the lexical must be
defined by hand using the lexical library.

• Each production rule and each symbol within a production rule must be labeled.

1. The names of the non-terminal symbols in a grammar must be unique. In other
words, the current approach does not support the definition of two concepts with
the same name. The rationale behind this is that the name of a non-terminal
symbol is used to define an interface concept in the generated MPS language, and
the production labels are used to create concepts. One way to avoid this constraint
could be defining a renaming scheme that can detect and fix name conflicts.
However, this solution might introduce a side effect on the language’s usability;
projectional editors use these names for IDE services such as tab-completion, so
they must be descriptive enough for end-users. Also, other language components
must be refactored according to the renaming mechanism. Therefore, we did not
implement an automatic renaming scheme, and we preferred to include it as a
limitation of the current approach.

2. In the mapping between a Rascal grammar and an MPS language, symbol labels
are used as variable names, either for children or references in MPS concepts.
These names should be unique within the same concept, yet not for the whole
language. For instance, if we define concepts A and B, both can contain a reference
of a child named name; however, A cannot have more than one child or reference
called name. In other words, symbol labels can be reused across concepts but not
within the same concept.

3. Lexicals are a challenging concept to deal with because there is no standard
way of defining them. However, it is possible to make some assumptions on
regularity and define a set of constraints to translate lexical between platforms in
an automatic way, but this requires considerable effort. As a result, we did not
want to restrict regular expressions, so we included lexicals that represent MPS
built-in types (e.g., string, int) to the lexical library. The current approach does not
limit users from defining custom lexicals. However, users must manually define a
mapping between the custom lexical defined in Rascal and the right translation
for MPS. Section 5.4.1 describes the details on how to support custom-defined
lexicals.

4. It is required to label all the production rules and symbols within a production rule
because the approach uses the labels for naming concepts or children reference
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fields. A solution could be to generate placeholder names, yet this introduces
other issues such as non-descriptive names and name matching issues when
importing existing textual programs.

5. The current approach does not take advantage of name resolution, especially for
code completion, which is a keystone for projectional LWBs. For instance, in MPS,
concept hierarchies do not rely on trees’ definition; instead, they use graphs.

6. The current implementation supports the mapping of lists and separated lists of
symbols into MPS language concepts (editor and structure aspects). However, the
mapping for separated lists is partially implemented. The current approach treats
separated lists just as a list. As a result, the separator symbol is ignored for the
generation of the editor.

The current approach does not support language nor program evolution. In other
words, the current approach considers languages as standalone units. It does not
consider that changes might happen to the language. For example, if a developer
uses a textual language A and generates a projectional language A* inside MPS, the
current approach only accepts valid programs according to A. If there are changes to
the original language A, those changes cannot be patched in the generated versions.
This forces to re-generate the whole language from scratch or make changes by hand.
Some changes do not break the importing of programs:

• Addition of language constructs to the grammar and then using them in a
program. This means that the plugin for importing programs, ImportProgram
(Section 5.4.5), will not find such elements. As a result, the plugin notifies the
user.

• Modification of existing language constructs (e.g., adding or removing parame-
ters). As expected, this type of change often ends up in a failure.

In sum, language engineers and users, in general, should be aware of the language’s
version and the version used to define programs. We see this problem as an opportunity
for future extensions of the current approach to supporting languages and programs’
evolution.

5.7 related work

Projectional LWBs allow users to manipulate the programs’ AST directly; therefore,
parsing technology is no longer needed. In contrast, textual LWBs parsing is essential.
This section presents state of the art in grammar to model transformation and editor
generation.
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5.7.1 Grammar to Model

The generation of models from grammars is essential for the current approach. Thus,
we identified the following related work in this direction.

Ingrid [369] is a project that attempts to bridge the gap between textual and projec-
tional LWBs. Their approach uses ANTLRv4 [263] as textual LWB and JetBrains MPS
as projectional editor. Ingrid is implemented as a hybrid solution in Java/MPS project.
Ingrid bridges textual and projectional LWBs in three steps: first, the grammar must
be parsed, and relevant information about the structure and other required language
elements is stored as linked Java objects. Secondly, the stored structure is traversed,
and equivalent MPS model nodes and interfaces are constructed. Finally, an editor is
generated for each MPS Language Concept Node. There are some high-level similarities
between Ingrid and Rascal2MPS. Both projects perform the steps taken for parsing,
gathering information about the language, generating an intermediate structure to
represent the language, and finally generating a model from the said intermediate
structure. The main differences are in the architecture, design, and implementation
choices of both projects, which have various consequences for using the respective tools.
The main architectural difference is in the choice of the intermediate structure. Whereas
we chose an external file-based format (see Section 5.4.5), Ingrid uses an internal
representation of linked Java objects. This decision enables them to use the ANTLRv4

parser implemented in Java and the ability of MPS to call into Java executables directly.
Thus, the Ingrid MPS plugin can call the parser and start the data extraction process
internally. In contrast, Rascal2MPS keeps both LWBs separate; they can communicate
only through an external intermediate format. Some of the advantages of not using an
intermediate format are:

• The solution becomes a one-step process, making it more efficient for the language
engineer.

• All implementation is done on one side of the bridge (projectional LWB), simpli-
fying the development.

• The language engineer does not need to maintain both the textual and projectional
LWB.

However, this approach has a significant downside: the projectional LWB must call
the grammar parser directly. Thus, there is a strong coupling between the projectional
LWB and the specific grammar parser. In the case of Ingrid, the MPS plugin calls into
the Java ANTLR parser. However, the ANTLR parser is not the only one. If we wished
to extend Ingrid to support Rascal, we would need to replace ANTLR parser calls with
Rascal parser calls. This can lead to several problems:(i) The architecture must allow
this replacement. This can be partially solved using interfaces and abstractions over the
parser, but the problem of potentially different APIs remains. A complete mapping from
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ANTLR parser function calls to Rascal parser function calls would have to be made in
the worst case. (ii) The parser needs to be implemented in Java. ANTLRv4 already has
a Java-based parser and is a prime candidate for integration with the Java-based MPS.
However, this is not necessarily true for any given textual LWB. If one is not available,
the language engineer would either have to implement the parser in Java, or find some
way to expose the parsing features to a Java environment.

Rascal2MPS addresses the problem of bridging the gap between the textual and
projectional worlds in a generic-fashion. In other words, neither side of the solution is
aware of the other; they communicate only through the intermediate file-based format.
This format serves as a contract between the different parts of the solution. If the
intermediary file is generated from an ANTLR-, Rascal- or Xtext-based grammar is
irrelevant to the implementation on the side of the projectional LWB.

Another difference between Ingrid and Rascal2MPS lies in the editor generation.
While Ingrid does identify the problem of usability of the reflective editor and discusses
several solutions, such as heuristics or prompts during the import process, they have
not been implemented. Ingrid only generates an editor containing the node’s structural
elements, i.e., the literals and references to other nodes. It is then left up to the language
engineer to apply whitespace to the editor manually. Rascal2MPS goes further and
applies heuristics to apply whitespace during the import process automatically. While
this does not eliminate the need to edit the editor definitions manually (Section 5.5),
it can save time given the right set of heuristics. Finally, Ingrid does not address the
problem of language artifacts, i.e., programs created within the textual world. Thus,
even after a language has been imported, programs are written using said language in
the textual LWB that needs to be manually recreated as MPS models of the imported
language. Rascal2MPS does implement the ability to construct MPS program models
using textual source code.

Wimmer et al. [386] describe a generic semi-automatic approach for bridging the
technological space between the Extended Backus–Naur Form (EBNF), a popular
grammar formalism, and Meta-Object Facility (MOF), a standard for model driven-
engineering. In this approach, an attribute grammar describes the EBNF structure
and the mapping between EBNF and MOF. Then, it is used to generate a Grammar
Parser (GP). This GP can then be used to generate MOF meta-models from grammars.
However, this approach fixates on MOF as the target meta-model directly. In the case
of going between LWBs in separate worlds, we do not want to be specific in the target.
Instead, Rascal2MPS uses an intermediate format and makes the source and target
formalism up to the implementation. Another downside of the given approach is that it
requires grammar annotations and additional manual improvements of the generated
model to refine the generated model. We seek to limit the actions of the language
engineer, especially concerning the source grammar. The Gra2Mol [147] is another
project which seeks to bridge the gap between the textual grammar and model worlds.
The authors define a domain-specific model transformation language that can be
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applied to a program that conforms to a grammar and generates a model that conforms
to a target meta-model. This language can be used to write a transformation definition
consisting of transformation rules. In this way, the presented approach abstracts over
the generated meta-model, which would be quite useful in our use-case, as we would
be able to give the meta-model of the target LWB as input with the transformation
definition. In practice, however, this runs into problems when the desired target model
is specific rather than generic. For example, the standard storage format for JetBrains
MPS is a custom XML format. The models contain much information tied specifically
to MPS, such as node IDs and layout structures. Generating these from outside of MPS
would be quite tedious and would introduce a dependency on the MPS model format,
which may change. Thus, it is best to interact with the MPS model from within MPS
itself, where MPS can do the heavy lifting of generating the models.

5.7.2 Editor Generation

Editor generation is an essential step in bridging the gap between textual and pro-
jectional LWBs. It is closely related to the well-known pretty printing problem in the
grammar world. Grammar Cells [367] is an extension of MPS that offers a declarative
specification for defining textual notations and interactions in a projectional editor.
Implementing editors with this extension makes it easier to offer a text-like editing
experience; thus, it is widely adopted by the MPS community. Our current implementa-
tion does not use Grammar cells because we restricted our approach on a plain MPS
installation. However, this extension’s adoption is part of the roadmap for the next
iteration of the current implementation.

Van de Vanter et al. [354] identifies part of the core problem between the textual and
model-based approach. From a system’s perspective, a model-based editor allows for
easier tool integration and additional functionality. However, language users are often
more familiar and comfortable with text-based editing. In this chapter, the authors
propose a compromise based on lexical tokens and fuzzy parsing. This is not unlike
what is offered by MPS. MPS Editors are highly customizable and can be made to
resemble the text-based editing experience closely.

As introduced by van den Brand et al. [55], the BOX language for formatting text is
closely related, as the heuristics for generation white space between language elements
is reused in this project. The BOX language is further used in other work on pretty-
printing generic programming languages, such as GPP (Generic Pretty Printer) [86],
which constructs tree structures of a language element’s layout that can be used by an
arbitrary consumer.

Syntax-directed pretty-printing [302] also identifies several structures for creating
language-independent pretty-printers. In this approach, a grammar extended with
special pretty-printer commands is used as input to generate a pretty-printer for
such a language. The generated pretty printer can then be reused for any program
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written in the language the pretty printer was generated for. The annotated grammar
approach does limit the form the final pretty-printer can have due to the lack of options.
Also, annotating an entire grammar can be tedious work. We attempt to limit the
required user interaction with the source grammar in our approach, although we did
not eliminate it.

Following this research line, Terrence et al. [264] propose Codebuff, which is a tool
for the automatic derivation of code formatters. Codebuff is a generic formatter that
uses machine learning algorithms to extract formatting rules from a corpus. This is a
neat approach because, as we mentioned before, source code formatting is subjective, it
depends on each programmer’s style, and it changes across languages. For example, in
Section 5.5.2, we showed that applying the same heuristics for any language does not
always produce a good editor. Therefore, we consider tools like Codebuff as inspiration
for future work. We could benefit from their techniques and knowledge to generate
editors in a flexible and highly configurable way and perhaps learn from existing source
code examples.

5.8 conclusions and future work

In this chapter, we presented an approach to bridge the gap between textual and
projectional LWB. We defined a mapping between textual grammars and projectional
meta models; this mapping (Section 5.4) produces the structure and editor aspects of a
projectional language. Moreover, our approach allows users to reuse textual programs
by means of translating them to equivalent MPS models (Section 5.4.4). To validate our
solution, we used as a case study a Rascal grammar of JavaScript (Section 5.5). Based
on the grammar definition, we generated a projectional version of JavaScript. To verify
the correct mapping of the generated language, we successfully imported existing valid
textual JavaScript programs into MPS. In Section 5.6, we discuss some of the limitations
of the current approach.

Language evolution is a crucial aspect to look at in the future. Since the current
approach assumes that the generation is done only once, we ignore the fact that the
textual language and the projectional generated version might change. Then we consider
that keeping track of these changes and transferring/applying these changes to the
other is essential If there are changes in the grammar after the projectional language
generation, developers must regenerate the whole language, which may lead to losing
information (if changes were made on the generated language).

Similarly, this applies to programs written in such languages. We consider that a
mechanism for maintaining both versions is worth investigating as future work to keep
a bidirectional mapping. Language engineers can switch from one platform to another
without losing information. Our approach offers support for a unidirectional mapping
from textual to projectional. We believe that a bidirectional communication is required.
Because depending on the language, one may benefit more from having a textual or
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a projectional version of the language. Therefore, to support both sides’ changes, we
require a bridge to create a textual language from a projectional language. Moreover, to
complete the circle, a way of keeping track and propagating changes in both worlds
will be required. To avoid losing or reimplementing existing features.

As we described in Section 5.5.4, the usability of generated editors is one of the
critical aspects that should be addressed in future research. We found that we can
generate editors with limited capabilities (that do not consider domain knowledge
or existing formatters). Therefore, we consider as future work, to explore artificial
intelligence techniques (e.g., machine learning or programming by example) to improve
the existing editor (in the style of [264]), maybe by identifying patterns in existing
programs or commonalities in the grammar’s structure to guide or to customize the
generation of the editor aspect.
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6
W H AT Y O U A LWAY S WA N T E D T O K N O W B U T C O U L D N O T F I N D
A B O U T B L O C K - B A S E D E D I T O R S

Block-based environments are visual programming environments, which are becoming
more and more popular because of their ease of use. The ease of use comes thanks to their
intuitive graphical representation and structural metaphors (jigsaw-like puzzles) to display
valid combinations of language constructs to the users. Part of the current popularity of
block-based environments is thanks to Scratch. As a result they are often associated with
tools for children or young learners. However, it is unclear how these types of programming
environments are developed and used in general. So we conducted a systematic literature
review on block-based environments by studying 152 papers published between 2014 and
2020, and a non-systematic tool review of 32 block-based environments. In particular,
we provide a helpful inventory of block-based editors for end-users on different topics
and domains. Likewise, we focused on identifying the main components of block-based
environments, how they are engineered, and how they are used. This survey should be
equally helpful for language engineering researchers and language engineers alike.

6.1 introduction

In the past decade, end-user programming environments have become more popular
and more relevant. End-users significantly outnumber professional programmers [297].
These environments allow end-users to create and adapt software, enabling them to
achieve a myriad of tasks. Without them, most of these tasks would not be possible
unless one has a background in computer science or software engineering. Block-based
environments are part of this set of end-user visual programming environments. One
of their main characteristics is the editor, which presents the language constructs to
the end-user as graphical elements that resemble Lego blocks. Each of these blocks
is characterized by visual signifiers (e.g., color and shape) that hint end-users of its
semantics and its (possible) connections to other blocks. An example of a block-based
representation of an if statement is shown in Figure 6.1. The benefit of having a
block-based editor is to offer a programming experience based on What-You-See-Is-
What-You-Get (WYSIWYG) and the impossibility of syntactic errors [246, 276, 378, 382].
Moreover, these editors support different block-based programming paradigms, such
as configuration, serial, parallel, and event-driven [122].

The popularity of block-based editors have increased in recent years, partially due
to Scratch’s popularity (23rd most popular programming language [61]). However,
languages that provide such a type of editors are not new, yet block-based editors have
been mainly used and associated with computer science education or applications for
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if {

}

Figure 6.1: Block-based representation of an if statement.

children. This chapter explores whether this is true or not. In case this claim is not
true, we explore how these programming environments have been adopted beyond
the realms of education or children. Moreover, this chapter identifies block-based
environments’ main components to understand them and increase their adoption in
different domains and for different user groups; and studies whether the development
of block-based environments is supported by specialized language engineering tooling
(e.g., language workbenches).

To have a clear overview of the landscape of block-based environments and un-
derstand how they are developed, we conducted a systematic and a less-systematic
literature review. A Systematic Literature Review (SLR) collects and summarizes all
the existing research evidence of a domain and identifies possible gaps in current
research [177]. Initially we started with the less-systematic method, in which we sought
block-based environments and their features. We ran into the limits of this ad-hoc
method and continued with an SLR to identify possible gaps in current research [177].

Since there exists no primary conference or journal focused on block-based envi-
ronments, we expect that papers on this topic are spread over different academic
communities with different characteristics. The papers we found in the venues will
frame the answers to the research questions about block-based environments.

The contributions of this chapter are summarized as follows:

• A systematic literature review on block-based environments which provides
an overview of the main features of block-based environments, the landscape in
which these programming environments are used, publication venues, program-
ming languages used in their development, and the most popular environments
(Section 6.3).

• A deeper (qualitative) understanding of block-based environments and their
components (Section 6.3.2).

• An understanding of how block-based environments are implemented and the
tools and languages involved in their development (Sections 6.3.3 to 6.3.5).

• A non-systematic tool review of block-based environments that presents some of
the most relevant features of these programming environments (Section 6.4).

We describe the threats to the validity of this study in Section 6.5 and a discussion of
the results obtained in this study in Section 6.6. The non-systematic literature review
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fills some gaps of the systematic literature review and vice versa. We concludes with
a discussion of related work, conclusions and future research directions (Sections 6.7
and 6.8).

6.2 systematic review : motivation and methodology

A literature review about block-based environments can be approached from different
perspectives. Different perspectives are relevant because block-based environments
are used across different domains and user groups, and developed by engineers with
different backgrounds as well. Our agenda is to make block-based editors part of the
default set of services offered by language workbenches [110] and to investigate how
editor generation technology (metaprogramming) is used to support this. Therefore,
our primary motivation in this literature review is to understand in which contexts are
block-based environments used and how exactly they are developed.

We aim to make block-based environments available for all Domain-Specific Lan-
guages (DSLs) developed using a Language Workbench (LWB). LWBs have shown benefits
by offering specialized (generative) technology for developing software languages and
their tooling. LWBs are used to define both the syntax and semantics of languages.
Based on these two, language engineers can also semi-automatically derive a full-
featured Integrated Development Environment (IDE) for their language [53, 56, 67]. We
believe that block-based editors can also be derived from existing language components.
To enable that research we need a clear set of requirements to frame the contributions
of a block-based LWB and we must understand how block-based environments are
best implemented. The current SLR helps in achieving these goals.

6.2.1 Need for a Systematic Review

Coronado et al. [74] published a literature review about using visual programming
environments for programming robots. In their work, they present an overview of the
environments that use a visual editor for programming robots; this considers all sorts
of graphical elements to represent language constructs, including block-based editors.
However, their main target was to understand the tools used to program robots. A simi-
lar approach can be used for other purposes, for instance, to identify the programming
environments used for teaching computational skills. Our view is that it is essential
to understand block-based environments in general; this includes understanding their
features, applications, and technologies involved in their development.

We aim to increase the adoption of the block-based metaphor beyond the realm of
computing education, make its development part of the set of generic services offered
by specialized tooling for creating software languages (i.e., language workbenches),
and explore further applications in industrial settings.
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6.2.2 Protocol

This section presents the protocol defined for the systematic review. We followed
Kitchenham et al. [177, 178] guidelines for conducting a systematic literature review in
software engineering. The primary goal is to summarize existing evidence in literature
of the development and usage of block-based environments, in different disciplines.
The secondary goal is to identify possible gaps between the development of these
visual programming environments and existing tools and technologies specialized in
developing software languages and their tooling.

6.2.2.1 Scope

Visual programming environments are environments that rely on graphical editors
for building programs. Different notations are adopted by these environments, such
as flow charts, UML diagrams, and block-based editors. In this survey, we focus our
attention on the latter notation.

Block-based environments are not new, but the popularity of Scratch [240] has
inspired a new wave of visual programming environments. These environments are
characterized by representing language constructs with graphical blocks that resemble
Lego blocks. Moreover, these environments offer visual cues that help users understand
what are the possibilities for connecting blocks.

6.2.2.2 Research Questions

The research questions addressed in this study are:

RQ 5.0 What are the characteristics of the papers that present block-based editors?

RQ 5.1 What are the components of a block-based environment?

RQ 5.2 What are the tools used to develop block-based environments?

RQ 5.3 How are block-based environments developed?

RQ 5.4 What languages offer a block-based editor and what are these languages
used for?

The motivation for the meta question RQ 5.0 is that we expect publications on block-
based editors to be scattered acros many different (types of) venues: from fundamental
computer science all the way to applications in other academic domains such as
medicine, and everything in between. The answer to RQ 5.0 helps to frame the answers
to the following research questions. Research questions RQ 5.0, RQ 5.2, and RQ 5.3 are
answered through the systematic review. RQ 5.1 and RQ 5.4 are answered using both
the systematic and the non-systematic approach.
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6.2.3 Search Process

Languages that use a block-based editor are becoming popular outside the academic
world for their ease of use. For instance, commercial robots, programmable micro-
controllers, and applications for children use them as an effective end-user interface.
Consequently, many of these languages have been developed outside the academic
world, which means that there are language implementations that do not have a cor-
responding academic publication. Vice versa there exist academic publications about
languages which do not have an implementation (anymore).

Therefore, to obtain a complete overview of the landscape, it is essential to include
both academic and non-academic tools in this literature review. Therefore, we decided
to follow a combined search process that is both fully systematic and less-systematic.
For the fully systematic process, the first author systematically searched for peer-
reviewed papers in computer science academic databases. The less-systematic process
was conducted using standard Google search queries. In some cases, some tools
reference other tools, so we also used this information. Following this approach, we
found 30 different relevant block-based environments.

We consider using Google scholar for the systematic approach, but unfortunately, it
provided more than 2.6k results, which is more than what we can deal with. Therefore,
we reduced the search space to the four primary academic databases in computer
science and software engineering, namely, IEEE, ACM, Elsevier, and Springerlink. The
selected academic databases are shown in Table 6.1. They were selected because these
databases are well known, and they have proceedings of the leading journals and
conferences on which block-based environments have been applied, such as education,
software engineering, human-computer interaction, and end-user programming.

6.2.4 Queries

To identify and understand languages that offer block-based editors, we used the
following search string in the academic databases:

block-based language OR blocks-based language OR block-based languages OR

blocks-based languages OR block-based programming OR blocks-based programming

We used the search string mentioned above for all four academic databases. A summary
of the number of results obtained from each database is presented in Table 6.1. Table 6.2
presents a summary of the type and number of publications obtained across all the
databases. The publication type Other aggregates different types of publications such as
demonstrations, posters, magazine columns, tutorials, outlines, living reference work
entries, panels, conference description, editorials, and non-peer-reviewed technical
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reports. Details about the inclusion or exclusion criteria for the relevant proceedings
are explained below in Section 6.2.5.

Source # Results

IEEE Xplore R©Digital Library 128

The ACM Digital Library 272

Elsevier ScienceDirect R© 55

Springerlink R© 213

Total 668

Table 6.1: Number of publications obtained
per academic database.

Publication type # Papers

Conference paper 369

Journal 143

Other 50

Chapter 44

Abstract 40

Short paper 22

Table 6.2: Number of publications per type.

6.2.5 Inclusion and Exclusion Criteria

This section presents the criteria we used for both the systematic and the less-
systematic approach.

non-academic We included solely tools that can be used at the moment of the
systematic review, (i) Open-source tools. (ii) Commercial tools with free trial. This
includes languages and tools that can be accessed only by contacting the authors, as
described on the tool’s website.

academic We reviewed the title and abstract of each paper manually to remove
all papers that certainly were not featuring languages with block-based environments.
The proceedings used in this literature review are all peer-reviewed articles related
to block-based programming in the broad sense, published between January 1st, 2005

and August 1st, 2020. Note that we are interested in all articles related to block-based
interfaces, so we included all articles that used or mentioned block-based languages or
block-based programming even if they present applications or studies of the block-based
metaphor solely.

We excluded articles on the following topics: (i) Visual languages that do not feature
a block-based editor (ii) Studies not written in English (iii) Frame-based editing [186]
unless they provide a connection to block-based editors (iv) Data-flow programming
(v) Form-filling programming (vi) Wizardry metaphor [101] (vii) Duplicate articles that
present the same tool without adding a fresh perspective.

Finally, we excluded reference work entries, living reference work entries, and
educational papers unless they introduce a new tool, a language, or an extension to an
existing tool or language that uses a block-based editor.
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Figure 6.2: Selection procedure for the systematic literature review.

6.2.6 Selection

To identify the relevant publications to be included as part of this SLR, we performed
three-step filtering (Figure 6.2) on the results obtained from all the databases using the
string query mentioned before. We took each result in the first filtering phase and we
evaluated its relevance based on the title and the abstract only. Only papers that include
something about block-based environments where kept. For each excluded paper, we
wrote a motivation about why it was discarded. After this process, the number of
papers was reduced from 668 to 423. After removing 11 accidental duplicates we ended
up with 412 papers. The second filter step starts with all the papers that resulted from
the first filter. In this phase we defined nine yes/no questions based on our research
questions. The nine questions are shown in Appendix B.1. Then we counted the number
of yes answers for each individual paper. Based on this count we chose a threshold to
include a paper for the subsequent filtering step.

Since answering the nine questions is a manual task, the second author double-
checked a random selection of ten papers by following the exact same protocol. We
measured the degree of agreement between both authors and we calculated Cohen’s
kappa coefficient [71]. This statistic is used to measure the degree of accuracy and
reliability in statistical classification. Both authors agreed to include five papers and
exclude four papers. However, the first author decided to include one paper that the
second did not. To quantify this: there was 90% agreement between the authors and
Cohen’s kappa was 0.8. According to the guidelines proposed by Landis and Koch [199],
a 0.8 Cohen’s coefficient means that there is a substantial agreement between the parties.

This literature review’s primary focus is to provide a landscape of languages and
tools related to block-based environments. Therefore, the main criteria to include a
paper is to introduce a language or a tool that uses a block-based environment. If that
is the case, the paper is included even if the number of yes answers is not greater
than the threshold. If the paper does not include a language or a tool, we use the
accumulated result to determine whether the paper is included. Thus, a paper that
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does not introduce a tool or a language must have more than four positive answers. As
we did in the first filtering phase, we always record why a paper is discarded.

The second filter’s resulting papers are then the ones on which the current survey
is based; this means those are the papers from which we extract the data for further
processing and discussion. As a result of the second filtering phase, we excluded 260

papers from the 412 we had after the first filtering. As a result we analyzed 152 papers in
the data extraction phase. During data extraction, we retrieved different elements, such
as the type of publication, details about the block-based environment (e.g., elements
of the editor and its position on the screen), and all kinds of editor implementation
details. All the data was collected in a spreadsheet and its content was then analyzed
and processed by different means using scripts that aggregate the raw data. The result
of this process is shown and explained in the following sections.

6.3 systematic review of block-based environments

In this section we answer the research questions (Section 6.2) using the data collected
from the 152 papers on block-based editors.

6.3.1 RQ 5.0: What are the characteristics of the papers that present block-based editors?

This section presents demographics of the papers included in this survey. Particularly,
we present the venues in which the included papers were published, the number of
papers included per year, and the number of papers per country. Table 6.3 presents a
summary of the venues that contributed the most number of papers. For readability
we present only the categories that contain venues that contributed at least two papers.
The complete list of categories and venues is listed in Table B.2.

To get a quick overview of the most important venues we ordered them in Table 6.3
by ranking them by “popularity”. Moreover, we manually classified them into 18

categories. For the classification process we tried two semi-automated alternatives using
a more systematic approach, namely (a) calculating the document distance between
calls-for-papers of each venues and (b) using Google’s Cloud Natural Language API 1

to classify each call-for-papers. The bottom-line is that both approaches did not produce
accurate results and so we went back to the manual classification. We report on these
negative results nevertheless, as they might be useful to others researchers that are
working on an SLR.

We extracted the text in the call for papers of a random sample of venues to use
these to test the two automated approaches. In this step, we notice that not all venues
present a clear list of topics (e.g. the ACM CHI conference). For the first approach, we
calculated the document distance between two calls for papers from the same field.

1 https://cloud.google.com/natural-language

https://cloud.google.com/natural-language
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Category Venue # Papers

Human computer

interaction

Conference on Human Factors in Computing Systems (CHI) 13

Conference on Interaction Design and Children 11

International Conference on Human-Computer Interaction (HCII) 4

International Journal of Child-Computer Interaction 3

Programming /

Human computer

Interaction

Blocks and Beyond Workshop (Blocks and Beyond) 13

Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC)

9

Journal of Visual Languages & Computing 2

International Symposium on End User Development (IS-EUD) 2

Education

Technical Symposium on Computer Science Education (SIGSE) 10

Global Engineering Education Conference (EDUCON) 5

Computational Thinking Education 2

Education and Information Technologies 2

Workshop in Primary and Secondary Computing Education 2

International Conference on International Computing Education
Research

2

Conference on International Computing Education Research 2

Distributed computing International Conference on Computing, Communication and
Networking Technologies

5

Robotics / Education International Conference on Robotics and Education (RiE) 4

Accessibility Conference on Computers and Accessibility (ASSETS) 2

Programming Science of Computer Programming 2

Security International Conference on Information Systems Security and
Privacy (ICISSP)

2

Software engineering International Working Conference on Source Code Analysis and
Manipulation (SCAM)

2

Table 6.3: Summary of venues that contributed at least two papers to the survey.
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By manually verifying documents which were either far apart, or close, with our own
understanding we noticed nothing but noisy results. Apparently the variety of topics
in calls for papers goes far beyond the variety of topics of what a conference is about.

To explore this further, we removed all the other text from the call from papers, and
we calculated the document distances based only on the research topics mentioned
in the call for papers. However, this did not improve the results, and the document
distance between two venues from the same field was not too close (false negatives).
And, in many cases even, comparing venues from distinct fields produced closer
distances (false positives).

The second approach used the same input data. We used the default Google’s
classification categories on the same texts, and the results were indeed accurate (correct),
but they were not precise enough (vague). I.e. most of the venues were classified as
“computer science”.

After these failed attempts to automate and objectify our classification, we continued
with a manual classification process. Table 6.3 shows that the venues that contributed
the highest amount of papers are CHI and ‘Blocks and beyond‘, with 13 papers each.
The former is a venue about human factors in computing systems, including interaction,
visualization, and human-computer interaction topics. Thus, it is a clear connection
between these topics and the benefits offered by block-based environments. The latter
venue is exclusively focused on the development and use of block-based environments.
Therefore it is a perfect match for the study we present in this survey.

The papers included in this study are from different domains such as Human-
Computer Interaction (HCI), Education, Design, Software Engineering, Robotics, and
Security. Based on all the venues that contributed at least one paper, we expect our
paper collection process to be rather complete for this study since we have publications
from a variety of heterogeneous sources and topics. Likewise, this study includes
different types of proceedings as shown in Table 6.2.

To understand the papers’ demography, we computed the number of papers that
we included in our study per year, as shown in Table 6.4. This figure shows that the
number of papers per year has increased, having its peak in 2019. It is important to
remark that the current survey’s search process solely included papers published before
August 1st, 2020. This probably explains why the number of papers in 2020 is lower
than in 2019. With Table 6.4, we can observe an increase in popularity on topics related
to block-based environments.

Moreover, we computed the number of papers published per country. To compute
this information we used the nationality of the first author as presented in the paper,
and then we calculated the number of occurrences per country. We can observe that the
United States is the country that contributed the highest number of papers, followed by
the United Kingdom with 64 and 14 papers, respectively. It is essential to mention that
the gap between the number of papers contributed by the US is more than four times
the number of UK papers. It is also interesting to observe that we have some degree of
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Table 6.4: Summary of the number of papers pub-
lished per year.

Publication Type # Papers

Study 31

Languages 95

Extension 27

Table 6.5: Summary of the num-
ber of papers included
in this study per type
of proceeding

diversity in the authors’ nationality; there are authors from different continents —North
America, South America, Europe, and Asia. Antarctica, Africa, and Australia are not
represented. The complete list of papers per country is presented in Appendix B.4.

While analyzing the papers, we decided to tag them using three categories study,
language, and extension. We defined these categories to classify the papers based on
their content. The first category, study, is used to group papers that study aspects of
using or implementing block-based environments and do not present a new language
or tool that uses the block-based metaphor. The languages category is used to group all
the papers that present a new language that includes a block-based editor or tools that
support the development of block-based environments. Finally, the extension category
groups papers that do not introduce a language but introduce new features to existing
block-based editors. Table 6.5 presents a summary of the number of papers per category.

Based on the previous information, the reader can observe that the included papers
come from a wide range of topics, types of publications, and authors from different
parts of the world. In the next section, we will present in more detail findings and
information that we obtained by analyzing and gathering data from the corpus of
papers, and that helps us answer the research questions defined in Section 6.2.2.2.
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Summary RQ 5.0

• Publication of block-based environments is spread among different communities, however
they are most present in education, human computer interaction, and programming venues.

• The number of publications that present block-based editors have been increasing since
2014. This is supported by the importance of programming in the last years among different
people, including students and non-professional programmers.

• Authors from many countries publish papers that use block-based environment. However,
the country that contributes the most number of papers to this study is the United States,
followed by the UK.

• In this survey, we classified the 152 papers based on their goal in three main categories,
studies, languages, or extensions. Most of the papers included in this study are papers that
introduce a language (95), followed by studies of the usage of block-based editors (31) and,
finally, papers that introduce extensions to existing block-based environments (27).

6.3.2 RQ 5.1: What are the components of a block-based environment?

This section addresses research question RQ 5.1 based on the data collected. For this
purpose, we used the papers’ classification from the previous section and we took the
ones from the languages group. From the total number of papers we considered a subset
of 95 papers (Table 6.5).

Based on the different features offered from all the block-based environments in
this study, we developed a feature diagram [164] that summarizes the most common
features found across different platforms. The complete set of features of block-based
environments is shown in Figures 6.3 and 6.4. To ease the diagram’s readability, we
split the editor feature into a separate diagram, as shown in Figure 6.4. Figure 6.3
shows the first part of the diagram. Here the reader can observe features related to the
functioning of the platform. For instance, code execution mode and the type of block-based
environment. Then, Figure 6.4 presents details of the block-based editor.

In the feature model, we used two types of features, mandatory and optional. The
first is used for standard features (depicted as a box in Figures 6.3 and 6.4), and the
latter for unique features (depicted as a box with a blank circle on top). The root node
in Figure 6.3 represents a block-based environment, and each of the leaf nodes in
the feature diagram displays the number of block-based environments that support
that feature and the percentage of tools that support it among all the papers. For
instance, Computer (76, 80%) means that 76 block-based environments are deployed
for computers, which is 80% of the papers used for creating this diagram. All the
block-based environment’s children nodes are described below.

type . There are mainly two types of block-based environments, tools, and languages.
The former refers to utilities that help the development of such environments.
Instead, the latter are languages that come with a block-based editor.
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Figure 6.3: This is the top-level of the feature diagram.

Figure 6.4: This feature diagram shows a zoom-in into the editor aspect of a BBE.

editor . Block-based environments provide a block-based editor, but, we identified
that some tools also support a hybrid editor (text and blocks), which means that it
is possible to interact with the underlying language either through a blocks editor
or text-based editor. Based on this, 69 of the studied tools support a block editor
only, while 15 support both blocks and text editor [9, 10, 21, 24, 36, 38, 48, 75, 90,
137, 169, 176, 202, 329, 368]. The remaining ten tools do not mention it at all.

deployment. A block-based environment can be used through a heterogeneous set
of devices (e.g., laptops, tablets, and wearables). Therefore, we investigated what
device do block-based environment users write or develop their programs with.
The majority of tools are used through a browser-enabled PC (76), five through
mobile devices (e.g., smartphones), four by manipulating physical elements, and
one as Software as a Service (SaaS). In nine of the tools, it was not clear which
type of device the users have to develop their programs.

collaborative . This feature represents whether a block-based environment sup-
ports mechanisms for users to collaborate in the development of programs. From
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the studied papers, 90 tools do not offer such capabilities. Instead, the remaining
five tools do support this feature.

execution. There are different ways of executing programs. This is not different in a
block-based environment. Based on this study, we identified mainly two execution
modes, manual and live. After finishing the development of their programs, a
manual execution means that users have to press a button to launch the execution
of the program by the underlying language processors. Instead, a live execution
mode does not require a manual intervention by the user to execute programs.
The platform is capable of live executing the programs as users develop them.
From the tools, 47 use a manual execution mechanism, nine use a live execution,
and the remaining 39 tools do not mention which execution mode do they use.

target. As mentioned before, block-based environments are used in different settings.
This includes the real and the digital world. Thus, sometimes the effects of running
a block-based program are displayed on the screen, but sometimes they are shown
via hardware, and sometimes both. We investigated this fact and found that 53

tools present some form of results in a digital way, 31 using hardware (physical),
and three using both. For the remaining eight tools, it is not clear from the papers
which one do they use.

stage . Block-based editors are used in different environments. In some environments,
the effects of running a program are represented in the real world (e.g., hardware
effects). However, other contexts in which the results are displayed as software
(e.g., animation). This feature characterizes if the block-based environment has a
dedicated pane for showing the effects of running a program. Of the 95 tools, 50

of them have a dedicated pane for rendering program results; the remaining 45

do not have such a pane. Since there is no standard way or location for placing a
stage, we investigated the most common place in which block-based environment
developers place this component. The preferred location for the canvas is the
right-most side of the screen, with 22 tools. Then, 19 tools place it to the left-most
part of the screen. Two tools place it in the center; similarly, two tools have it in
the bottom part. Finally, only one tool has the stage on the top part of the screen.

However, the following four tools do have a stage, but the paper is not clear
wherein the screen it is located. Below, we present the details for these four
tools. Catrobat [251] uses a different layout because it is a mobile app. Behavioral
Blockly [13] does not show the whole block-based environment. Some images
show the programs, and others that show the stage, but not the whole workspace.
In VEDILS [249] there are different screens for showing the stage and editing the
program. For the mBlock [205] tool it is not clear where the stage is located from
the paper’s screenshots.

documentation. Documentation is an essential aspect of software. In traditional
text-based programming environments, it is possible to add comments anywhere
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in the program as long as it does not introduce syntactic errors. In a block-based
environment, this is more restricted due to the projectional nature and the visual
components. Therefore, we identified mainly two types of documentation. One
is used to add documentation to specific blocks (block-comments), and the other
documents a complete program/script (program comments).

block-comments As introduced before, block-comments are the comments added
to specific blocks. This could be either a group of blocks stacked up together or a
single block. From the studied papers, nine tools allow users to add comments
per block, while the other 86 tools did not mention it explicitly.

program comments . This feature is presented to show whether the tools allow
users to add comments to complete scripts/programs. We found that none of the
tools found in this study support adding comments to block-based programs.

debugging . Traditional software development tools support the debugging of pro-
grams. This is no different for block-based environments; however, we found that
not all block-based environments support debugging features. From all the tools,
only seven tools come with debugging features. The remaining 87 do not mention
it; we assume they do not offer such capabilities.

Next, we present in detail the features that are part of the block-based editor Fig-
ure 6.4.

canvas . The canvas is where users create their programs; it is where they drop the
blocks that constitute programs. All block-based environments offer a canvas for
building the programs. Most of the papers (70) show their canvases, but some
(24) papers did not present screenshots that show the canvas explicitly. Some of
these publications that did not present the canvas present block-based programs.
The canvas location indicates wherein the screen is this component situated. For
49 of the tools, the canvas is located in the center of the window; 16 have it on
the right-most part; one in the left-most part of the screen, and one have it in
the bottom part. As explained before, the remaining 27 tools do not mention or
display their position.

canvas type . Some environments provide more than a single canvas for creating
programs. Therefore, we look at the papers, and we found that five tools do use
multiple canvases, and the remaining 90 either only offer a single canvas or do
not explicitly mention/show support for multiple canvases.

rendering . This feature means that the block-based environment displays programs
using only blocks or dual-mode (text and blocks). 54 of the block-based environ-
ments display programs using only a block-based representation, 30 tools support
a dual-mode, and the remaining 11 tools do not mention anything about it.

editing . A canvas allows users to build programs by placing blocks on it. However,
this does not mean that all block-based editors use a 2D space. From all the tools,
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the majority supports the free placement of blocks in a two-dimensional space.
However, the other 27 tools have other types of placement (e.g., 3D spaces or
non-free placement of blocks).

toolbar . The toolbar is where blocks are grouped so that users can look at what
language constructs (blocks) are available for further use. Sixty-seven languages
have a block-based editor that contains a palette, and 27 do not provide it or it is
not explicitly mentioned. Moreover, we analyzed the location of the palette also
from the papers. There are four possible locations top, bottom, left, or right. We
found that 47 tools have the palette on the left-most part of the window. This
might be related that the majority of the people read from left to right. Moreover,
four tools (Flip [118], Labenah [6], [206], and Tuk tuk [190]) have the palette in the
right-most part of the screen. Twelve tools have it in the middle of the screen;
this behavior usually presents a stage on one side and the editor on the opposite
side. In this way, the palette is in the middle. Finally, XLBlocks [149] displays the
toolbox at the top of the window and Tica [7] does it in the bottom part.

toolbar type . A palette usually groups blocks by categories and this grouping is
static, meaning users can inspect each category and its blocks, and it will not
change. However, we identified that some tools offer a dynamic toolbar. A dynamic
toolbar is a toolbar that automatically adapts its contents based on the program’s
current status. In other words, it automatically hides the blocks that cannot be
snap into the current status of the program. There are 91 tools that do not support
this feature, but EduBot [145], PRIME [293], and EUD-MARS [5] do.

searchable toolbar . A searchable palette is a palette that has a search bar to help
users find blocks without having to open each category. EduBot [145] is the only
tool that supports a searchable toolbar.

internationalization. Given the visual notion of a block-based environment
and the possibility of adding descriptions to language constructs in natural
language, we investigated if the block-based tools come with support for different
languages, which means, if the description of a block can be shown in several
languages (e.g., English, Spanish, Dutch). We found that only six tools come with
internationalization capabilities, and the vast majority (89) do not support it.

sprite-based. Sprites are graphic elements of a computer program that can be ma-
nipulated as single units. This concept is popular among block-based environment
because Scratch supports it. However, we found that is not true for all languages
that offer a block-based editor. We identified six tools that support first-class
sprites, while the remaining 89 do not.

mouse-based manipulation. This feature is to reflect how users can manipulate
blocks within a block-based environment. Sixty-seven tools support the direct
manipulation of blocks using the mouse, while the other 28 tools have different
manipulation mechanisms (e.g., physical manipulation).
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Summary RQ 5.1

• The feature diagram (Figures 6.3 and 6.4) displays the most important features across block-
based environments. There are features at two different levels, platform, and editor. At the
platform level, we find features such as documentation, collaborative support, deployment,
and stage. The editor-level features are the canvas, toolbar, internationalization, and sprite-
based editing. Based on our data, we present quantitative analysis to illustrate which tools
support each feature. Likewise, we also illustrate the position in which some of these
features appear in a block-based environment (e.g., canvas, toolbar, and stage location).

• We identified that –due to the diverse applications in which these environments are used– a
standardized set of block-based editor features is missing. Therefore, we propose a feature
diagram that summarizes them across different platforms. Notably, we identified two main
types of features: platform-based and editor-based.

• We identified that most block-based environments provide a palette that contains all the
language construct and a canvas, in which users develop their programs. The stage is a
key component in popular platforms, however, their presence varies depending on the
language’s goal.

• There are two main types of block-based editors: sprite-based (e.g., Scratch) and non-sprite-
based.

6.3.3 RQ 5.2: What are the tools used to develop block-based environments?

We want to learn how block-based environments are developed. However, given the
nature of the papers, this is a non-trivial activity because in most cases we noticed
that authors do not mention these details. Below, we present the data we extracted.
Depending on how the language was implemented, we classified each paper into one
of four categories General-Purpose Programming Language (GPL), grammar, DSL,
and not available (N/A). As shown in Table 6.6, 93 tools did not explicitly mention
the tools used for its development, 55 were implemented using a GPL, and from the
remaining three: one used a visual language, one used a grammar, and one used a DSL,
respectively.

Likewise, we studied what programming languages were used in the implementation
of these block-based environments. Table 6.7 presents a summary of our findings. For
conciseness we grouped some of the languages (for the full list see Appendix B.6). For
instance, some languages only mention the use of HTML, so we count it as part of
HTML, JavaScript, and CSS.

As mentioned before, implementation details are not always discussed, and this is
reflected in Table 6.7; 100 papers do not mention what programming language was
used for the development. After this, we see that the most popular programming
language for the development of block-based environments is JavaScript. Counting all
the appearances, this language was used in the development of more than 30 block-
based editors. Another interesting fact is that there is only one language developed
using a Language Workbench (JastAdd [339]).
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Category # Languages

N/A 93

GPL 55

DSL 1

Visual (blocks) 1

Grammar 1

Table 6.6: Type of languages used to
develop block-based envi-
ronments.

Programming language Papers

N/A 100

JavaScript 15

HTML, JavaScript, and CSS 15

Java 3

Python 2

iOS (Swift) 2

JavaScript & Java 2

Pharo Smalltalk 2

TypeScript 2

Table 6.7: Programming languages used to imple-
ment block-based environments.

Following this direction, we explored whether the papers did not mention program-
ming languages at all, or it was just that they did not present implementation details
of their tooling. We used the list of the 50 most popular languages as reported by the
TIOBE index [61], but “visual basic” was omitted from the search because of the many
false positives with the common words “visual” and “basic”. In fact we did not find
any block-based editor that was implemented in Visual Basic.

Based on the list of programming languages, we developed a tool [221] for mining
the corpus of PDF files and counting the occurrences of each programming language.
The results in Figure 6.5 show the popularity of each of programming language. The
complete list of details of each language and the number of papers that mention the
language is presented in Appendix B.6.

As shown in Figure 6.5, Scratch is by far the language most mentioned across the
papers. The reason for this is that most of the current block-based environments
took inspiration from it. Then, we found seven programming languages (C, Java,
Go, R, JavaScript, D, and Python) mentioned in more than 20% of the papers. These
languages’ popularity might be related to the technologies used to develop block-based
environments, and the libraries offered to support their development (e.g., Blockly).

In summary, we identified that most of the papers do not present implementation
details about their languages and editors. However, based on the papers that present
implementation details, we found that most of the authors use GPLs. Concretely, most
of the papers that presented such details used HTML, JavaScript, and CSS to implement
block-based environments. Likewise, we observed that the programming languages
used to develop block-based editors are aligned with the 50 most popular languages as
classified in the TIOBE index.
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Figure 6.5: Summary of programming languages used for implementing block-based environ-
ments.

Summary RQ 5.2

• We identified different ways in which block-based environment are developed. However,
most of the authors (93) did not include such details. The most popular way of developing
a block-based environment is employing a general-purpose programming language (GPL).

• Since using a GPL is the most common way of developing block-based environment, we
identified that the most popular languages for this endeavor are HTML, JavaScript, and
CSS.

• Language Workbenches are really under-represented as a means of implementing a block-
based editor. There seems to be an opportunity there.

6.3.4 RQ 5.3: How are block-based environments developed?

One of the main objectives of this systematic review is to identify how block-based
environments are developed in practice. Therefore, we searched the selected papers
for the languages and tools used by the authors to develop block-based environments.
Based on the data collected (see Table 6.8) we identified two ways of implementing
a block-based editor: either authors rely on existing libraries and frameworks or they
develop them in a bespoke fashion. From the corpus of papers that presented a language,
tool, or an extension, 88 of them used libraries for the development of their editors, nine
papers developed their bespoke editors entirely from scratch, and 54 papers did not
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Method # Languages

Libraries and Frameworks 88

N/A 54

Bespoke 9

Table 6.8: Method used for devel-
oping block-based envi-
ronments.

Library # of languages

N/A 62

Blockly 40

Scratch 11

Snap! 7

Scratch 3.0 (Blockly) 3

CT-Blocks 3

App inventor & Blocky 2

Microsoft MakeCode 2

BlocklyDuino 2

Table 6.9: List of tools used for the development of
block-based editors.

provide a clear insight about how they were implemented, or they did not necessarily
introduce a new tool. However, to better understand of how block-based environments
are developed, we analyzed the papers to extract the libraries and frameworks used for
their development.

Table 6.9 shows a summary of the resulting list of tools and libraries (for the full
list see Appendix B.7). Similarly, as identified in Section 6.3.3, most of the papers do
not disclose implementation details. However, due to the popularity of some tools for
building block-based editors (such as Blockly) in some cases we were able to identify
which library was used for their development, even if the authors did not mention
them.

As we can observe in Table B.5, there are more than 20 libraries or frameworks used
by authors. The most popular tool used for developing block-based environments is
Blockly. It is one of the few tools specifically designed to support the development of
block-based editors, which explains its observed popularity. Moreover, it is interesting
to observe that some of the tools used for building the languages are also block-based
environments (e.g., Scratch, Snap!), which means developers rely on existing languages
and editors for the development of block-based environments. This is interesting
and worth studying in the future, perhaps there is a lack of specialized tools for
building block-based environments, or simply the Software Language Engineering
(SLE) community is not aware of the opportunities offered by block-based environments.

Summary RQ 5.3

• Most of the block-based editors included in this survey were developed using libraries and
frameworks; only nine editors were developed in a bespoke fashion.

• More concretely, the most popular libraries used for developing block-based environments
are Blockly and Scratch.
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6.3.5 RQ 5.4: What languages offer a block-based editor and what are these languages used
for?

As part of this systematic literature review, we sought for the usages of block-based
environments. This means, understanding the existing languages that support a block-
based editor, and how these languages are being used. While talking to colleagues
we noticed that there is a perception that the block-based notation is restricted to
computer science education. People also seem to associate block-based environments
with children’s tools or toys, given their colorful appearance. To check the validity of
these perceptions we analyzed the corpus of papers and documented what tools are
introduced in each paper and in which fields these tools are used.

The process to extract this data from the papers is described below. First, during the
paper review, we collected specific notes in a spreadsheet about each tool. We noted
down a possible topic for each tool. Then, with the resulting data, we calculated the
number of topics. Initially, we obtained 81 topics, but that classification was not accurate
enough to group the papers in a meaningful manner. Thus, to reduce this number and
make a more accessible grouping of papers, we defined seven categories: Education,
Embedded Computing, Human Computer Interaction, Arts & Creativity, Science, AI,
Data Science and Databases, and Software Engineering. This number is significantly
lower, and it works appropriately for presenting our findings.

As mentioned previously, we classified the papers into three categories, namely
Research, Language, or Extension; and the way we present them in this section differs
depending on their type. Research papers are presented with a summary that contains
the paper’s topic; and Languages and Extensions are summarized in a table containing the
name of the language/extension (name), the library used for its development (metatool),
and its primary usage (topic), as shown in Table 6.10.

Below we present each category with a brief description and a table with the papers
that belong to it. However, to improve the readability of the current manuscript, some
categories have more than one table.

Category 1 Education

This category presents the papers that are mostly related to educational purposes. There
is a wide range of applications in which block-based environments are used to teach
programming or computer science concepts, and other subjects such as chemistry and
mathematics. Likewise, this section presents the importance of block-based environments
in educational settings and how the modality (blocks or text) affects the learning process.
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Programming literacy

In this category, we grouped several topics and points of view regarding using of
the block-based modality in programming education. For instance, Weintrop [376]
studied the impact of using a block-based environment in education, and Xinogalos et
al. [390] investigates students’ perceptions of five popular educational programming
environments and the features that introductory programming environments must-
have. Similarly, Yoon et al. [391] designed a curriculum that integrates socio-scientific
issues in the design and development of mobile apps using App Inventor. Turbak et
al. [346] studied the importance of teaching event-based programming in computer
science curricula. Dong et al. [94] propose a tinkering environment for students when
they struggle in problem-solving activities. Dwyer et al. [96] study the readability of
block-based programs by students.

There are different points of view regarding the modality in which programming
should be introduced to novice users. Some advocate that visual languages are the
best option for introducing novices to programming, while others support text-based
languages as the best modality since that is what professional developers use. Thus,
researchers have tried to address this topic, and they have work on evaluating the effects
that the modality (block-based, text-based, and hybrid) has in the learning process [58,
241, 276, 378, 379]. Franklin et al. [112] study the differences between block-based
languages (e.g., Scratch) and text-based languages (e.g., C and Java). Other researchers
focus on studying how to ease the transition from a block-based language into a text-
based language [186, 381] and the drawbacks users face in this transition [245, 246].
Milne and Ladner [237] study the relevance of accessibility features in block-based
environments.

Finally, Table 6.10 presents the tools aimed at teaching computer science concepts in
general and learning environments to support the teaching of computational concepts.

Table 6.11 shows the languages used to support and transfer computational skills to
learners.

Table 6.12 contains the block-based languages used to teach other subjects such as
aerodynamics, Latin language, mathematics, music, and chemistry.

Table 6.13 presents tools aimed to improve the transition from block-based languages
to text-based languages, incorporating block-based notation to existing environments
such as spreadsheets, languages to support teachers during grading activities, and,
finally, languages to support learners with accessibility issues (e.g., hearing impair-
ments).

2 This block-based environment is not a complete platform but an extension to an existing system.



6.3 systematic review of block-based environments 141

Name Metatool Topic

MUzECS [23] Blockly Explore computer science with a low-cost robot.

RoboScape[204] NetsBlox Teach key ideas in computer science using robots.

[368] MakeCode Foster computer science education with Lego Mindstorms.

Robot Blockly [375] Blockly Programming industrial robot (ABB’s Roberta).

HIPE[176] - Pedagogy and programming education.

Reduct [12] - Gamifying operational semantics.

[313] Blockly Introduce young learners to technology with smart homes.

Labenah[6] - Learn coding principles via an edutainment application.

Bubbles[285] Ardublock Teach programming to children with a robot fish.

Blocks4DS[103] Blockly Teach data structures.

Crescendo2 [373] Snap! Engage students with programming.

[104–106] Snap! Add parallel abstractions to block-based languages.

Pirate Plunder [296] - Teach abstractions and reduce code smells with a game.

Resource Rush[212] Blockly Teach programming in an open-ended game environment.

Block-C[196] Openblocks Learn the C language.

Cake [156] Blockly Learn the C language.

Block Pictogramming [146] Blockly Learn programming with pictograms.

PRIME [293] Blockly Learning environment.

Flip [118] - Learn computer science in a bimodal environment.

IntelliBlox [336] Blockly Introduce programming in game-based environments.

EduBot [145] Blockly Learn programming and STEM modules.

Alg-design2 [362] CT-Blocks Teach algorithmic to novices.

Map-Blocks [366] CT-Blocks Teach programming with online weather data.

LAPLAYA [138] Snap! Block-based environment for middle school students.

Table 6.10: Languages used to support programming education.

Name Metatool Topic

PiBook [63] Blockly Transfer computational skills while working on history,
biology, and mathematics.

TunePad [124] Blockly Introduce computational thinking via sound composition.

C3d.io [213] Blockly Create 3D environments to enable STEAM education.

Tuk tuk [190] - Teach computational thinking concepts using games.

CT-Blocks [363] - Teach computational thinking skills.

ChoiCo [129] Blockly Teach computational thinking via modifying games.

[206] - Teach computational thinking.

[365]2 Scratch Teach computational thinking using experiments of fractal
geometry.

Table 6.11: Languages used to teach computational thinking skills.
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Name Metatool Topic

Airblock [57] Scratch Teaching programming and aerodynamics.

BlockyTalky [170] Blockly Teaching networks.

Ingenium [394] Blockly Teaching Latin grammar.

ExManSim [300] Blockly Create vignettes for crisis response exercises.

Catrobat [251] - Develop mobile applications collaboratively.

MIT App Inven-
tor [266] Blockly Develop mobile applications.

EvoBuild2 [371] Deltatick[385] Teach and create agent-based models.

Phenomenological
gas particle sand-
box[14]

NetTango Teach agent-based computations through phenomenologi-
cal programming.

M.M.M. [306] Blockly Create an agent-based modeling system to learn science.

[22] NetTango Use agent-based modeling for other disciplines (e.g.,
chemistry).

ScratchMaths2 [37] Scratch Understand mathematical concepts through programming
activities.

[188]2 App inventor Teach mathematical concepts in primary school.

Tactode[10] - Teach math and technology concepts to children.

Sonification
Blocks [18] Blockly Learn data sonification.

Table 6.12: Languages used to teach subjects other than programming.

Name Metatool Topic

Amphibian [48] Droplet Enable switching between blocks and text.

Poliglot [202] Blockly Smooth transition from blocks to text in education.

HybridPencilCode [9] PencilCode and
Droplet Transition from block to text notation.

B@ase [333] Blockly@rduino Transition from block to text-based environment.

PyBlockly [328] Blockly Add a block-based editor for Python.

Stride [187] - Add a frame-based editing (blocks and text) to BlueJ.

XLBlocks [149] Blockly Add block-based environment for spreadsheets.

NoBug’s Snack-
Bar[350] - Measure students’ performance in programming tasks.

GradeSnap[236] Snap! Assist teachers in grading block-based projects.

StoryBlocks[191] - Teach programming to blind users with a tangible game.

Blocks4All [238] - Accessibility support for block-based environments.

[261]2 Blocks4All Accessibility support for block-based environments.

Macblockly2 [66] Blockly Block-based support for audiences with disabilities.

[83] Blockly Support users with hearing impairments to learn programing.

Table 6.13: Block-based languages applications.
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Category 2 Embedded computing

This category contains all the papers that were associated with some form of embedded
computing. This includes languages for programming and manipulation of robots,
microcontrollers, and other embedded systems.

Following the idea of embedded computing with a block-based environment, [65]
present the benefits of using a block-based language for manipulating and teaching
physical components.

Table 6.14 presents all the languages we classified as being part of the embedded
computing category. This includes programming robots, embedded systems, Internet
of Things (IoT) devices, and controllers.

Name Metatool Topic

MakeCode [24] Blockly Programming environment for microcontrollers.

NaoBlocks [329] Blockly Manipulate Nao robots.

Coblox [318] Blockly Programming ABB’s industrial robots.

ROS educational2 [335] Snap! Manipulate ROS-enabled platforms.

Robobo [34, 35] Scratch Manipulate advanced sensors.

EUD-MARS [5] Blockly Use model-driven approach to program robots.

CoBlox [382] Blockly Interface for Roberta a single-armed industrial robot.

MakerArcade [315] MakeCode Create gaming experiences through physical computing.

UNC++Duino [36] BlocklyDuino Program robots to teach CS concepts.

The Coffee Plat-
form [310] Blockly Support computational thinking skills through robotics.

LearnBlock [21] - Robot-agnostic educational tool.

RP [70] Blockly Affordable robot (software and hardware) for education.

mBlock [205] - Teach CS and electronics with affordable robots.

CAPIRCI [38] - Support collaborative robot programming.

CODAL [90] Blockly and
MakeCode Create effective and efficient code for embedded systems.

OPEL TDO [185] Blockly Test programmable logic controllers by end-users.

Block-based data fu-
sion [51] - Define complex event processing pipelines for smart cities.

Table 6.14: Block-based languages in embedded computing.
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Category 3 Human Computer Interaction (HCI)

This category contains papers that focus on a wide variety of aspects of Human-
Computer Interaction. We identified aspects such as the usability of block-based envi-
ronments and their limitations, comparison between different user interfaces (e.g., TUIs,
GUIs, and brain-computer interfaces), adding code hints to block-based environment,
and supporting end-user development (EUD) through block-based languages.

Most of the papers that fall in this category present a language as summarized in Ta-
ble 6.15. However, three papers present a more theoretical view. For instance, Holwerda
and Hermans [139] present an evaluation to measure the usability of Ardublockly [16],
a block-based environment for programming Arduino boards. This evaluation was
done using the cognitive dimensions of notations framework [46]. Likewise, Rough
and Quigley [298] present the challenges of traditional usability evaluations. Almjally
et al. [7] present an empirical study that compares the usage of a block-based language
using Tangible User Interfaces (TUIs) and Graphical User Interfaces (GUIs).

Name Metatool Topic

Shelves2 [140] Blockly Usability of block-based environment.

[215]2 iSnap![277] Improve code hints in block-based environment.

iSnap2 [278] Snap! Add intelligent tutoring system features to Snap!.

[8] - Add custom keyboard to block-based languages.

Enrect [330] - Introduce noted-link interfaces to represent variables.

Multi-device Grace [312] Tiled Grace Support for multi-device environments.

ARcadia [169] MakeCode Prototype tangible user interfaces.

VEDILS [248, 249] App inventor
and Blockly

Support end-users to create mobile learning applications
with augmented reality.

Jeeves [297] - Support end-users to develop applications.

TAPAS [348] - Create workflow applications (e.g., IFTTT [141]).

TAPASPlay2[347] TAPAS Support EUD via collaborative game-based learning.

StoryMakAR [115] BlocklyDuino Support storytelling with augmented reality and IoT.

Aesop [307] - Create digital storytelling experiences.

Neuroblock[76, 77] Scratch Build applications driven by neurophysiological data.

NeuroSquare [219] Blockly Support brain-computer interfaces using blocks and flow
charts.

Neuroflow [137] Blockly Block-flow environment for brain-computer interfaces.

Touchstone2 [97] - Tool to design HCI experiments.

Table 6.15: Block-based languages in human-computer interaction.
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Category 4 Arts & Creativity

This category contains languages used for exploring creativity or as a medium for
creating art through block-based constructs or by analyzing users’ patterns as a result
of their programming activities. Languages that fall in this category are presented in
Table 6.16.

Name Metatool Topic

Quando [327] Blockly Create interactive digital exhibits for gallery visitors.

BlockArt2 [91] Scratch Visualize programming patterns in Scratch.

Table 6.16: Block-based languages in creativity.

Category 5 Science

In this category, we found a single language using the block metaphor for conducting
experiments in biology, see Table 6.17.

Name Metatool Topic

OpenLH [117] Blockly Liquid handling system to conduct live biology experiments.

Table 6.17: Block-based languages in Science.

Category 6 Artificial intelligence, data science, and databases

This section contains block-based languages applied to the domain of artificial intelli-
gence and data science. This includes topics such as machine learning, chatbots, data
science topics in general, and databases, as shown in Table 6.18.

Category 7 Software engineering

This category contains different papers that present languages and proceedings that
study block-based environments usage in software engineering. Therefore, the reader
will find various topics such as code smells in block-based programs, security, test-
ing, refactoring, debugging facilities, and specialized tools for developing block-based
languages.

In this category, we have grouped some papers that present a more theoretical view
of the application of block-based languages. Hermans and Aivaloglou [136] study code
smells in the context of a block-based environment, particularly in Scratch programs,
and Techapalokul and Tilevich [338] study code quality in block-based programs using
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Name Metatool Topic

ScratchThAI2 [165] Scratch Support computational thinking with a chatbot.

SnAIp2 [151] Snap! Enable machine learning within Snap!.

AlpacaML2 [395] Scratch 3.0 Test, evaluate, and refine ML models.

BlockPy [75] Blockly Introductory programming environment for data science.

Scratch Community Blocks2 [84] Scratch Analysis and visualization of data coming from Scratch.

BlockArt2 [91] Scratch Visualization tool of programming in Scratch.

[107]2 Scratch 3.0 Engage learners in exploring and making sense of data.

Snap!DSS2 [128] Snap! Allow data stream analyses and visualization.

DBSnap++ [320] Snap! Enable specification of dynamic data-driven programs.

DBSnap [319] - Build database queries.

BlocklySQL [274] Blockly Block-based editor for SQL.

DB-Learn [364] CT-Blocks Teach relational algebra concepts.

Table 6.18: Block-based languages in artificial intelligence and data science.

Name Metatool Topic

ViSPE [256] Scratch Policy editor for XACML.

XACML policy editor [255] Scratch XACML policy editor.

Table 6.19: Block-based Languages in security.

a methodology for code smells. Swidan et al. [331] study naming patterns of Scratch
programs’ variables and procedures following this direction. In contrast, Robles et
al. [292] identify software clones in Scratch projects. The usage of static analysis tech-
niques in block-based programs is beneficial, as shown by Jatzlau et al. [150]. They use
static analysis techniques of Snap! programs to learn from programmers’ behaviors.
Likewise, Aivaloglou and Hermans [3] use static analysis techniques to explore Scratch
programs’ characteristics in software repositories. Finally, Tenorio et al. [343] study
different debugging strategies in block-based programs.

Table 6.19 shows two languages that are used in the security domain for defining
access control policies. Table 6.20 shows the list of languages used in different topics of
software engineering. Based on these tools, we highlight the appearance of one tool,
Processing BBE, designed specifically for creating block-based environments.

6.3.6 Block-based Editors Popularity

So far, we have presented all the block-based languages that we identified in the papers
included in this study. As we have seen so far, most of the studies refer to Scratch as
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Name Metatool Topic

Extension Whisker [323] - Testing framework for Scratch

Extension [311] Blockly Add block-level debugging features to block-based envi-
ronment.

Extension [193] Blockly Stepwise support for block-based environments.

Processing BBE [194] - Create visual block-based domain-specific languages.

Polymorphic Blocks [207] - Represent complex structures and visual type information
with block-based UI.

LitterBox [111] Scratch Detecting bugs in Scratch programs.

QIS [340] Scratch Refactoring infrastructure for Scratch.

[339]2 Scratch 3.0 Automated refactoring tool for Scratch.

Behavioral Blockly [13] Blockly Support behavioral programming.

Table 6.20: Block-based Languages in software engineering.

the most popular block-based environment. To verify this, we manually kept track of
the occurrences of each tool in each paper. We started with an initial set of block-based
languages that we obtained manually from searching at the most popular tools (see
Section 6.4). When we had the initial set of languages, we proceeded to read the papers,
and in a spreadsheet, we marked when a tool was mentioned and in which paper.
As we were reading papers, we added new languages that appeared to the set of
block-based languages. It is important to remark that in some cases, papers not only
introduced a tool, but they also mention related tools that we also include in the list
of tools. This process has an explicit limitation since the discovery of languages is
incremental as we read the papers. Therefore, we made a sanity check using the same
tool we developed and presented in Section 6.3.3 to mine the corpus of PDF files and
collect the occurrences of each tool.

Figure 6.6 shows a summary of the 11 most popular tools (see Appendix B.5 for
the full list). Since we used a program to mine the PDFs to double-check our manual
results, the tool is not 100% accurate. In Section 6.5, we present some of the limitations
of the tool.

As speculated at the beginning, our results show that Scratch is indeed the language
most mentioned in all the papers; it was mentioned in more than 80 of the papers of
this study. Similarly, Blockly is the second most mentioned language, even though it
is not a language but a library for defining block-based languages. The complete list
of tools identified in this study and the number of papers in which they appear are
shown in Appendix B.5.
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Figure 6.6: Popularity of block-based environments across publications.

6.4 non-systematic review of block-based environments

As introduced before, we also conducted a less-systematic exploration using standard
Google search to find information about block-based environments that were not
necessarily published academically. Table 6.21 presents a summary of our findings after
analyzing and trying out each of the tools resulting from the search process. Likewise,
it also contains a set of features empirically collected by the first author after testing
each language or tool. The process to collect these features was by trying each tool and
collecting its features in a spreadsheet. Since all block-based environments do not offer
the same features, a few tools had to be tested more than once because some features
were included in the spreadsheet after testing the tool. The table is divided into seven
columns, and all columns except the first one are subdivided into other columns.

(i) Name represents the name of the tool or the language, (ii) Editor represents the
different components present in a code editor (e.g., mode, error marking, and stage),
(iii) Focus represents whether the tool is an application, a language that supports the
developing block-based environments, or both, (iv) Deployment shows the different
models in which the tools are being offered, namely as standalone, mobile, or as
Software as a Service (SaaS), (v) Domain represents the application domain where the
tool is used, (vi) Execution is how the tool executes an application. We identified mainly
two modes: live and pressing an execution button (manual), and (vii) Licensing shows
the three main types in which the tools are offered.

As the reader might have noticed, these features were used as a basis for the definition
of the feature diagram of block-based environments in Section 6.3.2. Using this manual
exploration of all available tools we discovered most of the features of block-based
environments. The other features were discovered after the systematic literature review
process described earlier. As described in the methodology, all tools listed in the table
were tested by the first author. Likewise, thanks to the mixed methodology, we were
capable of identifying tools that we could not have discovered by relying solely on a
systematic approach. Therefore, the less-systematic exploration allowed us to discover
49 tools; from this number, only three tools (BlockPy, CoBlox, and Tuk tuk) appeared in
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both the systematic and the less-systematic approach. Some interesting facts of using
this mixed methodology are discussed in Section 6.6.
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Alice • • • • • • • • •
App inventor • • • • • • • • • • • • • •
Applab • • • • • • • • • • •
AutoBlocks • • •
Blockly • • • • • • • • • • • •
BlockPy • • • • • • • • • • • •
Deltatick • • • • • • • •
Frog pond • • • • • • • • •
GP • • • • • • • • •
Greenfoot • • • • • • • •
Hopscotch •
Kodika • • • • • •
Looking Glass • • • • • • • • •
Makecode • • • • • • • • • • • • •
Microblocks • • • • • • • • • •
Mindstorms • • • • • • • •
miniBloq • • • • • • • •
OpenBlocks • •
Pencil code • • • • • • • • • • • •
PicoBlocks • • • • • • •
Pocket Code • • • • • • • •
Robobuilder • • • • • • • • •
Scratch • • • • • • • • •
Snap! • • • • • • • • •
Sphero Sprk • • • • • • • • • • • •
StarLogo Nova • •
StarLogo TNG • • • • • • • •
Stencyl • • • • • • • • • •
Turtle art • • • • • • • •
Tynker • • •
Waterbear • • • • • • • • •

Table 6.21: Tools identified using the non systematic approach via standard Google search.

6.5 threats to validity

A systematic literature review (SLR) is a research methodology used to obtain a
complete overview of a particular topic or domain. Based on that, we followed the
Kitchenham et al. [178] guidelines, and we defined our protocol for conducting this
study. We identified some threats to validity that we discuss in more detail in this
section.
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6.5.1 External Validity

SLRs are conducted to present a summary of a particular topic or domain. Although
authors try to reduce their bias as much as possible, it is almost impossible to eradicate
it. Thus, this is one of the main threats to validity and a critical aspect of these studies.
In the design of our protocol, we tried to minimize as much as possible our bias
by defining three filters for including the final set of papers. Moreover, two authors
discussed the inclusion and exclusion criteria for a sample of ten papers. Nonetheless,
it is essential to mention that since we were looking at specific research questions, this
study can never be entirely unbiased, and it is focused on addressing these questions.
The queries and the sources of information used in this study prevent us from being
fully unbiased. Nonetheless, we tried to keep the current study as broad as possible; in
the paper selection, a wide variety of papers came from different communities, venues,
and areas of expertise. Moreover, in general, the notion of block-based environments is
ambiguous; this term is used to refer to two different topics. On the one hand, visual
programming environments that adopt the jigsaw metaphor for creating programs
(discussed in this chapter), and on the other hand, the notion of blocks in a block
diagram (e.g., Simulink), which is often used in simulation applications and model-
based design.

6.5.2 Internal Validity

Since the data collection was a manual task, we consider it essential to conduct a sanity
check using automated tools. For this purpose, we developed a tool for scanning and
mining PDF files and checks whether a given list of words appears in the file’s content.
There are some known caveats which concern the accuracy and correctness of the tool.
First, reading and mining PDF files is not an easy task, mainly because PDF files do
not share a standard structure. Thus, some files cannot be opened, or all the text is not
parseable. Second, the list of words was manually defined. In the case of programming
languages popularity, it was obtained from the TIOBE index [61], which made it more
accessible. However, to double-check the languages’ popularity, this list was a manual
process, which started from a list of languages obtained via a non-systematic method.
This list of languages was improved by taking manual notes of new tools presented
in papers and their related work. Therefore, it could be the case that the last paper
read by the authors introduced a new tool, which of course, was not marked in the
previous papers since it was not found yet. However, thanks to the automated tool, we
can detect across all the papers if the tool is mentioned or not. In this direction, the tool
results are not 100 % accurate due to different factors. (i) Ambiguous words. Words in
the input list are valid words in English. For instance, Scratch or Go. Thus, the tool does
not differentiate whether it is an English word or refers to a block-based editor or a
programming language. (ii) Punctuation marks. The tool compares word by word each
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of the words in the input list against the text. This means that if a word in the input
text appears in the text next to a punctuation mark (e.g., colon or comma), the tool
produces a false negative result. The tool says that the word is not present, even though
it is present, but it does not capture it since it is next to a punctuation mark (without
a blank space in the middle). To measure possible errors in the tool, we sampled ten
papers and five programming languages to check how accurate the tool’s results are.
We calculated type I and type II errors based on the sample to identify the numbers
of false positives and false negatives, respectively. The results obtained show that the
sensitivity of the tool is 75%. This means that there is a rate of false negatives of 25%.
In other words, in 25% of the cases, the tool says that the word is not present in the
document, but it is. Similarly, the tool’s specificity is about 82,6%, which means that
the false-positive rate is 17,4%. In 17% of the cases, the tool said a word was present in
the document, even though the word was not present.

In both cases, the tool can be fine-tuned so that both the sensitivity and specificity
improve by considering the corner cases previously mentioned. However, that is not
the main focus of the current paper. We developed this tool as a sanity check to refine
the results obtained during the manual inspection.

In Section 6.3.3, where we present the programming languages used, some papers
do not mention how they were implemented. For instance, we could have assumed that
when they use Blockly, the editor was implemented using JavaScript, which is the most
popular language used for using Blockly. Nevertheless, this is not true for all the cases,
because it is also available in other programming languages. Therefore, we decided not
to make assumptions about this.

As presented in the protocol, we only considered four academic databases to obtain
the academic papers, and the non-systematic search gave us practical languages that
do not necessarily have an academic publication. However, the latter means that this
part is not easily reproducible.

6.6 discussion

We identified three main ways that developers follow to create block-based environ-
ments. The first approach is by extending an existing language. Twenty-seven of the
languages included in this study were developed using this approach. The second one
is by using a library that supports the development of such languages. As expected,
this is the most popular solution we found in the tools we discovered. Sixty-one lan-
guages were developed using other libraries since this reduces the development effort.
Finally, the third option is a bespoke implementation. Based on our corpus, only nine
languages used this approach. It is important to remark that the previous methods for
implementing block-based environments are defined based only on our observations.
This might not be true for all cases, given that many authors did not mention any
implementation details.
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It is interesting to see in the data that there are not many tools that support the
whole development cycle of block-based environments. There are specialized libraries
for creating concrete pieces of them, but most of these environments rely on code
generators. For instance, Blockly is used for describing the UI of the language, and then
programs must be compiled to a target language (e.g., Python). We found two tools ([194,
359]) to develop software languages with a built-in block-based editor. However, these
two tools are relatively new or not widely adopted; none of the languages presented in
this chapter was implemented using them. Likewise, it is relevant to mention that the
approach proposed by [194] relies on code generators. Instead, [355] relies on language
workbench technology for defining both the syntax and the semantics of languages,
which makes such languages also usable outside a block-based editor in a traditional
IDE.

Based on the collected data, it is evident that the most popular programming lan-
guage for implementing block-based environments is JavaScript (Table 6.7). This seems
an interesting outlier, but it should not be seen independently from the following
observation. Most block-based environments were implemented using Blockly, which
is a library implemented in JavaScript. Even though, Blockly offers implementations
in other programming languages (e.g., Swift), these have been deprecated and are no
longer maintained by the Blockly Team. Moreover, several block-based languages are
implemented as web applications, which also explains the vast popularity of using
JavaScript for creating block-based languages.

As shown in Section 6.3.4, there is a limited number of libraries for developing block-
based environments. Therefore, we see that many authors rely on existing block-based
environments to build their own. Surprisingly, specialized language engineering tools
(e.g., LWBs) are not used in this domain. JastAdd [262] and ANTLR [263] were used for
developing two environments, each one. Our research resulted in Kogi [355] (for more
details see Chapter 7), that uses the Rascal LWB [180] to create block-based editors
for new and existing languages. This to make block-based editors part of the generic
services offered by LWBs. However, this tool was not considered in this survey because
it was published afterwards.

Another interesting observation that resulted from this study is using mixed meth-
ods (systematic and non-systematic searches). As presented in this survey, we see
differences between the results obtained from the systematic literature review and the
non-systematic tool review. We identified some hypotheses behind these differences.
First, some tools are developed to address a specific problem, which is not always
followed by a scientific publication. Moreover, there are also industrial applications.
Their primary focus is not necessarily the development of scientific publications and
following existing literature but to address business requirements and make things
work. Another critical aspect of industrial applications is their visibility; sometimes,
they are not disclosed due to intellectual property rights. As we underlined in our data,
the difference is remarkable. From the 35 languages and tools that we identified in the
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non-systematic approach, only 3 had a research paper included in this review. This
means that more than 91% of the tools would not have been included if we did not
conduct a search of non-academic literature and tools.

6.7 related work

Coronado et al. [74] present a literature review about 16 visual programming envi-
ronments to foster end-user development (EUD) of applications that involve robots
with social capabilities. This survey focuses on visual programming environments for
non-professional programmers, and they highlight mainly two goals. The first one is
to present a list of the tools with their technical features, and the second, to present
the open challenges in the development of visual programming environments for end-
users. McGill and Decker [217] conducted a systematic literature review and propose a
taxonomy for tools, languages, and environments (TLEs) used in computer education.
Their main focus is on studying TLEs used in primary, secondary, and post-secondary
education. Based on their study, they propose a TLEs taxonomy. Solomon et al. [322]
present the history of Logo, a programming environment designed for children to
explore mathematical concepts. This is the main predecessor of current notions of
block-based environments for end-users.

Rough and Quigley [297] present a perspective of end-user development (EUD) for
creating and customizing software by end-users, as end-users outnumbered professional
programmers. As a result of their work, they propose some design recommendations to
support EUD activities, particularly the creation of software that allows novice users to
create apps that collect data (e.g., experience sampling). This chapter follows a similar
methodology. They queried computer science databases and a non-systematic approach
through Google search to get non-academic tools.

6.8 conclusions and future work

This chapter presents an overview of block-based environments and their features. Also,
it presents a detailed view of how these programming environments are developed
and the technologies involved in this process. We listed and summarized more than
one hundred languages and extensions, which were grouped into seven categories.
These categories highlight the fact that block-based environments have a broader scope
than computer science education. The results show that authors often do not mention
implementation details or possible troubles that the development of a block-based
editor has. Moreover, there is a vast diversity of applications in which the block-based
metaphor is adopted (e.g., arts, education, science, robotics). Yet, there is a lack of
tool support for developing a whole language that supports a block-based editor.
Existing tools do not support the whole development cycle of a language. In most
cases, designers of block-based environments rely on code generators for defining
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the semantics of the languages. We believe that the usage of meta-programming
technologies, such as found in Language Workbenches, would enable engineers to
fully develop a language and obtain a block-based editor almost “for free”, as is
the case already for textual editors. Likewise, we confirmed that Scratch has had a
significant impact on the development of most of current block-based environments,
both conceptually and technically.

Another interesting conclusion of the current survey is that using different methods
and sources (systematic and less-systematic, academic and non-academic) allowed us
to synthesize a more complete overview of this particular topic than would otherwise
be possible. In particular, the less-systematic approach to collect information from
non-academic sources presented findings complementary to the systematic literature
study, which were also fundamental to the interpretation of the data from the systematic
literature study.

We also provided an overview of academic research on usability and learnability of
block-based editors (as compared to text editors) and other studies of large collections
of block-based programs.

As future work, we foresee different directions: (i) Study what are the best prac-
tices for using and implementing block-based editors. The current chapter presents
an overview of the features we identified across languages. However, it is interesting
to explore the particularities of block-based interfaces to improve the users’ program-
ming experience; and how this can be used to implement better block-based editors.
(ii) Explore the integration of block-based editors as part of the default set of services
offered by specialized tooling for language development (e.g., language workbenches).
(iii) Study the lack of tools that support the creation and generation of block-based
editors. (iv) Support dynamic aspects of languages in block-based environments (e.g.,
debugging and live programming). (v) Investigate hybrid environments in which parts
of blocks are text-based, depending on the language construct’s nature. This to improve
the usability and efficiency between drag and drop and writing textual code.
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Block-based programming systems employ a jigsaw metaphor to write programs. They
are popular in the domain of programming education (e.g., Scratch), but also used as
a programming interface for end-users in other disciplines, such as arts, robotics, and
configuration management. In particular, block-based environments promise a convenient
interface for Domain-Specific Languages (DSLs) for domain experts who might lack a
traditional programming education. However, building a block-based environment for a
DSL from scratch requires significant effort. This chapter presents an approach to engineer
block-based language interfaces by reusing existing language artifacts. We present Kogi, a
tool for deriving block-based environments from context-free grammars. We identify and
define the abstract structure for describing block-based environments. Kogi transforms a
context-free grammar into this structure, which then generates a block-based environment
based on Google Blockly. The approach is illustrated with four case studies, a DSL for state
machines, Sonification Blocks (a DSL for sound synthesis), Pico (a simple programming
language), and QL (a DSL for questionnaires). The results show that usable block-based
environments can be derived from context-free grammars, and with an order of magnitude
reduction in effort.

7.1 introduction

Block-based environments have received much attention in recent years due to their
ease of use for non-programmers [30]. Block-based environments are visual program-
ming environments that use jigsaw-like blocks to represent language constructs. Each
language construct is represented using different block-shapes with visual cues on the
edges that indicate how blocks can be connected.

For instance, the following shows a possible block-based representation of an if-
statement:

if {

}

The hole next to the if-level indicates the shape of expressions that are allowed there,
and the dent between the curly braces indicates which kind of blocks can be nested
under the if-statement. The benefit of such an interface is a what-you-see-is-what-you-
get (WYSIWYG) programmer experience and the impossibility of syntax-errors [246,
276, 378, 382]. A block-based editor essentially is an editor to manipulate the abstract

155



156 block-based syntax from context-free grammars

syntax of a language. Thus, editing block-based programs can be seen as a form of
projectional editing.

Block-based environments have seen many uses in the software engineering field [1,
2, 73, 266, 375, 382]. They have also been widely investigated as educational tools [65,
77, 138, 145, 196, 333, 376]. However, developing block-based environments currently
lacks solid engineering principles, which leads to ad-hoc implementation using various
technologies and frameworks. As a result, the block-based language definition is hidden
in arbitrary, general-purpose programming code. Moreover, this hinders the reuse of
existing language artifacts, such as type checkers, interpreters, and compilers.

One way to ease the development of block-based environments is with libraries
such as Google Blockly [265], Droplet [29], or Open-Blocks [295]. Another way is to
extend existing block-based environments like Scratch [288], MIT App Inventor [266],
or Snap![243]. Many applications have been developed using these two alternatives.
For example, Zhou et al. [394] developed a block-based language for teaching Latin
grammar using Blockly. Likewise, Breuch et al. created Airblock [57] using Scratch
to foster block-based programming and aerodynamics principles. However, although
these libraries and tools help in the development process of block-based environments,
these solutions are still based on copying and modifying existing low-level code.

In this chapter, we present an approach, Kogi, to derive block-based languages
from declarative context-free grammars, such as used in language workbenches like
Rascal [179], Spoofax [166], and Xtext [102]. This opens the possibility to reuse existing
grammars and language artifacts already developed using such language workbenches.
Kogi is implemented in Rascal. It reflectively transforms Rascal’s built-in context-free
grammars into an abstract representation of block-based user-interfaces, which is
then compiled to Google Blockly [119] code. As a result, both existing and new DSL
implementations in Rascal can be provided with a block-based interface with minimal
effort.

The contributions of this chapter can be summarized as follows:

• We dissect the structure of block-based environments and model it using an
abstract grammar (Section 7.2).

• We present Kogi, a tool that analyzes context-free grammars in Rascal and derives
a block-based environment using Blockly’s API (Section 7.3). The implementation
of Kogi, along with documentation and examples, is available on Github [227].

• We present how the simplification of a context-free grammar impacts the com-
plexity of the generated block-based environment (Section 7.3).

• Kogi’s utility is demonstrated by generating block-based interfaces for four
languages: State machines, Sonification Blocks, Pico, and QL (Section 7.4).

We conclude this chapter with a discussion of further directions (Section 7.5), related
work (Section 7.6), and concluding remarks (Section 7.7).



7.2 anatomy of blockly 157

Figure 7.1: Block-based environment built with Blockly.
A block-based environment built with Blockly [119].

7.2 anatomy of blockly

This section describes what a block-based environment is and its parts.
A block-based environment is a visual programming environment that uses blocks

as language constructs. This chapter focuses on block-based environments that adopt
the jigsaw metaphor. One of the most known examples of this kind of environment is
Scratch [288]. Scratch is a platform that uses a block-based environment for creating
interactive stories, games, and animations. However, there are many more applications
of a block-based environment to a diverse range of domains, including a wide range of
domains such as aerodynamics [57], music [18], robotics [382], software engineering [1,
266], arts [327], and biology [117].

Looking at several block-based environments, we split them into three components:
a toolbox1, a canvas, and a stage. It is important to remark that the names of these
components vary from one block-based environment to another. Figure 7.1 shows
a typical example of a block-based environment built using Blockly. The following
subsections explain each element in more detail, using Blockly derived environments
as a representative style.

1 The toolbox is also known as palette as mentioned in Chapters 1 and 6.
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Figure 7.2: Toolbox shelf.
Toolbox shelf [119].

7.2.1 Toolbox

The toolbox in a block-based environment is a group of shelves (block categories) that
contain all the language constructs of a block-based language (left view of Figure 7.1).
Each language construct is represented as a block (as the if-statement shown in Sec-
tion 7.1). A toolbox is often divided into several shelves, with a specific label, color,
and group of language constructs (blocks). A shelf is used by developers to group
language constructs according to some criteria. From the end-user perspective, how the
toolbox shelves are organized is essential because it affords blocks’ discoverability [139].
Figure 7.2 shows an example of how one of these shelves look like.

7.2.2 Canvas

The canvas (middle view of Figure 7.1) is where the user creates programs (scripts).
Block-based programs are created by dragging and snapping blocks together from the
toolbox into the canvas [380]. The middle view of Figure 7.1 shows an example of a
script created using a block-based language.

7.2.3 Execution View

The execution view (right view in Figure 7.1) is often placed next to the canvas view.
This view is used mainly for two tasks, to interact with the current script in the canvas
(e.g., execute); and display the script’s execution output. The elements of this view
vary quite a lot, depending on the language. For instance, as a result of computing
scripts, some environments produce animations (e.g., Scratch), while some others do
not display anything, but instead, they control external hardware (e.g., robots).
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7.2.4 Blocks

The keystone of a block-based environment, as its name suggests, are jigsaw-like blocks.
A block is the atom of a block-based language; it represents the language’s syntax. Each
block is a visual element that provides visual cues to the user about the meaning of
the block, how it can be instantiated, and where it can be placed to create meaningful
block-based programs. Each block is different from another in a block-based language,
yet they have four typical elements: shape, label, color, and connections.

Following Blockly’s approach, a block is defined by five elements, namely, their
inputs, fields, connections, colors, and tooltips.

7.2.4.1 Block Input

In a block-based environment, the block’s input is the information required to define a
block, meaning it represents other blocks’ possible connections. A single block might
have one or more inputs, and each input is represented with labels and fields that
shows its possible connections [120]. There are mainly three different types of input,
namely, value, statement, and dummy. The type of input denotes the shape of each block.
Furthermore, a block-based environment allows developers to define how they want
to show the input fields; there are two types, external (condition of the if block in
Figure 7.3) inputs and inline (condition of the if block in Figure 7.4).

if

Figure 7.3: If block with an external input value.

value input. This element is used to stack blocks horizontally. Thus, it is frequent to
use them for defining expressions. Value inputs are connected to the output connection
of a value block. For instance, an if block condition (Figure 7.4) is represented using a
value input, allowing Boolean expression blocks to be snapped horizontally.

statement input. It is used to stack blocks vertically. As its name suggests, this
type of block is used to represent statements. For example, the body of an if-else state-
ment is represented with a statement input. Likewise, the block-based representation
of the if statement (Figure 7.4 - right) uses a statement input. The red square denotes
where the following blocks can be snapped in.

dummy input. It is mostly used for adding layout to the blocks (e.g., adding labels
or new lines). It does not create or allow new block connections.
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if if

Figure 7.4: If block that highlights the usage of an input value block (left) as its first argument
(condition of the if statement) and a statement input (right) as its second argument
(body of the if statement).

7.2.4.2 Fields

Fields are used within blocks to represent input (literal) data from the user. There are
different types of fields, depending on their data types, and each of them has different
visual cues that help end-users fill in the right information. Some of the most common
field types are string, numbers, images, dropdown lists, checkboxes, colors, and variables.
However, block-based platforms allow developers to create their custom fields.

7.2.4.3 Connections

The block’s connections offer a visual cue to guide end-users to compose blocks to
create meaningful applications. Each block-based environment might have slightly
different ways of representing connections. In this chapter, we will illustrate this using
Blockly’s UI. There are three types of block connections: no connection, left output, and
top & bottom connection.

no connection. This connection means that the block cannot be stacked to other
blocks, yet this does not mean that it cannot contain other blocks. An example of this
type of connection is shown in the if block in Section 7.1.

left output. This connection is visually represented as a male jigsaw connec-
tor [121]. Blocks with a left output are often used to create values, and they are
connected to value inputs. Blocks that produce an output cannot have a previous nor next
statement connection.

previous-next connection. There are three different ways of using this connec-
tion. Developers can define the block either with a previous connection, next connection,
or both. The previous connection in a block is represented with a notch on its upper part.
This notch enables it to be connected to a stack of blocks. Moreover, the next connection
is represented with a bump at the block’s bottom to allow other statement blocks to
be stacked below it. Finally, blocks that support both previous and next connections are
represented with both a notch and a bump in the upper and bottom parts, respectively.
Figure 7.4 presents an example of a block that supports previous and next connections.
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7.2.5 The Grammar of Blockly

In the above subsection, we have described the high-level structure of Blockly workspaces.
Here, we formalize the structure of Blockly toolboxes (and some additional aspects) in
the form of an abstract grammar. Listing 7.1 shows the Rascal Algebraic Data Type
(ADT) Toolbox, capturing the abstract structure of a Blockly toolbox.

A Toolbox consists of a list of Sections. Each Section has a category name, a color, and
contains a list of block types (Block). A Block also has a name (e.g., “if-then”), a type
name (e.g., “Statement”), and a list of messages.

The remaining arguments of the Block constructor are optional (because they have
assigned a default value) and are used to further configure the block type. For instance,
the Ref arguments configure the block’s connectivity, where a Ref refers to another
block-type (identified by name). The extensions and mutator argument allows hooking
into native JavaScript code. The Boolean inputsInline toggles whether input elements
should be shown inline. The other arguments should be self-explanatory.

The Message type captures the core syntactic mechanism of a block. It contains a
format string where %i indicates a placeholder for every argument in the args list. For
instance, an if-statement could have the format string "if %1 {%2}", with two arguments,
one of type input (to enter a conditional expression) and one of type statement to allow
inserting a body.

7.3 kogi

Kogi [227] is a tool for describing and deriving block-based environments from context-
free grammars using the Rascal [179] metaprogramming language and the Blockly
library. In this section, we explain and illustrate how we derive a block-based environ-
ment from a context-free grammar.

The left-hand side of Figure 7.5 shows a simple DSL grammar for defining state
machines, written using Rascal’s built-in grammar formalism. It consists of a few
rules introducing a nonterminal (e.g., Machine), where each rule consists of several
labeled productions (e.g., State has a single production, labeled state). Nonterminals
can be start nonterminals (e.g., Machine), context-free nonterminals (e.g., State), or lexical
nonterminals (e.g., Id). Rascal employs (generalized) scannerless parsing, so there is no
essential distinction between context-free and lexical syntax, except in the way layout
(whitespace, comments, etc.) is handled.

Kogi exploits Rascal’s facilities for type reflection since each nonterminal represents
a type of a parse tree; it can be applied to inspect and process grammars as values. A
value representation of a type is acquired using the # operator. For instance, consider
the following Rascal snippet:

type[Machine] typeOfMachine = #Machine;
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Listing 7.1: Algebraic data type modeling Blockly toolboxes.

data Toolbox = toolbox(list[Section] sections);

data Section
= section(str category, Color color, list[Block] blocks);

data Block = block(str name, str \type,
list[Message] messages, Ref output = none(),
Ref prev = none(), Ref next = none(),
Color color = none(), str tooltip = "",
str helpUrl = "", list[str] extensions = [],
str mutator = "", bool inputsInline = false);

data Message
= message(str format, list[Arg] args);

data Arg
= arg(str name, Type \type, Arg alt=none())
| none();

data Type
= value(list[str] check = [])
| statement(list[str] check = [])
| dummy()
| input(str text, bool spellcheck = true)
| dropdown(lrel[str, str] options)
| checkbox(bool checked = false)
| color(str color)
| number(num \value, Range range = none())
| angle(num angle)
| variable(str variable, list[str] variableTypes = [])
| date(datetime date)
| label(str text, str class = "")
| image(str src, int width, int height, str alt = "");

data Ref
= block(str \type) | none();

data Range
= range(num min, num max, num precision) | none();

data Color
= rgb(str rgb) | hsv(int hsv) | none();
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start syntax Machine
= machine: "machine" Id name

State* states;

syntax State
= state: "state" Id id "{"

Trans* transitions
"}";

syntax Trans =
trans: "on" Id on "to" Id to;

lexical Id = id: [a-zA-Z]+;

Figure 7.5: State machine grammar (left) and an example state machine (right) using the Kogi
generated block-based environment.

The variable typeOfMachine will contain a structured meta-representation of the grammar
defined in Figure 7.5, and will have type type[Machine].

Note that a block-based editor essentially is a projectional editor for manipulating
the abstract syntax of a language. However, for our purpose, the use of concrete syntax
definitions is essential, since the keywords, operators, parentheses, etc. present in the
grammar productions allow us to automatically derive the format strings (see above)
required to render blocks in an informative way.

Kogi operates in three steps:

1. Analyze and preprocess a context-free grammar and transform it into a value of
type Toolbox;

2. Run customization code, if any, provided by the language engineer, to supplant
the result of step 1 with additional information not present in the grammar (e.g.,
colors, tooltips, etc.);

3. Generate Blockly code from the (possibly customized) Toolbox value.

Below we discuss each step in more detail.

7.3.1 Preprocessing the Grammar

Kogi first normalizes the grammar to a more straightforward form to facilitate the
actual mapping to the Toolbox data type. This consists of two steps:
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Figure 7.6: Effect of chain rules vs. no chain rules.
Effect of chain rules (left) vs. no chain rules (right).

• Eliminate disambiguation constructs: Disambiguation using priority declarations
or associativity, longest match for identifiers, and keyword reservation are irrel-
evant in a block-based editor, so we normalize the grammar not to have such
directives.

• Inline chain rules: Chain rules introduce additional non-terminals that would
introduce blocks that “do nothing” except injecting one kind of element into the
type of another. We inline chain rules to prevent the generation of such blocks,
and remove nonterminals that have become unreachable.

The most important step here is eliminating chain rules, since it directly affects the
usability of the generated environment. To illustrate the effect, consider the following
grammar:

start syntax A = p1: "a" a | p2: B;

syntax B = b: "b";

A has two productions (p1 and p2), and B has a single production (b). Production p2 in A

is a chain rule.
Therefore, we want to replace this production with B’s production (b). Additionally,

replacing production rules is not enough, since it only replaces productions, but it does
not remove unreachable productions from the start symbol. Hence, after removing
production rules, Kogi checks unreachable nonterminal symbols; when Kogi finds an
unreachable nonterminal, it is deleted from the grammar (e.g., nonterminal B becomes
unreachable after removing production p2 from A).

The effect is illustrated in Figure 7.6. The chain rule block is highlighted with a red
square on the left-hand side of the figure. The chain rule block links the nonterminal A
with B. After including B’s production directly into A, the environment is much simpler,
as shown in the right-hand side of Figure 7.6.
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7.3.2 From Grammar to Toolbox

Kogi’s transformation between context-free grammars and Toolbox is relatively straight-
forward, and can be summarized as follows:

• Map every nonterminal N to a section named N and category name N.

• Map every production (labeled l) of a nonterminal N to a block in the N-section:

– name the block l

– set its type to N/l and let its output refer to N

– add a message with a format consisting of all literals interleaved with %i
placeholders for each non-literal symbol between them.

– for each symbol Si in the production that is not a literal, if it is a:

∗ lexical: if known, add an argument of the corresponding type, otherwise
use text; set output to refer to type Si, and set inputsInline to true.

∗ list of S: schedule all S-blocks to have prev and next to refer to S; add a
statement argument to the l-block to get vertical nesting;

∗ nonterminal: add a value argument for horizontal alignment, and a check

for Si.

In other words, each nonterminal corresponds to a category, and each production of
a nonterminal ends up as a block type in that category. Blocks are given a unique
name based on the nonterminal and production label. The format string of messages
is derived from the literals in the production, and the argument list derives from the
non-literal symbols, such as lexicals, context-free nonterminals, and lists. Note that list
symbols (e.g., State*) trigger vertical stacking by setting the prev and next references of
the element type (e.g., State).

In terms of the example of Figure 7.5, the mapping of productions to block types is
shown in Table 7.1. The start symbol Machine is mapped to a “top” block, indicated by
the arc on top, which means it cannot be nested inside any other block.

When a production contains a lexical element, Kogi applies name-based heuristics to
map a terminal symbol to one of the built-in value blocks of Blockly. This heuristic is
summarized in Table 7.2. Blockly has different visual built-in fields for different data
types, such as numbers, strings, and images. However, in context-free grammars, there
are no constraints for defining the terminal symbols of a language because they are
described using arbitrary regular expressions. Thus, Kogi transforms every terminal
symbol either into a value block or an inline field. When the terminal symbol is one of the
built-in data types, Kogi creates an inline field, or a value block otherwise. For instance,
the lexical Id in Figure 7.5, is used to capture identifiers. According to Table 7.2, it is
mapped into an inline field of type Id value.
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Table 7.1: Correspondence between productions and blocks.

Type Production Block

Machine "machine" Id State*

State "state" Id "{" Trans* "}"

Trans "on" Id "to" Id

To illustrate the usage of lists within a production rule, consider the State production
in Figure 7.5. This production has several literals (state, {, and }, a single lexical element
(Id), and a list of transitions Trans). When Kogi finds a list or a separated list2 it creates
a statement block with both top and bottom connections. As shown in Table 7.1, both
Machine and State blocks allow vertical nesting of states and transitions, respectively.

7.3.3 Customization

Kogi transforms a context-free grammar to a Toolbox value, which it then compiles
to Blockly HTML and JavaScript. However, not all relevant information for a usable
block-based environment is present in the grammar. Some aspects can be addressed
through heuristics (e.g., color schemes to choose colors for categories), but in the end,
it is important that language designers can customize the generated environment.

However, the resulting environment might require a few enhancements or changes
depending on each use case. To address this, Kogi also supports the customization of
blocks. The customization mechanism allows developers to adapt both the language’s
blocks and its toolbox.

The intermediate model described by the Toolbox type provides the entry point for
such customization. Kogi first produces a default Toolbox, and then optionally, the
language designer can transform or change the toolbox structure according to their
wishes. For instance, to assign tool-tips and colors, better labels, etc. And only then the
Blockly JavaScript code is generated.

2 Separated lists are regular grammar symbols in Rascal; for instance {Stm ";"}* captures a list of zero
or more statements (Stm), separated by semicolons. Since separators have no purpose in block-based
environments, Kogi treats separated lists as ordinary lists.
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Table 7.2: Heuristics to map lexical symbols to block shapes.

Lexical name Block

String value

Id value

Integer value

Float value

Image value

Boolean value

Angle value

7.3.4 Execution

Besides, to create a block-based UI for a language, Kogi also allows users to reuse
language components, such as parsers and interpreters. To reuse these language com-
ponents, Kogi maps an XML representation of the programs, obtained directly from
the block-based editor, to a native AST structure. Because Kogi uses the names of
nonterminals and productions label to define the toolbox, these names can again be
used to reflectively map this XML structure back to an AST datatype that uses the same
names.

For instance, a suitable abstract syntax definition for the state machine example of
Figure 7.5 would be:

data Machine = machine(str name, list[State] states);

data State = state(str id, list[Trans] transitions);

data Trans = trans(str on, str to);

Each type corresponds to a nonterminal, and each constructor to a named production.
Lexicals are mapped to constructors with string arguments (str).

Listing 7.2 shows an (excerpt) of an XML AST returned by the generated Blockly
environment for the state machine language of Figure 7.5. Using the names in the type

and name attributes, this can be transformed into a value of type (in this case) State.
Thus, the type value can be used by language processors of the language.

Listing 7.2: Blockly XML representation of a state.
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<block type="Machine/machine" id="*S8kNTF=$db4[yf36Gm;">

<field name="id">process</field>

<statement name="states">

<block type="State/state" id="LMF:#e+qE{[{‘wk+VOGP">

<field name="id">idle</field>

<statement name="transitions">

<block type="Trans/transition" id="2=HGyRBknSM^0L3">

<field name="on">idle</field>

<field name="to">busy</field>

</block>

</statement>

</block>

</statement>

</block>

7.4 case studies

We used Kogi to generate block-based environments for four different languages,
namely, the state machine language discussed above, Sonification Blocks, Pico, and QL.
These languages were implemented using Rascal and are available on GitHub 3. Below
we briefly discuss the latter three languages.

7.4.1 Sonification Blocks

Sonification Blocks [18] is a programming language for teaching students basic concepts
of sound production, programming, and connection of data flows. This language is
offered as a custom-made block-based environment.

We have manually reverse engineered Sonification Blocks and implemented a Rascal
grammar that captures the language’s syntax. Then this grammar was input to Kogi to
create the block-based environment shown in Figure 7.7. Figure 7.8 shows an original
Sonification Blocks program compared to the same program in the Kogi-generated
environment.

It can be observed that both programs (Figure 7.8) are quite similar. However, there
are some differences. For instance, the children of the run program block do not have
the same layout. The generated version rendered them in a single line. Moreover, the
connect block in the generated environment does not allow the user to select a value
from a dropdown list; instead, it offers all the options as standalone blocks (e.g., sine).
The same difference is found in the last field (named of the same block), in which users
must write the variable’s name manually. Finally, the images for waves and spectrum are
hard-coded in Kogi’s version, meaning that they do not change as the user changes
other values. While the first differences could be considered cosmetic, the second

3 https://github.com/cwi-swat/kogi-examples

https://github.com/cwi-swat/kogi-examples
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Figure 7.7: Kogi block-based version of Sonification Blocks.

(a) (b)

Figure 7.8: Original Sonification Blocks program [17] (a) and Kogi version (b).

category is more significant, since the display of dynamic sine waves is essential for the
programmer experience.

As explained in Section 7.3.3, Kogi allows developers to customize the generated
block-based environment. Therefore, we will customize the generated environment by
changing a block’s color and defining the toolbox categories. To customize a block-based
environment, developers must create references to the blocks they want to customize
and then define the categories in which blocks will be grouped. Each block is referenced
by the production’s label. Listing 7.3 shows how to customize the Sonification Blocks’
toolbox.

First, we create references to four blocks: initial, sound, speaker, and slider. Based
on these references, we change the color of the initial block; the other blocks remain
unchanged. Moreover, we created three custom categories: Start, Connection, and Sources.
If a block is not assigned to any of the custom-defined categories, Kogi sets them into
an Unassigned default category. The resulting custom Sonification Blocks environment
is shown in Figure 7.9.

7.4.2 Pico

Pico is a toy programming language, like the While language, often used in program-
ming language semantics textbooks. An implementation of Pico is available as part
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Listing 7.3: Customization of Sonification Blocks.

Toolbox customizeToolbox() {
// Blocks references
initial = block("initial", colour = hsv(360));
sound = block("sound");
speaker = block("speaker");
slider = block("slider");

// Toolbox sections
initSec = section("Start", hsv(90), [initial]);
connection = section("Connection", hsv(0), [sound]);
dataSource = section("Sources", hsv(200),
[speaker, slider]);

return toolbox([initSec, connection, dataSource]);
}

Figure 7.9: Customized version of Sonification Blocks.

of the Rascal standard library [282]. To create the block-based interface for Pico, we
used the existing Rascal grammar for Pico, and used it as input to Kogi; the resulting
environment is shown in Figure 7.10. Kogi allows us to reuse existing language compo-
nents, not only the grammar for deriving the block-based UI, but the interpreter for
executing programs.

7.4.3 QL

QL is a DSL for defining interactive questionnaires, and it has been used to benchmark
and evaluate language workbenches [99]. QL is interesting to be used within a block-
based environment because it is not a programming language, which means that the
target users might be domain experts who have limited or no programming experience.
Therefore, block-based environments could be more natural to use for this kind of
end-user [377, 382] due to the use of natural language labels on blocks, colors, shapes,
and the interaction with the environment (drag and drop).

Rascal already had an implementation for QL; thus, we used the existing implemen-
tation to obtain a block-based syntax. We took QL’s concrete syntax in Rascal and used
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Figure 7.10: Block-based environment for Pico.

Figure 7.11: Block-based environment for QL.

it as input for Kogi. Figure 7.11 shows an example of a tax questionnaire defined using
the generated block-based environment. In this example, a domain-expert could have
defined a simplified tax form with two questions, a single question (hasSoldHouse), and a
conditional question (sellingPrice).

7.4.4 Effort

To better understand the effort of developing block-based environments, we measured
the number of Source Lines of Code (SLOC) for the generated environments. This
includes the number of SLOC of the grammar in Rascal and the number of SLOC
of generated Blockly JavaScript and HTML. All the SLOC measurements for the
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generated (and the manual implementation Sonification Blocks) of the environments
were done using SonarQube [305] and Cloc [82]. The SLOC for the Rascal grammars
were measured only with a configured of Cloc so that it supports Rascal.

Table 7.3: Lines of code (SLOC) of Kogi generated environments (written and generated).

Languages
Grammar
(SLOC)

Generated Blockly code (SLOC) Manual Implementation
(SLOC)With chain rules Without chain rules

HTML JS Total HTML JS Total HTML JS Total

State machine 15 35 112 147 35 112 147 -
Sonification 75 85 769 854 79 874 953 1752 536 2288

QL 54 69 811 880 64 733 797 -
Pico 39 55 408 463 52 389 441 -

Table 7.3 shows the number of SLOC for each language’s grammar, the number of
generated SLOCs per block-based environment, and the Sonification Blocks’ hand-
written SLOC. The first column shows the names of the considered languages. The
next column has the number of grammar SLOCs for each language; all the grammars
were written using Rascal’s syntax definition formalism. The following two columns,
Generated Blockly code and Manual implementation, contain the SLOC generated by Kogi
for each environment and the handwritten version of Sonification Blocks.

We only included the manual implementation of Sonification Blocks because it is an
existing block-based environment [17], while the others were pre-existing languages,
implemented in Rascal, but without a manual implementation of a block-based environ-
ment. The Generated Blockly code column is divided into two columns, with chain rules
and without chain rules. The first one represents the environment as-is, without remov-
ing chain rules and the latter is the environment where chain rules and unreachable
productions are removed.

For each environment in Table 7.3, we calculated the number of SLOC for HTML,
JS, and Total. The HTML SLOC contains a default web application in such language.
Kogi’s generated environment is a basic HTML app that loads required JS libraries (e.g.,
Blockly) and creates a basic layout to display the block-based environment and an XML
representation of the current block program. The HTML app contains the definition of
the toolbox as an embedded XML element.

The JS code represents the language blocks’ specifications using Blockly’s embedded
JSON DSL. The Total column is the sum of the HTML and the JS columns. In general,
the number of HTML SLOC is smaller for the generated environment than the JS SLOC
because, as mentioned above, the HTML app is rather basic, while the JS contains the
definition of all the blocks, and each block’s definition requires around 20–30 SLOCs.

When comparing the SLOC of the environments with and without chain rules, some
differences become apparent. First, for the state machine language, there is no difference,
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Table 7.4: Number of categories and blocks per language.

Languages Standard grammar Simplified grammar

# Cats. # Blocks # Cats. # Blocks

State machines 3 3 3 3

Sonification 12 35 9 35

QL 6 31 5 28

Pico 7 15 6 14

because there are no chain rules in the grammar. Comparing the results of QL and Pico,
however, there is a decrease in the number of SLOC in the environments where chain
rules have been removed.

The results of Sonification Blocks, however, show a different picture. In this case, the
number of SLOC increases in the environment without chain rules. This behavior is
caused by inlining chain rules: If a chain rule is used in multiple places in the grammar,
it will be inlined multiple times. As a result, duplicate blocks are created in different
categories.

7.4.5 Effect of Chain Rule Elimination

To evaluate the effect of chain rule elimination, we manually calculated the number
of toolbox categories and blocks per language for both environments, the one that
contains chain rules (Standard grammar) and the other that does not contain chain rules
(Simplified grammar). Table 7.4 shows the results for all the languages.

In the first row (State machines), as we saw in Table 7.3, there is no difference between
the two environments. As we discussed in Section 7.3, removing chain rules might
directly impact the number of nonterminals. This impact varies depending on how the
grammar was written; and the relationships between the nonterminals involved in a
chain rule. As we see from the data in Table 7.4, the number of categories decreases in
most languages (except in state machines were no chain rules were found). Looking
at the number of blocks, in two (QL and Pico) out of the four cases, there was also
a reduction in the number of blocks. Nonetheless, in two cases (State machines and
Sonification Blocks), there was no reduction nor increase in the number of blocks. As
discussed earlier, the state machine language does not have chain rules, yet Sonification
Blocks does have chain rules, as can be seen in reducing the toolbox’ categories, but in
the latter case, additional, duplicated blocks were generated, which causes the numbers
to be the same.
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7.4.6 Discussion

As we explained through the chapter, Kogi uses Rascal as a platform for developing
and generating the resulting block-based environments. This fact shows that using
a Language Workbench (LWB) syntax definition formalism is possible. Moreover, as
shown by Kogi, we can use these formalisms for describing and creating block-based
environments. For instance, Kogi uses an existing LWB (Rascal) for the specification
of a block-based environment with Blockly as front-end. The way Kogi does it is by
using context-free grammars to describe the language’s syntax, and deriving a block-
based environment from it. However, as observed in the generated environments, they
often require some adjustments. Particularly, when comparing the generated version
of Sonification Blocks and its manual implementation, we notice that, as expected,
the latter contain some tweaks to improve the user’s experience. This is a common
trade-off between an ad-hoc and a generated solution like the one offered by Kogi.
Since generated solutions might not fit all use cases, Kogi offers some degree of
block customization, as explained in Section 7.3. For instance, in Sonification Blocks
(Section 7.4.1), we used Rascal for describing the language’s syntax; based on this
definition, we derived a block-based language (Figure 7.8). Likewise, the specification
of the language was done using a context-free grammar. As we showed with the four
case studies, the information contained in context-free grammars is expressive enough
to create a block-based environment.

Moreover, Kogi supports user-defined customization. Kogi’s customization mecha-
nism allows developers to make modifications at both the toolbox and the block level.
The first allows users to create their own set of toolbox categories and group blocks
within these categories, while the second lets developers define or tweak single blocks
for their needs. Thus, Kogi’s customization mechanism allows developers to adapt a
generated solution to fit their needs.

As we observed in Table 7.4, eliminating chain rules in a grammar reduces the
number of toolbox’s categories and blocks. However, a reduction in these numbers does
not guarantee an improvement in the end-users’ editing experience. We tried out both
environments (with and without chain rules), and often the environments with chain
rules require end-users to add extra blocks to their programs; further research is needed
to measure the impact of removing chain rules in terms of the environment’s usability.
Therefore, we do not have enough quantitative or qualitative results to conclude that
removing chain rules impacts these environments’ usability. Nonetheless, we noticed
some differences in the editing experience when we removed the ‘chain blocks‘ from
the block-based environment.
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7.5 further directions

block grammars . Kogi applies heuristics to obtain a usable default Block layout
based on the structure of a context-free grammar. After mapping the grammar to the
Toolbox data type, language designers can customize some of the aspects to obtain a
better user experience. Nevertheless, both the heuristics and customization hooks are
relatively limited to the potential offered by block-based UIs. An interesting direction
to offer more flexibility to language designers is then to explore a “native” grammar
formalism for blocks, where properties like orientation (vertical vs. horizontal), inline
rendering, colors, tool-tips, etc. are first-class citizens in the grammar. Integration with
a UI framework could even allow the language designer to define custom “lexical”
elements, to supplant the basic set offered by frameworks like Blockly.

hybrid languages . Although Block-based languages have the potential to lower
the barrier to entry to programming for end-users, at a certain level of detail, the block
metaphor may break down. For instance, expressions are a widely used and well-
known concept, and they are found in many languages. Pasting together expressions
(especially deeply nested ones) in a block-based environment, however, can be tedious
and cumbersome.

A direction to explore would thus be to support hybrid languages, where some
constructs are block-based, but others, such as the aforementioned expressions, are
based on parsing text-fields. In a sense, this is also how spreadsheets work: The grid is
a structured editor, but the formulas are entered textually.

A further benefit of such hybrid editor could be that it emphasizes the difference
between programming and configuration: Blocks for defining the high-level architecture
of a system by composing components (such as machines, classes, entities, UIs, robots,
etc.), – but using code editors for low-level algorithmic details.

error marking . Block-based environments provide a way to specify a program
without the possibility of making syntax errors. However, most languages have consis-
tency and well-formedness checks that go beyond pure syntax, such as type checking.
Kogi-based editors support a level of reuse of existing language components. However,
for type checking (or any kind of static analysis), this is currently limited to printing
out errors on the console. It would be interesting to explore origin tracking [144, 352]
techniques to allow highlighting such errors within the editor itself. For instance, by
propagating the node identities of the XML AST produced by Blockly (as seen in
Listing 7.2) to the native Rascal ASTs, and using those identities to render the errors
in-place using JavaScript.

run-time support. Block-based syntax support (possibly with error marking) is
concerned with static aspects of code. However, an important aspect, especially for
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end-users, is being able to inspect and visualize executing code. Many block-based
environments (e.g., Scratch) are also live programming languages, where dynamic
inputs are entered inside the IDE, and the dynamic execution can be started, interrupted,
restarted, inspect, etc. Such run-time feature would require a deeper integration between
the block-based front-end and the internal structures (stack frames, heaps, program
counters, etc.) of the back-end. Further research is needed to investigate how far such
support is possible, while still being able to reuse as much as possible of existing
language artifacts.

7.6 related work

Block-based environments can be considered a subclass of the class of graphical or
visual languages [74]. One of the main motivations of graphical languages is to make
programming for beginners easier than text-based languages [168]. Kogi contributes to
the research field of generating programming environments [54, 68, 98, 99, 148, 267, 287].
In the literature, we found mainly two ways of developing block-based environments:
through libraries or extending existing block-based environments.

Begel [33] created a graphical version of Logo, a computer language developed in
the 1960’s by Seymour Papert et al., with the aim of lowering the barrier to entry for
learners. Vallarte [295] designed and developed a framework for creating graphical
block programming systems through a specification in XML format. Blockly [265] offers
an API for creating block-based UIs; they offer two APIs for the block’s definition, one
in JavaScript, and the other using JSON.

Extending existing block-based environments is also a common practice to develop
block-based environments. Tamilias et al. [333] extended Blockly@rduino to create
B@SE, a block-based environment to ease the transition from blocks to text-based
programming. Similarly, Nergaard [255] created a block-based policy editor for XACML
by extending Scratch. Kyfonidis et al. [196] extended OpenBlocks to create a block-based
version of the C programming language.

Kurihara et al. [194] proposed a programming environment for visual DSLs that
uses code generators. The code generators are used to generate text-based code from
the block-based representation. Kogi offers a similar approach, yet Kogi is integrated
within an LWB, which lets developers define all the language’s aspects. Moreover, Kogi
supports can be used to build block-based UIs on top of existing languages developed in
a LWB; as a result, existing text-based languages can benefit from having an additional
block-based UI.

7.7 conclusions and future work

Block-based environments offer a different UI for interacting with code, in which
writing a program becomes a matter of dragging and dropping jigsaw-like blocks. This
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type of environment has become popular due to the benefits they offer to end-users:
no risk of syntax errors, easy discoverability, labels in natural language, etc. Moreover,
this type of environment is being used in different domains, ranging from education to
robot programming.

Nevertheless, the implementation of block-based languages requires a lot of effort,
because high-level language workbench support is currently lacking. Libraries like
Blockly help developers to create the front-end of block-based languages, but still
require low-level, framework-specific programming.

In this chapter we have presented Kogi, as a step towards first-class support for
block-based language as part of language workbenches (in this case Rascal) by deriving
block-based environments from context-free grammars. We have analyzed the anatomy
of block-based environments by dissecting Google’s Blockly framework (Section 7.2),
and formalized it as an abstract syntax for Blockly toolboxes. Kogi takes a context-free
grammar and transforms it to a Blockly AST which is then compiled to the required
Blockly JavaScript code. The grammar is analyzed to obtain reasonable defaults for
the layout and categorization of the resulting blocks. To improve the usability of the
generated environment, Kogi applies a number of simplifications to the grammar, to
avoid generation of spurious blocks types. Blockly-based environments export the
program as an XML AST, which can be mapped back to a native Rascal AST structure,
which is suitable for further processing (interpretation, code generation, etc.).

We have used Kogi to create block-based environments for four languages, namely
a DSL for State machines, an existing language for sound configuration, Sonification
Blocks, a DSL for questionnaires QL, and a simple programming language, Pico
(Section 7.4). The generated environments are evaluated in terms of effort (Section 7.4.4)
and toolbox complexity (Section 7.4.5).

Kogi represents the first step to integrate block-based syntax with language work-
benches. The resulting environments are usable, and may be supported by (pre-)existing
language components. Nevertheless, further research is required to provide a more
native formalism to define, configure, and customize block-based environments to
offer maximal flexibility to language designers, investigating hybrid environments
combining both block-based elements and textual syntax, and how to support more
dynamic aspects of a language, such as debugging, providing dynamic inputs, and live
programming.

acknowledgements We want to thank Jack Atherton for sharing with us the
source code of Sonification Blocks.
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G E T T I N G G R A M M A R S I N T O S H A P E F O R B L O C K - B A S E D
E D I T O R S

Block-based environments are visual programming environments that allow users to pro-
gram by interactively arranging visual jigsaw-like blocks. They have shown to be helpful
in several domains but often require experienced developers for their creation. Previous re-
search investigated the use of language workbenches to generate block-based editors based on
grammars, but the generated block-based editors sometimes provided too many unnecessary
blocks, leading to verbose environments and programs. To reduce the number of interactions,
we propose a set of transformations to simplify the original grammar, yielding a reduction
of the number of (useful) kinds of blocks available in the resulting editors. We show that
our generated block-based editors are improved for a set of observed aesthetic criteria up
to a certain complexity. As such, analyzing and simplifying grammars before generating
block-based editors allows us to derive more compact and potentially more usable block-based
editors, making reuse of existing grammars through automatic generation feasible.

8.1 introduction

Block-based environments have become popular thanks to their ease of use, especially
for end-users [31]. A block-based environment is a visual interactive programming
environment, in which language constructs are represented by jigsaw-like puzzle pieces,
called blocks. Blocks have different visual cues, for instance, their shape, color, or connec-
tions. These cues help users to understand how different blocks (language constructs)
can be snapped together to create valid programs. Benefits of block-based interfaces
include the What-You-See-Is-What-You-Get (WYSIWYG) programming experience and
avoidance of syntax errors [246, 276, 378, 383].

An example of a block-based environment is shown in Figure 8.1. It consists of a
palette (left part of Figure 8.1) that contains all the language constructs that can be
used to create programs; the canvas (middle-part of Figure 8.1), where users create
their programs by dragging and dropping blocks from the palette into the canvas;
and an optional stage (right part of Figure 8.1) that is used to display output of a
program’s execution. Block-based environments have been used in different domains
across different disciplines (e.g., Computer Science, Software Engineering, Education,
Science, Music, and Art) [230].

Block-based editors can be constructed in a variety of ways, ranging from program-
ming from scratch, using Domain-Specific Languages (DSLs) for block definition, or
visual languages. Most of these require considerable overhead or boilerplate, involving
various technologies and frameworks [230].

179
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Figure 8.1: Block-based editor created using Google Blockly.

Earlier research presents Kogi (Chapter 7), a tool for deriving block-based editors
from declarative Context-free Grammars (CFGs) [355]. While Kogi enabled automating
most of the effort in constructing block-based editors, the usability of the derived
block-based editors is limited as the derivation mechanism followed the exact structure
of the input grammar. In this chapter, we extend and improve Kogi’s approach by
analyzing the input grammar and applying structural changes to the grammar to
produce block-based editors that follow a set of aesthetic guidelines we establish in
Section 8.2.3.

The contributions of this chapter are:

• an analysis and a set of simplification rules of CFGs to improve the usability of
generated block-based editors (Section 8.3).

• an extension of Kogi, S/Kogi [32], that implements the described simplification
rules (Section 8.4).

• an evaluation that demonstrates the impact of the simplification rules for deriving
block-based editors using six different languages, including Java and JavaScript
(Section 8.5).

We continue this chapter with a discussion of limitations and trade-offs, particularly
considering the type and complexity of the grammars, as well directions for future
work (Section 8.6). Finally, we present related work (Section 8.7), and conclude our
chapter (Section 8.8).
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8.2 generating block-based editors from grammars

In this section, we summarize Kogi’s method for mapping grammar rules to blocks.
Then, we analyze some limitations related to Kogi’s generated block-based editors, and
finally, present a set of aesthetic criteria.

8.2.1 Mapping Top-level Alternatives to Blocks

As mentioned in Section 8.1, there are three ways to develop block-based editors: imple-
mentation from scratch, extending existing block-based editors, or using libraries [230].
An alternative is presented in the work by Verano and van der Storm [355] (Chapter 7),
called Kogi, which derives block-based editors from context-free grammars [228]. The
resulting block-based editors use Google’s Blockly library [119]. Given a grammar, Kogi
analyzes it to create a mapping between grammar constructs and a generic Algebraic
Data Type (ADT) that describes the elements of a block-based environment. From this
ADT, Kogi derives a set of named categories containing a set of blocks, where the
blocks represent all possible representations of the rules of the grammar.

Kogi’s mapping from grammars to blocks is based on a set of heuristics [355]. In the
following, we will summarize Kogi’s method using the example of MiniJava (a subset
of the Java language that captures the essential object-oriented features of the full Java
language [11, 64]). The implementation of this language is available on GitHub[42].

Table 8.1 shows two rules from the MiniJava grammar and their mapping to blocks
as generated by Kogi. The first rule, VarDecl, consists of three symbols and acts as a
block for declaring variables. Its first symbol is Type which is a non-terminal symbol
and thus gets turned into a value input for the resulting block. The second symbol,
Id, is a rule that will map to a lexical 1, which is turned into a text field instead of an
input. The third symbol is the semicolon, which is a terminal and is added as a label on
the block. The second rule, Stmt, is an excerpt from the MiniJava rule for statements.
Rules that have top-level alternatives are turned into a category in the palette, where
each alternative is turned into a block of that category. We show two representative
examples. First, the curly braces that enclose a statement block are turned into a block
where the terminals act as labels again. The Stmt* non-terminal, rather than producing a
value input, is turned into a so-called statement input, as the star indicates that multiple
statements can be added here. Second, the while loop’s keyword and parenthesis are
turned into labels again. The Expr identifier gets turned into a value input. Finally, the
Stmt non-terminal has been used with a star in the previous rule (as shown in Table 8.1).
Because of this, even though it is not repeated in the while-loop, we still generate a
statement input, rather than a value input as the same type of block cannot have two
different types of input shapes.

1 In Rascal, lexical symbols are like syntax non-terminals, but are not modified with interleaved layout
non-terminals.
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Table 8.1: Mapping between grammar rules and blocks.

Type Rule Block

VarDecl Type Id ";"

Stmt
1 "{" Stmt* "}"
2 | "while" "(" Expr ")" Stmt
3 | ...

Kogi’s main limitation is that it preserves the mapping of the original grammar
exactly, mapping each rule and top-level alternative to one category or block, respec-
tively. Since grammars are used for parsing text, grammar designers often need to
add syntactic elements (such as parentheses, statement terminators, etc.) to ensure
that the language is unambiguous or can be parsed efficiently. In a block-based editor,
however, such textual markers are often not relevant, because in a block-based editor
programmers manipulate Abstract Syntax Trees (ASTs) directly.

Another drawback is that Kogi takes as input general CFGs with explicit constructs
for operator precedence and disambiguation as supported by the Rascal language
workbench [180]. However, many grammars out there have been adapted into forms
that are acceptable by parsing algorithms that require a more verbose formulation of
rules, such as LL(k) or LR(k). This means the grammars contain “tricks”, for instance,
to avoid left-recursion, or to encode precedence using layered non-terminals. Feeding
such grammars to Kogi would lead to very unbalanced and difficult-to-use block-based
editors.

8.2.2 Limitations of Kogi

In the following, we will describe examples of issues we have identified in block-based
editors generated by Kogi using the MiniJava grammar [43]. From this, we will then
derive our aesthetic criteria for blocks, following a heuristic evaluation as proposed
by Nielsen and Molich [257], which allows us to identify the current limitations of
Kogi and study how these limitations can be addressed. We are aware that this type
of evaluation does not suggest guidelines on how to address such limitations, the
purpose of this chapter, however, is to show how these limitations can be mitigated
by transforming the rules within a CFG to produce block-based editors that closely
resemble popular, hand-crafted editors. Similar to Holwerda and Hermans in their
evaluation of block-based user interfaces [139], we will apply the Cognitive Dimensions
of Notations (CDN) framework [47] to the MiniJava block-based editor. Note that while
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Holwerda and Hermans focused on the user interface, our focus lies on how the
underlying language is mapped to blocks.

special-purpose grammar rules The MiniJava grammar contains an ExpressionList

rule for method call arguments:

syntax MethodCall = Expr "." Identifier "(" ExpressionList? ")";
syntax ExpressionList = Expr ( "," ExpressionList )?;

As such, when users want to invoke a method in the derived block-based editor,
they experience repetition viscosity, where a single desired action in the user’s mental
model requires multiple repetitive actions, as they have to fetch both a method call
block and an expression list block. In the following screenshot, the block equivalent of
the expression this.init(false) is shown, where the purple expression list block had to
be added before the argument could be placed.

Further, these special-purpose blocks will likely contradict the program structure in
which users typically think, leading to higher diffuseness of the notation, where more
space in the notation is taken up to express a certain construct. As the generated editor
also does not communicate the need for the expression list block, higher error-proneness
in the use of the editor can be expected.

blocks for leaf nodes When writing a simple expression such as 2 + 2 - 3, users
must place a block for each language construct, in this case three numbers and two
operators.

This might make the typical use of numbers and identifiers with operators feel
cumbersome. Again, this may lead to diffuseness and viscosity for entering mathematical
expressions.

Similarly, the deeply nested blocks may impact visibility, where parts of the notation
may not be readily identifiable by the user. Further, users may find themselves routinely
pre-fetching number blocks that are no longer needed later on, leading to cases of
premature commitment. This issue concerns all blocks that will contain leaf nodes in
editors generated by Kogi. We also notice the frequent occurrence of special-purpose
blocks around leaf nodes, as seen in the above example where the numbers must be
doubly nested, requiring three additional blocks.
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limited reuse of blocks Many generated blocks tend to be closely related to one
another, such as binary operators, where the structure of inputs stays the same and only
a label changes. However, in the MiniJava grammar each mathematical binary operator
receives its own block type. Consequently, changing an addition to a subtraction
operation requires replacing the block, migrating its arguments, and deleting the old
operator.

As such, reformulating expressions, even to very similar structures, has high knock-on
viscosity, where a single desired change cascades to require multiple steps. Further, as
users experiment with expressions, they may again have to prematurely commit to an
operator while still unsure of the algorithm, with high costs to change the operator
later on.

unclear block composition Value and statement inputs in generated editors
are not explicitly labeled. Thus users are left to infer the correct types of blocks to place
in the open slots based on the knowledge of the underlying language, or worse, the
internal structure of the grammar. For example, a method declaration in the MiniJava
grammar requires several inputs (e.g., parameters types and identifiers).

Ambiguous inputs lead to blocks with low role-expressiveness, where the purpose of
an aspect of the notation is not readily recognizable, and low visibility when interacting
with the block palette, particularly for novice and end-users.

list composition with recursion Grammars commonly make use of recursion,
for example, to define sequencing (lists). In MiniJava, the expression list is defined as:

syntax ExpressionList = Expression ( "," ExpressionList )?;

As such, users are required to fetch expression list blocks each time they want to add
another expression as shown below.

Recursive rules that signify lists have low role-expressiveness, as well as low consistency,
where users apply knowledge from other parts of the notation to new parts, as other
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forms of lists in the generated editor make use of statement inputs instead. Further,
as adding elements requires fetching an additional block each time, the operation has
high viscosity.

8.2.3 Aesthetic Criteria

In the following, we briefly describe aesthetic criteria derived from popular, hand-
crafted block-based editors, as a set of guidelines for evaluating the improvements of
our approach.

provide only high-level constructs . The generated block-based editor
should merge special-purpose blocks with the blocks that the user would know based
on the language’s domain. In the previous example, the method call would thus directly
allow placing expression blocks as arguments.

provide prefilled leaf-nodes . Blockly editors can make use of so-called shadow
blocks, which are placeholders that users can choose to replace or just use as-is. If the
editor provides suitable shadow blocks, users can typically use larger block groups
directly, without the need to fetch a block for each leaf-node input. In Blockly’s example
language, the previously shown mathematical expression can be entered using just two
operator blocks, which both come with numbers prefilled as their shadow blocks.

enable block reconfiguration. Blockly editors often provide drop-down fields
for configuring the exact semantics of structurally identical blocks. For example, the
mathematical binary operator in Blockly’s example language can change its operator,
allowing users to keep the blocks’ structure.

advertise block types . Similar to pre-filling leaf nodes, shadow blocks can be
used to advertise the type of blocks that can be used in a slot. This additional cue
allows users to either recognize the right type of block or find the right type in the
palette. In the below example from Blockly, users are shown that the is empty block
expects a string as input, as indicated by the quotation marks.
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map lists to mutators or statements . Block-based editors using Blockly will
typically either use sequences of statement blocks or mutators for lists. Below, on the
left, a mutator dialog from MIT App Inventor is shown, where users can add item
blocks, thus extending the block on the canvas to take more inputs. On the right, with
Microsoft MakeCode’s array blocks, inputs can be added using the plus and minus
buttons.

8.3 grammar simplification

This section describes our approach to analyze rules within grammars and apply
transformations that simplify them, resulting in a block-based editor that follows our
previously defined aesthetic criteria. We then outline the changes we made to Kogi’s
block generation process to further support the aesthetic criteria.

When considering block-based interfaces, Holwerda and Hermans [139] formulate a
distinction between language and editor design. During the transformation process,
it is important to note that neither the semantics of the language should change, nor
should aspects of the language design that are not part of the editor design be changed.
Otherwise, if language-specific elements (e.g., labels) are manipulated, users might not
recognize language constructs they are interacting with.

8.3.1 Simplification Rules

Our simplification pipeline consists of four major stages, which can be further divided
into transformation steps. (1) Remove grammatical noise related to encoding operator
precedence, (2) remove unnecessary syntax, (3) merge rules to produce a more concise
block-based editing interface, and (4) translate the simplified grammar to running code
for a block-based editor. On an algorithmic level, most steps work the same: we do a
deep pre-order traversal of the grammar’s syntax tree and try to match each node’s
structure to the pattern we want to transform. If a match occurs, we mutate the syntax
tree accordingly, either by changing values in existing nodes or by replacing nodes with
new ones.
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Phase 1: Eliminating Operator Precedence Encoding

The first phase is optional and adapts grammars that have been written in a formalism
that does not have explicit support for operator precedence. Without explicit operator
precedence, the typical pattern for expressing precedence is via chained, recursive rules,
for example:

syntax Exp = Exp "+" MulExp | MulExp;

syntax MulExp = MulExp "∗" PrimaryExp | PrimaryExp;

syntax PrimaryExp = "(" Exp ")" | digit+;

This would lead to different categories of blocks for every level in the precedence
hierarchy. Since operator precedence essentially is a disambiguation technique (and
such ambiguities cannot exist in a block-based editor), we can safely “squash” such a
hierarchy of non-terminals into a single non-terminal, like this:

syntax Exp = Exp "+" Exp | Exp "∗" Exp; | "(" Exp ")" | digit+;

Here, we flattened the chained rules such that it is immediately obvious that each
operator’s operand must be an Exp block. This transformation is applicable, for instance,
to left-recursive LR(k) grammars that do not use operator precedence (for instance as
provided by Yacc [154]).

Grammars written in formalisms that do not support left-recursion (e.g., standard
PEG [109]), have to circumvent it using another common grammar idiom:

syntax Exp = Exp1 ("||" Exp1)*;

syntax Exp1 = Exp2 ("&&" Exp2)*;

syntax Exp2 = Exp3 ("|" Exp3)*;

...

Once a rule conforming to either of these patterns is identified, we try and locate
the top-most rule that no longer conforms to the pattern. Once this rule is identified,
we can use it for the left- and right-hand-side operands and transform and inline the
derived rules as alternatives of the top-most rule. This type of operation is sometimes
known as “deyaccification” [198, 392].

Phase 2: Removing Unnecessary Syntax

In the second phase, we prepare the grammar for further processing by trying to find
common patterns of syntactic terminal symbols that are unnecessary in block-based
editors. Most importantly, this concerns list separators, as blocks are delineated through
the use of user interface elements.

This transformation is realized by searching for commonly used patterns for list
separators. For example, the following examples are detected by our heuristic and
transformed to the rules with a _changed suffix below.
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syntax List1 = (Element ",")* Element?

syntax List1_changed = Element*
syntax List2 = (Element ",")* Element

syntax List2_changed = Element+

syntax List3 = Element ("," List3)?

syntax List3_changed = Element+

Our algorithm traverses the entire grammar once for each type of list structure
shown above, matches the expected structure against the current nodes, and, if a match
occurs, rewrites the grammar’s sub-tree as shown. The transformed rules are then
straightforward to translate into statement inputs using Kogi’s existing transformation
logic.

Additionally, in this second phase, we remove all elements in the grammar that only
serve to disambiguate the textual sequence of characters and will as such not have an
impact on the desired layout and appearance of blocks, such as lookaheads or Rascal’s
follow conditions.

Phase 3: Merging Rules

In phase three, multiple steps are involved, summarized as follows: (1) Inline "simple"
rules, (2) merge terminals of structurally identical alternatives, (3) merge consecutive
terminals, (4) hoist non-top-level alternatives, and (5) inline chain rules.

inline “simple” rules By heuristically finding "simple" rules and inlining them,
we try to undo the decomposition introduced by the grammar’s authors. This step’s
goal is thus to support our aesthetic criterion of reducing special-purpose blocks. We
define a simple rule as a rule with the following characteristics: (i) it is not a lexical
rule, (ii) it contains at most a single non-terminal (but arbitrary numbers of terminals),
(iii) and its top-level expression is not an alternative that includes non-terminals.

Below, we give some examples that match this definition and some that do not:

// Does match
syntax Type = "int" | "float" | "double"
syntax Align = ("left" | "right") ("top" | "bottom") Fill?

syntax Group = "(" Expression+ ")"

// Does not match
syntax ComplexType = "int" | "float" | "double" | Identifier

syntax MethodCall = Identifier "(" ExpressionList ")"
lexical identifier = Letter+

We do not inline lexical rules because they will be transformed into text fields. We
observed that rules with multiple non-terminals are often complex enough; therefore,
we found that having a separate block for them was beneficial. Finally, rules that have
a top-level alternative, including a single non-terminal, like the ComplexType example
above (which would match the other two criteria), will become nested alternatives if
inlined. However, we want to avoid introducing more nested alternatives, as these will
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require expanding a block to multiple blocks in the "hoist non-top-level alternatives"
step further down the pipeline.

In the concrete example below, we have an expression list rule that no longer contains
list separators. Per our definition, it qualifies as a simple rule. When applying the
transformation, its usage is replaced by its definition and the ExpressionList rule is
deleted as it is no longer used in the grammar after inlining.

syntax ExpressionList = Expression*
syntax MethodCall = identifier "(" ExpressionList ")"
syntax MethodCall_changed = identifier "(" Expression* ")"

This step is applied multiple times throughout the pipeline, as subsequent steps may
result in more simple rules to be generated.

merge terminals of structurally identical alternatives . This step
analyzes all top-level alternatives of a single rule. If it encounters a pattern of more than
one alternative that only differ by a single terminal, it will group these. For example, a
common case are binary operators:

syntax Expr = Expr "+" Expr | Expr "−" Expr | digit+;

syntax Expr_changed = Expr ("+" | "−") Expr | digit+;

Here, we grouped all operator terminal symbols in one nested alternative. During
the final block generation, this will result in a single binary operator block where all
operator symbols are offered in a drop-down list.

This heuristic will ensure that structurally identical blocks end up being convertible
in the final block-based editor, thus allowing users to reuse block structures if they
only need to change a label. Note that through the previously described “inline simple
rules” steps many small differences between rules will already have disappeared. For
example, a renaming such as the one below will have been inlined and the alternatives
will thus also be considered structurally identical.

syntax Expr = Expr "+" Expr | A "−" Expr;

syntax A = Expr;

merge consecutive terminals . As a small optimization, we merge consecutive
terminals with spaces inserted between them. Otherwise, during block generation, we
would generate a separate label for each terminal, leading to large gaps between the
words. This step should take place only after matching against structurally identical
block, otherwise some previously structurally identical blocks may appear different
with merged terminals.

syntax Statement = "while" "(" Expr ")" Statement;

syntax Statement_changed = "while (" Expr ")" Statement;
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hoist non-top-level alternatives . As preparation for generating blocks, we
now walk through the entire grammar and locate rules that contain non-top-level,
non-terminal alternatives. Any that are found are expanded into separate top-level
alternatives. For example:

syntax VariableDeclaration = (identifier | "int") identifier ";";

syntax VariableDeclaration_changed = identifier identifier ";"
| "int" identifier ";";

Without this step, there is no clear mapping to blocks, as alternatives mixing different
identifiers or identifiers and terminals cannot be displayed in a field on a block. If
there are multiple non-top-level alternatives, we generate the product of all possible
combinations.

inline chain rules . If during the above steps any rules ended up being chain
rules, we now finally inline these before generating the block-based editor (as shown
also in Section 7.3.1).

syntax Function = "function" "(" id* ")" Statement;

syntax Expression = Function | Expression "+" Expression;

syntax Expression_changed = "function (" id* ")" Statement

| Expression "+" Expression;

If not inlined, the Function reference would yield a single empty block with one value
input where the dedicated Function rule block needs to be inserted to act as an expression.
By inlining the Function rule instead, a proper Function block can directly be used as an
expression.

8.3.2 Block Generation

Once the simplification is done, we take the resulting grammar and generate a Blockly
configuration for it. The procedure for this is largely the same as performed by Kogi,
except for two important exceptions.

For one, we generate shadow blocks for each block input, as described in Section 8.2.3.
We do so by trying to determine the most primitive alternative that each rule is offering
by looking for blocks with as few inputs as possible but preferring those that contain
just a text field. For inputs that require a grammar’s "Expression", this will most likely
be an identifier or number block. If no good match is found, we pick the first alternative.
Even a random pick will, at a minimum, give away the right color of the input block
and can be hovered for a textual description, but, more commonly, may also include
visual cues such as keywords or other descriptive terminals.

Second, repeated or optional expressions that contain more than just a single identifier
are placed in a special mutator inspired by Microsoft MakeCode’s implementation with
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Blockly. An example can be seen in Section 8.2.3, where the plus button can be used to
add further arguments. This special mutator button is necessary as there is otherwise
no mapping of rules such as this one:

syntax MethodDeclaration = Type identifier "(" (Type identifier)* ")"

To be able to enter the repeating sequence Type identifier it would either need to be
extracted into a separate block or be added to the parent block as dynamic new inputs.
This dynamic type of block is enabled by the mutator. Similarly, optional elements in
the grammar can be toggled using the same interface.

8.4 implementation

In this section, we present S/Kogi’s architecture and selected implementation details.
S/Kogi is an extension of the previously described Kogi [355]. Unlike Kogi, which was
implemented in the Rascal Language Workbench, S/Kogi is an alternative implemen-
tation in Squeak/Smalltalk [143]. It uses a generalized superset of Rascal and Ohm
grammars as its input, as special features of neither grammar dialect are required for
the simplification or block generation process.

Figure 8.2: S/Kogi’s architecture.

Figure 8.2 shows S/Kogi’s architecture. While no special features from the gram-
mar dialects are required, their structure tends to differ as outlined in Section 8.3.1.
As such, there are two entry points for using S/Kogi: a Parsing Expression Grammar
(PEG) [108]/Ohm grammar or a CFG. If the input is a PEG, we first transform it
into a Rascal-like grammar. Through this step, we reach the second entry point that
applies to Context-Free Grammars (i.e., Rascal grammars) and now also our modified
PEG grammars. The input grammar then traverses the pipeline steps described in
Section 8.3.1. The simplified grammar (trimmed grammar), conceptually, can then be
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passed to the original Kogi. In our concrete implementation, the translation step from
the simplified grammar to Blockly code for the block-based editor was also modified as
described in Section 8.3.2.

Users can apply minor customizations through the grammar’s domain objects in
Smalltalk code, as discussed in Section 8.5 and Section 8.6. An example of a block
generation invocation including customization is shown in Listing 8.1.

Here, the user renames all usages of the VariableDeclarationNoIn rule to omit the NoIn

suffix and then deletes the rule, before the grammar is passed to the pipeline. After
the pipeline has finished, the user assures that Statement rules will receive statement
outputs instead of value outputs, to override our built-in heuristic. Finally, the user
specifies that the optional Ohm2Rascal phase should be run and invokes the pipeline,
which generates an HTML file and opens it in the user’s browser.

BlockGenerator new

grammar: ’...’;

preDo: [:g | | oldRule |

oldRule := grammar ruleNamed: ’VariableDeclarationNoIn’.

oldRule allUsagesDo: [:identifier |

identifier contents: ’VariableDeclaration’].

oldRule delete];

postDo: [:g | (g ruleNamed: ’Statement’) kogiOutput: #statement];

isOhm: true;

simplifyAndOpen

Listing 8.1: Customization for the editor generation process.

8.5 evaluation

In this section, we will first evaluate the impact of our simplification rules on MiniJava
before considering several other language grammars with different purposes as small
case studies.

8.5.1 Simplified MiniJava

As previous research [233, 355] had demonstrated limitations of the applicability of
generated general-purpose programming (GPL) block-based environments, we will
describe the improvements in MiniJava based on our aesthetic criteria defined in
Section 8.2.3 more closely. As part of the further case studies, we also offer a short
evaluation of JavaScript, a complete GPL.

provide only high-level constructs Below, we show on the left Kogi’s
original MiniJava palette and on the right, the version generated by S/Kogi.
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Except for the "Stmt to Expr" category (discussed in Section 8.6.1), all terms found in
the S/Kogi palette should appear familiar to Java developers. Exceptions in the Kogi
palette are the FormalList and ExpressionList rules that are both recognized as "simple"
rules in S/Kogi and inlined.

provide pre-filled leaf-nodes In the below example, we show the variable
declaration and binary operator blocks generated by S/Kogi.

In both cases, our heuristic selected the simplest block of the options (in the first case
of rule Type, and in the second of rule Expression), both containing just a text field.

enable block reconfiguration Our step of merging terminals of structurally
identical alternatives allowed the type and operator blocks to offer drop-downs, rather
than appearing as individual blocks each.

As such, users can quickly change between the related instances of Boolean, type,
and operator blocks.

advertise block types The method block in S/Kogi on the right offers users
a way to either visually distinguish the types of input blocks, or, if the shapes are
ambiguous, to hover blocks and see a tooltip that indicates the block type.
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For example, in Kogi’s version on the left, users may need to resort to trying various
types of blocks to find out that the first statement input is meant for variable declarations
and only the second is meant for statements. In S/Kogi’s version, the types of blocks
are hinted at through the block’s shape.

map lists to mutators or statements In the above figure, one can see a
plus-sign mutator (+) that allows users to add more arguments to the method block.
Similarly, repetitions of single identifiers are turned into statement inputs, as typically
expected for Blockly-based editors.

Figure 8.3: A statement input, allowing users to add multiple blocks without the use of recursive
blocks using a rubber element as a workaround.

8.5.2 Case Studies

In the following, we describe a broader range of grammars and their generated block-
based editors. Examples of each can be found in Appendix C.1.

cloud configuration language (ccl). This language is inspired by the format
in Amazon Web Services CloudFormation [314] for allocating cloud resources. It differs
from typical DSLs or GPLs in that its structure is fixed and only values change for the
most part.

For this grammar, the "inline simple rules" step has the strongest impact. While the
block-based editor generated by Kogi places each of the mandatory fields in their own
blocks, our simplified version provides one large block, with all mandatory inputs
already in place. Similarly, the value inputs are turned into inline input fields and
drop-downs.
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questionnaire language (ql). This language supports the definition of in-
teractive questionnaires and was used to evaluate and benchmark language work-
benches [99]. QL targets end-users and supports basic control-flow structures. We
reused an existing implementation in Rascal [224].

For QL, merging terminals of structurally identical alternatives was responsible for
the most significant cleanup of blocks, as it otherwise comes with 12 separate binary
operators. Here too, inlining simple rules ensured that the question block had all its
mandatory inputs already built-in.

sonification blocks . This language is designed for data sonification and teaches
basic principles of sound production, programming, and data flow manipulation [18].
The language’s authors heavily customized the block-based editor, for example by
adding images of sound waves in blocks.

The grammar [225] contains several alternatives that act as chain rules. These were
translated by Kogi to blocks that take a single input of the indicated type, making it
exceedingly difficult for users to find the right match. In the simplified version, these
alternatives have been inlined, such that users can directly use the high-level block.

Figure 8.4: On the left, Kogi’s output requires placing distinct wrapper blocks for each type of
statement. Our simplified version on the right allows using the statements directly.

state machine . This language is a simple DSL for describing state machines [355].
For our quantitative evaluation, it acts as a baseline, since it is rather small and the
generated block-based editors are essentially identical, demonstrating that only with a
minimum of complexity any benefits of S/Kogi can be observed.

java . As a popular language [61] and a language of a size that challenges the block-
based interaction metaphor we included Java to explore our approach’s applicability to
complex GPLs.

Interestingly, the S/Kogi version of the grammar [50] yielded significantly more
blocks than the Kogi version, as shown in Table 8.3. This is mostly because lists of
expression rules were unrolled and could not be merged in phase 1 of the pipeline
because various parts of the grammar referred to subsets of the expression rules.
Merging these would have thus created an invalid grammar. When S/Kogi then started
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inlining rules, it ended up creating duplicates of the expression rules in various places of
the grammar. The total number of categories, mapping to groups of language constructs,
was still halved in size by S/Kogi, however.

For this type of grammar, it may be desirable to create an invalid grammar that
where making more aggressive simplifications is allowed but generate code for a linter
that can guide users if they attempt to combine blocks that are not legal in Java. Further,
some of the restrictions are not relevant in a block-based editor, for example, several
rules have duplicate versions that explicitly exclude "short if statements" as these would
clash syntactically.

javascript. We used a version of JavaScript with some extensions on top of EC-
MAScript 5, used for teaching source-to-source transformations (desugaring) using
Rascal [78], for which a Rascal grammar was available. Its grammar is similar to
MiniJava’s but offers more language constructs and presents different structures of
rules.

Because of the size of the grammar, using the block-based editor generated by Kogi
is difficult: many blocks that need to be combined to form a semantic unit are spread
across various categories in the palette. Further, the type of block needed in a given
slot is not always clear. Our simplified version improves the generated block-based
editor by, first, aggressively merging and inlining rules to end up with a select few that
indeed roughly correspond to what a JavaScript programmer may name as language
constructs in the language, and second, through the use of shadow blocks that hint the
types of blocks that are required as inputs.

Some peculiarities of JavaScript are still found in our simplified version, however:
for example, there is a separate block for property assignments because in JavaScript
these can be either strings, numbers, or identifiers. As such, property assignments do
not qualify as simple blocks and will thus not be inlined. To remedy this, our logic
for detecting appropriate shadow blocks will select the likely most commonly used
identifier by default for object properties. Thus, users will rarely have to interact with
the other property assignment blocks and can use the inlined shadow block directly
instead.

Simple customizations can improve some issues. For example, JavaScript contains
two variable declaration rules:

syntax VariableDeclaration = Id "=" Expression | Id;

syntax VariableDeclarationNoIn = Id "=" Expression!in | Id;

The second declaration excludes the JavaScript "in" expression from appearing and is
used in some contexts where the "in" expressions are not valid in the grammar, which
is only important for correct parsing. In Listing 8.1 we show a customization users can
apply to the grammar to merge the two separate rules, as doing this in an automated
manner will likely be prone to produce false positives.
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8.5.3 Complexity Reduction

This section presents a quantitative evaluation of the results obtained after generating
block-based environments using both Kogi and S/Kogi for each of the six case studies
described earlier. First, we look at the number of Source Lines of Code (SLOC) for
each generated environment as a proxy for editor complexity. To measure the SLOC of
each case study, we used SonarQube [305]. Then, we look in more detail at each of the
generated editors to evaluate the number of categories in their palettes and the number
of blocks of each language in both (Kogi and S/Kogi) versions.

Table 8.2 presents a detailed view of the number of SLOC per environment for each
case study. The first column contains the name of the language. The following two
columns contain the information regarding the environments generated using Kogi
and S/Kogi, respectively. Each of these columns is divided into two sub-columns that
contain the number of generated XML and JS (JavaScript) SLOCs. The number of HTML
SLOCs is not included in the table because all the case studies were embedded into
the same HTML application containing 23 SLOCs. In most environments generated
using S/Kogi, there is a reduction in the number of SLOCs, except for the State Machine
language in which there is an increase of almost 10% in the number of JS SLOC. The
reason for this is that S/Kogi uses additional Blockly features (e.g., shadow blocks).
In the remaining case studies, there was a reduction in the number of SLOC, and the
most significant impact is evidenced in the JavaScript language, with a reduction of
more than 86% SLOC compared to the Kogi version. The reduction in the SLOC in
most of the case studies might benefit language engineers and developers for further
fine-tuning their environments since the projects are smaller and, therefore, may be
easier to modify than projects with more SLOC.

Table 8.2: Comparison between the number of lines of code (SLOC) of block-based environments
generated by Kogi against S/Kogi.

Languages Kogi (SLOC) S/Kogi (SLOC)

XML JS XML JS

State Machine 15 142 19 155

MiniJava 63 1217 147 320

CCL 41 401 8 146

Sonification 71 926 94 263

QL 37 797 66 246

JavaScript 231 4580 341 598

Java 1022 13336 3803 5381

Table 8.3 displays descriptive statistics about the block-based editors generated for
each of the case studies. The table is divided into two columns, Kogi and S/Kogi. The
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Table 8.3: Comparison of the total number of blocks, palette categories, and blocks used in an
example program in block-based editors generated by Kogi and S/Kogi, and the
reduction from Kogi to S/Kogi. Note that for Java derived types in the block-based
editors were broken, not allowing to create a full program.

Languages # Blocks # Cats. # Blocks Program

# Kogi # S/Kogi Reduction # Kogi # S/Kogi Reduction # Kogi # S/Kogi Reduction

State Machine 4 3 25% 4 3 25% 8 6 25%
MiniJava 36 25 30% 12 8 33% 47 17 34%
CCL 16 2 88% 11 2 82% 15 3 80%
Sonification 38 18 53% 15 7 53% 13 6 54%
QL 26 14 46% 4 3 25% 21 9 57%
JavaScript 152 63 59% 38 9 76% 36 15 58%
Java 507 664 -19% 256 135 47% N/A N/A N/A

first contains the information related to the block-based environments generated using
Kogi, and the latter contains the information of the environments generated using
S/Kogi. The table shows three main aspects of the generated block-based editors; it
counts the number of categories in the palette of each language (# Blocks ), the total
number of blocks per language (# Cats.), and the number of blocks required for defining
an example program in each environment shown in Appendix C.1.

Based on the collected results, we observe that through the simplification rules,
environments generated using S/Kogi have fewer blocks, which is an expected result
since that was one of the limitations that we identified in Section 8.2. The case study that
presented the most significant reduction in the number of blocks is CCL; the S/Kogi
version has almost 88% (14) fewer blocks than the same environment using Kogi. The
only exception is the Java language, for the reasons described in Section 8.5.2. Looking
at the number of categories, on the one hand, the language that benefited the most with
fewer categories is also CCL with more than 82% (nine categories) fewer categories. On
the other hand, the State Machine and the QL languages were the ones whose palette
was reduced but less than the other case studies with only 25% (one category) fewer
categories. The reduced number of blocks and categories does not mean that the editors
generated by S/Kogi are less expressive, but they inline rules based on the heuristics
defined in Section 8.3. Overall, as programs written using editors generated by S/Kogi
require fewer blocks, as shown in # Block Prog. columns (Table 8.3), it is expected that
users will find them easier to use. A discussion of this follows in Section 8.6.2. Similarly,
as palettes contain fewer categories and blocks, users’ cognitive load is likely reduced
when looking for a specific construct or browsing the available blocks.
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8.6 discussion and future work

As described, S/Kogi offers improvements with respect to our established aesthetic
criteria over Kogi. This section discusses consequences and limitations of the proposed
simplification rules and points out directions for future work.

8.6.1 Statement vs. Expression Ambiguity

Blockly requires blocks to either occur as values or as statements, each with a differing
jigsaw puzzle socket. An example of both types can be seen in Table 8.1. If a block
occurs in both contexts, we provide a rubber element as a workaround, seen for example
in Figure 8.3. However, since the rubber element always requires users to think about
the context they want to use a block in, the default shape of a block should reflect its
most common usage.

To find this usage, we currently defer to a user annotation in difficult cases. For
instance, the example below may lead to false assumptions about the default intended
shape:

Statement = "if" Expression Statement

| "{" Statement* "}"
| ...

Here, statements are used as a simple non-terminal and a form in curly braces is
provided to parse a sequence of multiple statements. Similar patterns are commonly
found for expressions, so a heuristic based on this pattern is not feasible:

Expression = "[" Expression* "]" | ...

The built-in heuristic counts occurrences of a rule in repeating contexts vs. non-
repeating contexts and chooses the more common option. If this choice contradicts the
intended semantics, user intervention through an explicit tag is required:

(grammar ruleAt: ’Statement’) kogiOutput: #statement

Here, we get the “Statement” rule and set its output to explicitly be of statement-type
for Blockly, such that the generated block can be directly repeated.

8.6.2 Inlining Depth

Our current approach focuses on reducing the number of blocks as much as possible.
At times, it may be desirable for blocks to remain separate. For example, rather than
combining all binary operators into one block, it may benefit users to have all arithmetic
operators in one block, and all comparison operators in a separate one.
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Figure 8.5: On the left, only shadow blocks are used. The expression can only be a number
unless users fetch their own assignment block first. On the right, the assignment
is already added, but the expression is left as a shadow, allowing the "12" to be
replaced by other blocks.

Further, fewer, more complex blocks may sometimes also hinder usability: similar to
how users may copy-paste only a region of a larger construct like a method declaration
in text, duplicating a part of a more complex block may sometimes be desirable. An
example may be found in the Cloud Configuration Language, where almost the entire
language is reduced to a single block through our simplifications. While this makes
creating a single instance quick and easy, copying just a part of the configuration to
another instance becomes significantly more difficult as decomposing and copying just
parts is no longer possible with the combined block.

On this end, we considered allowing users to configure how often the inlining rules
are being called. This would allow users to control how many levels deep the inlining
process should go. Additionally, we considered allowing users to pin rules, thus telling
the system to not further inline a specific rule.

8.6.3 Block Shadows

As demonstrated in our examples, Blockly supports a concept of block shadows, where
a shadow, for one, signals the type of block that fills an input, and second, if chosen
well, allows users to directly use the shadow rather than having to fetch a block for
a leaf node. Our heuristic for identifying appropriate default shadow blocks worked
out well for our examples, but already, if the rules are specified in different orders,
the heuristic could make sub-optimal choices. Additionally, it is not only possible to
combine a block with shadow blocks, but also pre-build larger constructs of multiple
blocks that users fetch from the palette all at once, as seen in Figure 8.5. We allow
users to specify that this is desirable for certain rules but currently make no attempt to
compute this ourselves.

8.6.4 Block Labels

S/Kogi currently does not generate optimal layouts of labels on blocks. We considered
remembering the boundaries of inlined rules and using these boundaries as markers
for when a line break could be appropriate. Even then it remains questionable whether
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labels will end up optimal, without involving the user to manually set line breaks and
spaces.

S/Kogi only removes terminals that it recognizes as list separators. As other delimiters
such as curly braces are not needed as syntactic dividers in a block-based editor, we
considered also removing these but found that in many cases this would lead to
seemingly identical blocks. For example, in JavaScript, there is a block for an array
surrounded by square braces, and a block for a sequence of statements surrounded by
curly braces. These act as important signifiers for users to identify the type of block, in
particular, if they have prior experience with the underlying textual language.

The name of the rule of the grammar is already used as the tooltip for blocks. To help
disambiguation, S/Kogi could try and detect cases where blocks appear ambiguous
and insert the name of the rule as a label on the block.

8.6.5 Lexical Rules

The handling of lexical rules, summarized here as rules that would likely yield a single
token in a traditional parser such as a single literal, is not ideal in S/Kogi. At the
moment, we simply always generate a single block with a text field for each lexical rule.
This has some benefits and some downsides: for one, there is no distinction between
numbers or identifiers, so users are free to type either, and during export, a distinction
has to be made involving the help of a parser. If there was a distinction, we could also
make better use of the various types of fields that Blockly offers for different input data.
Block-based editors also commonly make use of domain-specific graphical elements for
data entry, so S/Kogi could allow users to customize the appearance of lexicals in the
future.

8.6.6 DSLs vs General-purpose PLs

Our case studies illustrate that once a minimum level of complexity is exceeded, S/Kogi
will significantly reduce the number of blocks in block-based editors compared to Kogi.

We argue that for language grammars with significant complexity, such as Java,
where S/Kogi performs worse, it may be infeasible to create suitable block-based
editors, using Blockly’s patterns. In Java, many optional special cases exist throughout
the grammar. When writing Java textually, users can omit optional elements such as
annotations, while in a block editor, explicit actions for creating optional elements must
exist, for example through mutators.

Additionally, especially for larger languages and sometimes in our smaller examples,
different groupings for palettes could have been helpful to the user. For example,
while the switch part of a switch-case statement is placed in the statement category in
JavaScript, the case element is placed in the separate CaseClause category.
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8.6.7 Usability

As shown in Section 8.5, the block-based environments generated using S/Kogi contain
fewer blocks and categories. This is translated to less visual noise for users; the search
space for browsing language constructs is smaller than in the same environments
generated using Kogi. As shown in the case studies, users need fewer blocks to create
their programs. While creating the example programs, we noticed that the time required
to define programs is shorter in S/Kogi generated editors. However, we plan to conduct
a formal user study to determine whether this is true for other programs and languages
and how time relates to the user’s experience.

8.7 related work

There is a lack of tools that help users to develop block-based environments [230].
Most of the existing tooling requires developers to make manual implementations
of the desired block-based environments. Programming environment generation is an
active research line focused on developing tools for existing and new languages.
In this direction, Rascal2MPS [233] follows a similar approach as the one used in
Kogi [228, 355]; it analyzes CFGs to derive projectional editors. However, Rascal2MPS
presents some limitations, as described by the authors, regarding the usability of the
generated projectional editors. S/Kogi is a first step towards generating better editors by
analyzing language definitions. For instance, using Blockly’s mutator features improves
the creation of structural editors, which resembles in a way the so-called editor actions
of MPS [250], or transformations in the Synthesizer Generator [286]. Some of the
simplification rules described in Section 8.3 might provide good results for improving
the generated projectional editors as well.

The transformations described in this chapter can be seen in the context of grammar
convergence [198]. The goal of grammar convergence is to align grammatical structures
represented in different formalisms or styles, and to establish equivalence properties. As
an example, consider two grammars for the same language, written for different parser
generators, such as ANTLR and Yacc. Both parser generators use different algorithms,
and hence require different idioms to encode certain syntactic structures or disambigua-
tion. Examples of such idioms are left-recursion removal, or encoding precedence using
a hierarchy of non-terminals. Convergence then consists of systematically transforming
one grammar to the other. Examples of such transformations include deyaccification (if
a grammar formalism does not support explicit precedence handling), left recursion
introduction, renaming, etc.

In this chapter, existing grammars are taken as input and are “converged”, so to speak,
to block-based definitions that do not yet exist but follow certain aesthetic principles.
Nevertheless, just like in the original work on grammar convergence, equivalence
properties are at stake. The generated block-based language should, for instance, allow
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the construction of all the programs that the original grammar captures. Similarly,
the transformations should not introduce ambiguities that do not exist in the original
language.

A more specific instance of convergence is abstract syntax generation from context-
free grammars [384]. This work was further refined in the SDF syntax definition
formalism [134], and later in Stratego/XT where algebraic signatures are derived from
context-free grammars [155]. In a sense, the block-based definitions derived from
grammars in this chapter are a specific kind of abstract syntax, where some details of
the concrete syntax are indeed elided (e.g., whitespace, operator precedence, etc.), but
others are not (e.g., keyword literals).

8.8 conclusion

We described S/Kogi, an improvement over Kogi, to simplify and optimize block-based
editors generated using language grammars, such that existing language infrastructure
can also be applied to artifacts from the block-based editor. We demonstrated that the
simplifications we apply to the grammar significantly reduce the number of blocks in the
block-based editor and improve their usability. As evaluation, we showed that languages
of different complexities benefit from the simplification process and only rarely small
user interventions were needed to arrive at editors that fulfill our established aesthetic
criteria. We thus consider S/Kogi an important step to making use of automatically
derived block-based editors feasible.
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9
C O N C L U S I O N S

In this chapter, we revisit the research questions presented in Section 1.2 and summarize
the main contributions of our work. Overall this thesis discusses how to engineer
and develop language parametric programming environments and user interfaces for
Domain-Specific Languages. In particular, we addressed the following central research
question:

RQ: How to engineer different user interfaces for DSLs, so that language engineers
can choose the right technological space and notation for various types of users,
while reusing existing language components?

Consequently, eight concrete questions emerged, and we explored them using three
technological spaces: computational notebooks, projectional editors, and block-based
environments. The first five research questions, RQ1.1-RQ3, were answered using
the technological space of computational notebooks. Then, RQ4 was addressed using
projectional editors. Finally, RQ5, RQ6, and RQ7 were studied from the block-based
environment perspective.

In RQ1.1 and RQ1.2, we study the requirements for creating and generating compu-
tational notebooks for Domain-Specific Languages (DSLs) and how notebooks can be
generated using Language Workbenches (LWBs), respectively.

RQ1.1: What is required to define a computational notebook at the language
abstraction level?

RQ1.2: How can notebooks be offered as a generic service in language workbenches?

We addressed these two research questions in Chapter 2, where we performed a
FODA on computational notebook platforms. As a result, we identified notebooks’ main
characteristics and components and what was needed to create a notebook for a DSL.
Moreover, we identified that some of these characteristics are already part of the generic
set of IDE services offered by most LWB. Therefore, we developed Bacatá, a language-
parametric Jupyter notebook generator for DSLs written using Rascal. Bacatá allows
language engineers to create notebooks at the language abstraction level and not at
the notebook implementation level, and it helps to generate and develop IDE services
for notebooks such as syntax highlighters and auto-completors. Additionally, it allows
language engineers to reuse existing language components (e.g., REPLs, interpreters,
compilers, and type checkers) to generate Jupyter kernels.
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During the development and evaluation of Bacatá (Chapter 2), we identified that
some languages were more straightforward to use through a notebook interface than
others. Therefore, the following research questions are inspired by this work, and they
are closely related to RQ1.1and RQ1.2. Thus, we studied:

RQ2.1: What are the requirements for designing a notebook-friendly language?

RQ2.2: How can we transform an existing language into a notebook-friendly
language?

In Chapter 3, to characterize the type of languages that are more suitable to be used
through a notebook interface, we surveyed and studied different REPLs for some of
the most popular languages and the principles underlying those REPLs. Based on
this, we identified and defined a class of languages called sequential languages. The
essence of a sequential language is that the concatenation of two valid programs is also a
valid program. Thanks to this property, we can develop an exploring interpreter, which
is a bookkeeping algorithm that stores program states as configurations. This type
of interpreter allows users to backtrack to previous executions, a common task in
exploratory programming settings. This class of languages naturally fits the REPL
metaphor and, therefore, these languages are notebook-friendly. Since not all languages
fall into the class of sequential languages nor are notebook-friendly, we introduced
a methodology for transforming existing non-sequential languages into sequential
languages. As a result, based on the definition of a sequential language, obtaining
an exploratory interpreter is straightforward, and this type of interpreter naturally
supports the notebook metaphor.

Based on the definition of sequential languages, the development of exploring
interpreters for such languages, and the massive usage of computational notebooks for
exploratory programming tasks, we defined the following research question:

RQ3: What language design guidelines could be used to improve the programming
experience of DSL users within a notebook platform?

In Chapter 4 we addressed this questions, by combining Bacatá (Chapter 2) and
the principled approach described in Chapter 3. Therefore, thanks to the supported
actions in an exploratory interpreter (execute, revert, and display), we explored how to
extend the traditional notebook UI and create language parametric widgets that could
improve the programming experience of users, mainly when performing exploratory
programming tasks. Therefore, we designed two notebook widgets, execution graph
widget and variable watcher. These two widgets offer users additional information about
the state of the underlying interpreter, which helps them make better decisions and
understand the execution of the notebook. The execution graph widget allows users to
understand how the notebook has been executed and change the interpreter’s state by
backtracking previous results. This is particularly useful for exploratory programming
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activities in which users want to try different alternatives within the same notebook.
The variable watcher allows users to inspect the name and values of the variables that
are currently stored in the underlying notebook interpreter. Inspecting the notebook’s
interpreter is helpful for end-users because they do not need to keep this information
in their mind; they always have an overview of the existing variables. The availability
of this information might reduce the users’ cognitive load and better understand their
programs’ output.

After exploring the usage of notebooks as an interface for DSLs, we explored two
other user interfaces, projectional editors and block-based environments; they enable
different mechanisms to interact with DSLs. First, we explored projectional editors
because we worked on a project in collaboration with Canon Production Printing
(CPP), and they proposed a concrete use case that involved the usage of projectional
editors. The use case that came from CPP is the following: they have developed several
DSLs using different technologies, mainly using textual and projectional language
workbenches. However, now they must reuse language concepts defined in textual
languages within projectional languages to support new business needs. Due to the
heterogeneity of the technologies, this task is cumbersome and expensive in terms
of effort and money, mainly because languages must be reimplemented from scratch,
which is not ideal. Therefore, we defined the following research question:

RQ4: What mechanism can be used to map context-free grammars to projectional
language definitions?

As presented in Chapter 5, there are some existing approaches from both academia
and industry that addressed this problem. However, the existing solutions required
re-writing the languages’ syntax into a specific formalism. Therefore, we proposed an
alternative that relies on the nature of textual languages, which are often described
using Context-Free Grammars (CFGs). Therefore, we designed a mapping from CFGs
productions into projectional editors constructs. Concretely, we developed a prototype
using Rascal as a textual language workbench and JetBrains MPS as a projectional
language workbench. Our results show that it is possible to automate the process of
deriving an abstract syntax tree and a projectional editor from a CFG, which allows
using a textual language within a projectional editor. However, in some cases, resulting
projectional editors might require some fine-tuning from language engineers to offer a
good editing experience to their users.

After evaluating the approach for generating projectional editors from CFG specifica-
tion, we explored whether a similar approach could be used for deriving block-based
environments from CFGs. However, before diving into the derivation process, we
needed to understand these visual programming environments better. Therefore, we
first studied block-based editors in general through the following research question:

RQ5: What are the main characteristics of block-based environments and how are
they implemented?
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In Chapter 6, we conducted a systematic literature review and a less-systematic tool
review to understand the landscape of block-based environments. We identified that
these programming environments are used in different domains beyond the realm of
programming education. Regarding the main characteristics of block-based editors,
we found that they are heterogeneous, and their features depend on the language,
the domain, and the target users. To summarize our findings, we developed a feature
diagram with the alternatives we identified. After studying the different tools, we also
identified that most block-based editors are being developed in an ad-hoc fashion,
and no language engineering technology is being used. Most of the identified tools in
this study showed that JavaScript is the most popular language for developing such
environments. This finding is not surprising since the most popular library used for
developing these environments is Google Blockly, written in such a language. Finally,
we found that performing a systematic and a less-systematic review allowed us to
obtain more insights about this domain that would not be possible to obtain following
a single method.

Based on the findings obtained after the systematic literature review and the less-
systematic tool review, we identified that specialized language engineering technology,
such as Language Workbenches (LWBs), was not used in developing block-based
environments. Therefore, in Chapter 7, we addressed the next research question:

RQ6: How can language workbenches support the development of block-based
environments by reusing existing language components?

To support the development of block-based editors using language workbenches, we
followed a similar approach to the one we used in Chapter 5. Therefore, we start with
CFG for describing languages. Then, grammars are analyzed to transform production
rules into blocks. To transform productions into blocks, we designed a custom data type
to capture the required data to specify block-based editors, including the languages’
palette and blocks. For this purpose, we implemented Kogi, which is a tool that takes
as input CFGs defined using the Rascal language definition formalism and produces
block-based environments that use Google Blockly. In this process, Kogi analyzes the
grammars to improve the usability of the resulting block-based editors by inlining chain
rules. Although we apply some heuristics to improve the editors; they might still not
be ideal out of the box. Thus Kogi offers a mechanism for customizing the generated
editors. This mechanism is helpful because it allows language engineers to adapt their
generated environments to satisfy their requirements. Moreover, Kogi allows language
engineers to reuse existing language components to generate block-based editors and
reuse all the language processor components (e.g., REPLs, type checkers, interpreters,
and compilers). As a result, block-based programs can be executed using the existing
language’s infrastructure.

Kogi demonstrated that it is possible to use LWBs to develop block-based environ-
ments for existing and new languages. However, some of the resulting block-based
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interfaces provided better results than others. Notably, we noticed that DSLs produced
better results than programming languages in terms of the aesthetic criteria (e.g., num-
ber of blocks and categories) presented in Chapter 8. After generating the block-based
editor, some manual work from developers was required to offer a usable programming
environment. With this in mind, we defined the following research question:

RQ7: What techniques could be applied to improve the usability of generated
block-based editors?

In the previous chapter (Chapter 7), we observed that the usability of the generated
block-based editors could be improved. Therefore, in Chapter 8, we studied how this
can be achieved by applying different heuristics that simplifies the structure of the input
grammar. As observed in the results, grammar transformations significantly reduced
the number of blocks in the editor and improved their usability. However, a user study
is required to determine whether there is a correlation between the reduction in the
number of blocks and the increased usability of the block-based editors.

To conclude, this thesis explored different user interfaces and notations for interacting
with DSLs such as computational notebooks, notebook widgets, projectional editors,
and block-based environments. Moreover, we studied how to engineer these interfaces
from the language engineering perspective and maximize the reuse of existing lan-
guage components. This thesis demonstrates that it is possible to effectively generate
different user interfaces for the same language using software language engineering
techniques and technologies. Also, as discussed throughout this thesis, there are dif-
ferent benefits of using language engineering technologies and methods rather than
ad-hoc implementations in terms of productivity.
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Editor

Editing Free-form             

Spreadsheet  

Syntactic

services

Highlighting       G#     

Completion           

Formatting           

Folding    

Keyboard shortcuts      G#      

Line numbers        

Comments    

Prose   G#            

Code Monolingual         

Polyglot  G#   

Execution

Interactive            

Batch     

Background        

Async. tasks       

Rich output

HTML widgets            

Plots               

Multimedia   G#            

Tables              

Plain output        

VCS Cell  

Document     G#  

Text editor      

Licensing
Academic     

Open source        

Commercial      

Platform

Deployment SaaS        

Standalone           

Extensibility
3rd party

integrations
         

Extensions             

Programming

lang. support

Single           

Multiple       

Shareability Offline   G# G#   G#      

Online       

Reproducibility Document       

Online       

Table A.1: Notebooks features ( , full support; G#, limited support).
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Tool name URL

Jupyter https://jupyter.org/ [182]

Knitr https://yihui.name/knitr/ [218]

Burrito Research paper [130]

GraphPad Prism https://www.graphpad.com/scientific-software/prism/

Apache Zeppelin https://zeppelin.apache.org

Observable https://observablehq.com/

Iodide https://alpha.iodide.io/

Distill https://distill.pub/

Codestrates Research paper [279]

Maple https://maplesoft.com/products/Maple/

Azure Databricks https://azure.microsoft.com/en-us/services/databricks/

Google Colaboratory https://colab.research.google.com/

R Markdown https://rmarkdown.rstudio.com/[389]

MATLAB https://nl.mathworks.com/products/matlab/live-editor.html

Mathematica https://www.wolfram.com/mathematica/

Sage http://www.sagemath.org/[324]

Table A.2: List of tools studied for the Feature-oriented domain analysis on computational
notebook platforms.

a.2 MetaJupyterServer class

In Bacatá-Core, the MetaJupyterServer class abstracts the communication layer between
Jupyter and a language, while the ILanguageProtocol abstracts the language from the
tools in a generic way.

processExecuteRequest(Listing A.1 line 4) This method is called when an
end-user request to execute an input cell. It delegates the evaluation of the input
code received as a parameter to the language’s REPL.

processCompleteRequest(Listing A.1 line 6) This method is executed when
an end-user request to auto-complete a fragment in the current line of code.

processHistory(Listing A.1 line 8) This method returns the list of all the pre-
viously executed commands in the current environment.

processKernelInfoRequest(Listing A.1 line 10) This method is called in the
initialization of the language kernel. When an end-user creates a new notebook,

https://jupyter.org/
https://yihui.name/knitr/
https://www.graphpad.com/scientific-software/prism/
https://zeppelin.apache.org
https://observablehq.com/
https://alpha.iodide.io/
https://distill.pub/
https://maplesoft.com/products/Maple/
https://azure.microsoft.com/en-us/services/databricks/
https://colab.research.google.com/
https://rmarkdown.rstudio.com/
https://nl.mathworks.com/products/matlab/live-editor.html
https://www.wolfram.com/mathematica/
http://www.sagemath.org/
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Jupyter calls this method to obtain information about the language (e.g., name,
version, language logo, CodeMirror mode).

processShutdownRequest(Listing A.1 line 12) This method is used to stop
a language kernel.

processIsCompleteRequest(Listing A.1 line 14) This method decides whether
the input cell code is complete or not. If the code is incomplete, it tells the front-
end to display a continuation prompt.

makeInterpreter(Listing A.1 lines 16-17) This method returns an instance of
the ILanguageProtocol. This instance acts as a bridge between the Jupyter’s commu-
nication layer and the language. Thus, this object interacts with the language’s
REPL.

1 public abstract class JupyterServer {

2 . . .
3

4 abstract void processExecuteRequest(ContentExecuteRequest contentExeReq, Message msg);

5

6 abstract Content processCompleteRequest(ContentCompleteRequest contentCompleteRequest);

7

8 abstract void processHistoryRequest(Message msg);

9

10 abstract Content processKernelInfoRequest(Message msg);

11

12 abstract Content processShutdownRequest(ContentShutdownRequest contentShutdownRequest);

13

14 abstract Content processIsCompleteRequest(ContentIsCompleteRequest isCompleteRequest);

15

16 abstract ILanguageProtocol makeInterpreter(String source, String replQualifiedName,

17 String. . . salixPath) throws Exception;

18 }

Listing A.1: Abstract methods of the MetaJupyterServer class.
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a.3 ILanguageProtocol Interface

public interface ILanguageProtocol {

void initialize(Writer stdout, Writer stderr);

String getPrompt();

void handleInput(String line, Map<String, InputStream> output, Map<String, String>

metadata) throws InterruptedException;

void handleReset(Map<String, InputStream> output, Map<String, String> metadata) throws

InterruptedException;

boolean supportsCompletion();

boolean printSpaceAfterFullCompletion();

CompletionResult completeFragment(String line, int cursor);

void cancelRunningCommandRequested();

void terminateRequested();

void stackTraceRequested();

abstract boolean isStatementComplete(String command);

void stop();

}

Listing A.2: ILanguageProtocol interface.



B
A P P E N D I X : W H AT Y O U A LWAY S WA N T E D T O K N O W B U T
C O U L D N O T F I N D A B O U T B B E S

b.1 phase 2 : filtering questions

• Is the publication a full paper?
• Does the paper introduce a language or a tool that uses a block-based editor?
• Does the paper introduce a tool for building block-based environments?
• Does the paper use or study block-based environments?
• Does the paper present implementation details regarding the block-based environment?
• Does the paper present best practices for using block-based environments?
• Does the paper present best practices or guidelines for implementing block-based environments?
• Does the paper present limitations of block-based environments?
• Does the paper present open challenges that should be addressed with block-based environments?

b.2 programming languages popularity

Language Occurrences

Scratch 124

C 52

Java 50

Go 46

R 44

JavaScript 44

D 39

Python 35

Logo 28

Scheme 16

C++ 15

SQL 9

NaN 8

PHP 6

Julia 6

Haskell 5

C# 3

Swift 3

TypeScript 3

LabVIEW 2

Scala 2

MATLAB 1

PL 1

Prolog 1

Visual Basic 1

Perl 1

Groovy 1

Lua 1

SAS 1

Ada 1

Table B.1: Programming languages popularity in block-based environments.
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b.3 papers per venue

Category Venue # Papers

Human

computer

interaction

Conference on Human Factors in Computing Systems (CHI) 13

Conference on Interaction Design and Children 11

International Conference on Human-Computer Interaction (HCII) 4

International Journal of Child-Computer Interaction 3

Creativity and Cognition 1

International Conference on Tangible, Embedded, and Embodied Interac-
tion

1

IFIP Conference on Human-Computer Interaction (INTERACT) 1

Symposium on User Interface Software and Technology (UIST) 1

International Conference of Design, User Experience, and Usability
(DUXU)

1

International Symposium on End User Development 1

Iberoamerican Workshop on Human-Computer Interaction (HCI-
COLLAB)

1

International Conference on Human Systems Engineering and Design:
Future Trends and Applications (IHSED)

1

Programming /

HCI

Blocks and Beyond Workshop (B&B) 13

Symposium on Visual Languages and Human-Centric Computing
(VL/HCC)

9

Journal of Visual Languages & Computing 2

International Symposium on End User Development (IS-EUD) 2

Distributed

computing

International Conference on Computing, Communication and Network-
ing Technologies (ICCCNT)

5

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies

1

International Smart Cities Conference (ISC2) 1

International Parallel and Distributed Processing Symposium Workshops
(IPDPSW)

1

Journal of Parallel and Distributed Computing 1

Robotics

/Education

International Conference on Robotics and Education (RiE) 4

Robotics in Education 1

Programming
Science of Computer Programming 2

Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Splash-E)

1

Security
International Conference on Information Systems Security and Privacy
(ICISSP)

2
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Table B.2 continued from previous page

Education

Technical Symposium on Computer Science Education (SIGSE) 10

Global Engineering Education Conference (EDUCON) 5

Computational Thinking Education 5

Education and Information Technologies 2

Workshop in Primary and Secondary Computing Education 2

International Conference on International Computing Education Research 2

Conference on International Computing Education Research 2

Transactions on Computing Education 1

International Conference on Information Technology Based Higher Edu-
cation and Training (ITHET)

1

International Conference on Learning and Teaching in Computing and
Engineering (LaTICE)

1

Journal of Computing Sciences in Colleges 2

Innovation and Technology in Computer Science Education (ITiCSE) 1

Workshop in Primary and Secondary Computing Education (WIPSCE) 1

Conference on Innovation and Technology in Computer Science Educa-
tion

1

International Journal of Artificial Intelligence in Education 1

International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives (ISSEP)

1

Computers & Education 1

International Conference on Artificial Intelligence in Education (AIED) 1

Journal of Science Education and Technology 1

International Conference on Blended Learning (ICBL) 1

Conference on Computer Supported Education (CSEDU) 1

International Conference on Interactive Collaborative Learning (ICL) 1

Conference on Learning and Collaboration Technologies (LCT) 1

Software Data Engineering for Network eLearning Environments 1

Accessibility

/HCI
Conference on Computers and Accessibility (ASSETS) 2

Software

engineering

Conference on Source Code Analysis and Manipulation (SCAM) 2

Conference on Program Comprehension (ICPC) 1

Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering

1

Conference of the Center for Advanced Studies on Collaborative Research
(CASCON)

1

IEEE International Workshop on Software Clones (IWSC) 1

IEEE Transactions on Emerging Topics in Computing 1

Conference on Soft Computing and Software Engineering (SCSE’15) 1

Journal of Systems Architecture 1
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Table B.2 continued from previous page

Conference on Open Systems (ICOS) 1

Technology Conference on Advances in Information Technology 1

General

Communications of the ACM 1

IEEE Access 1

TechTrends 1

Science and Information Conference (SAI) 1

Engineering

Conference on Automation, Computational and Technology Management
(ICACTM)

1

Conference on Developments in eSystems Engineering (DeSE) 1

Computers & Electrical Engineering 1

Robotics Iberian Robotics conference (Robot) 1

International Conference on Ubiquitous Robots (UR) 1

Games
International Conference on Serious Games, Interaction, and Simulation
(SGAMES)

1

Multimedia Multimedia Tools and Applications 1

b.4 papers per country

Figure B.1: This choropleth map displays a summary of the number of papers published per
country. The detailed table with the values is shown in Table B.3.
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Country Papers

USA 64

UK 14

Germany 8

Spain 6

India 6

Greece 5

Netherlands 5

New Zealand 4

Portugal 3

Brazil 3

Norway 3

Japan 3

Israel 3

Canada 2

China 2

Saudi Arabia 2

Lebanon 2

Italy 2

Slovakia 2

Thailand 1

Ireland 1

Malaysia 1

Scotland 1

Taiwan 1

Slovenia 1

Bangladesh 1

Argentina 1

Colombia 1

Croatia 1

South Korea 1

Korea 1

Austria 1

Switzerland 1

Table B.3: Total number of papers included in this study per country
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b.5 tool popularity across publications

Name Sum

Scratch 127

Blockly 59

Alice 42

Snap! 40

App Inventor 40

Lego Mindstorms 23

PencilCode 13

GreenFoot 12

Makecode 11

GP 9

Tiled Grace 9

Dr. Scratch 6

Code.org 6

Scratch Jr 6

Droplet 5

LogoBlocks 5

PocketCode 5

Ardublockly 5

StarLogo TNG 5

BYOB 4

NetsBlox 4

Nettango 4

Blocks4All 4

Stencyl 4

CT-Blocks 4

Blocklyduino 4

BlockyTalky 4

Hairball 4

RoboBuilder 3

pencil.cc 3

Deltatick 3

DrawBridge 3

Openblocks 3

ArduBlock 3

Modkit 3

Squeak eToys. 3

Bags 3

Dash and dot 3

Open roberta 3

Hopscotch 3

CoBlox 2

BridgeTalk 2

Tern 2

Ozobots 2

Waterbear 2

Torino 2

Agentcubes 2

mBlock 2

EvoBuild 2

UML 2

DataSnap 2

Ladder 2

Kodu 2

Blockly@rduino 2

Tynker 2

Frog Pond 2

iSnap 2

LaPlaya 1

ITCH 1

DBSnap 1

BEESM 1

CustomPrograms.1 1

CodeIt 1

CARMEN 1

Pixly 1

BlockImpress 1

Polymorphic Blocks 1

ecraft2learn 1

Spherly 1

FabCode 1

MakerArcade 1

MORPHA 1

RoboBlockly 1

edbot 1

NEPO 1

Patch 1

DStBlocks 1

Neuroblock 1

ROBOLAB 1

Amphibian 1

GradeSnap 1

Accessible Blockly 1

PopBots 1

Quality Hound 1

Calico Jigsaw 1

BlueJ 1

SPARQL 1

Tickle 1

ScratchX 1

Flip 1

Logo 1

Code3 1

Snap4Arduino 1

E-Block 1

RoboBlocks 1

Microsoft Touch Develop 1

MicroApp 1

Blockpy 1

AppLap 1

CustomPrograms 1

Robobo 1

CodeSpells 1

Turtle Art 1

Micropython 1

Sketchware 1

Thunkable 1

AppyBuilder 1

BLOX 1

Finch robot 1

App Inventor Java Bridge 1

Robokol 1

BehaviourComposer 1

AgentSheets 1

TurtleArt 1

PicoBlocks 1

Scratch Memories 1

Scratch Community Blocks 1

PseudoBlocks 1

OzoBlockly 1

TinkerBlocks 1

ViMAP 1

KidSim 1

Gameblox 1

Phratch 1

Romo 1

N-Bot 1

Cherps 1
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b.6 programming languages used to implement bbes

Programming language Papers

N/A 100

JavaScript 15

HTML, JavaScript, and CSS 15

Java 3

Python 2

iOS (Swift) 2

JavaScript & Java 2

Pharo Smalltalk 2

TypeScript 2

AngularJs and TypeScript 1

Snap! 1

Python, HTML, CSS and Javascript 1

Java / JastAdd 1

Java / ANTLR 1

ActionScript 1

PHP-based framework & JavaScript and HTML5 1

Tiled Grace 1

Table B.4: Programming languages used to implement block-based environments.

b.7 tools used for development

Library # of languages

NaN 62

Blockly 40

Scratch 11

Snap! 7

Scratch 3.0 (Blockly) 3

CT-Blocks 3

App inventor & Blocky 2

Microsoft MakeCode 2

BlocklyDuino 2

Python 1

NetTango 1

Blockly@rduino 1

Blockly and Standard pictogramming 1

Nettango 1

Blockly, Monaco, MakeCode 1

iSnap [277] 1

Droplet 1

MakeCode 1

Snap! & Scratch 1

Deltatick 1

NetsBlox 1

PencilCode, Droplet 1

Openblocks [294] 1

Ardublock 1

Tiled Grace 1

Scratch & Blockly 1

Snap! & DB Snap 1

App inventor 1

Table B.5: List of tools used for the development of block-based editors.
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b.8 domains

Sub-category Category

End-user programming

Programming

Parallel Programming

Behavioural programming

Audio programming

Collaborative Programming

Programming

Programming Models

Education

Education

Parallel Programming education

Computational Thinking

Programming education

socioscientific issues (SSI) education

Grammar education

Education programming

Computer Science Education

Simulation-based training

Latin

Parson problems

Programming environments

Programming environments

Novice programming environments

Accessible Programming Environments

Spreadsheets

Block-based Environments

Frame-based editing

Security
Security

Privacy

Robotics

Physical computing

Micro:bit

Collaborative robots

Embedded systems development

Physical computing

Microcontrollers

Automotive manufactoring

Smart cities
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Sub-category Category

Mobile

Scratch
LanguagesVisual DSLs

Block-based languages

Augmented reality

HCI

Human Robotics Interaction

Usability

Tangible surfaces

Intelligent Tutoring Systems

HCI

Brain-Computer Interface

Tangible user interfaces

Brain-computer Interfaces

end-user development

Accessibility

Visualization

ARTS & Creativity

Gaming

Music

Cultural Heritage (museums & art)

Tinkering

Storytelling

Biology
ScienceChemistry

Medicine

AI

AI

Data Science

Data-driven programs

Data Analysis

data analysis and visualization

Machine learning

program analysis

Software Engineer

Code quality

Testing

Databases

Static analysis

program analysis and transformation



228 appendix : what you always wanted to know but could not find about bbes

Sub-category Category

Software quality

Agent-based computational model
Agent-based modelAgent-based modelling

Agent-based modelling tasks



C
A P P E N D I X : G E T T I N G G R A M M A R S I N T O S H A P E F O R
B L O C K - B A S E D E D I T O R S

c.1 example programs

This appendix contain screenshots of the example programs developed in Section 8.5.

Figure C.1: Example program using the QL environment generated by Kogi.

Figure C.2: Example program using the QL environment generated by S/Kogi.

229
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Figure C.3: Example program using the State
Machine environment generated by
Kogi.

Figure C.4: Example program using the State
Machine environment generated by
S/Kogi.

Figure C.5: Example program using the JavaScript environment generated by Kogi.
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Figure C.6: Example program using the JavaScript environment generated by S/Kogi.

Figure C.7: Example program using the CCL environment generated by Kogi.

Figure C.8: Example program using the CCL environment generated by S/Kogi.
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Figure C.9: Example program using the Mini-
Java environment generated by
Kogi.

Figure C.10: Example program using the Mini-
Java environment generated by
S/Kogi.

Figure C.11: Example program using the Sonification blocks environment generated by Kogi.

Figure C.12: Example program using the Sonification blocks environment generated by S/Kogi.
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[241] Monika Mladenović, Ivica Boljat, and Žana Žanko. “Comparing loops misconceptions in
block-based and text-based programming languages at the K-12 level.” In: Education and
Information Technologies 23.4 (2018), pp. 1483–1500. issn: 1573-7608. doi: 10.1007/s10639-
017-9673-3.

[242] Eugenio Moggi. “Notions of Computation and Monads.” In: Information and Computation
93.1 (1991), pp. 55–92. doi: 10.1016/0890-5401(91)90052-4.

[243] Jens Mönig and Brian Harvey. Snap! https://snap.berkeley.edu. [Online, accessed 29

July 2021]. 2019.

[244] Arjan J. Mooij, Jozef Hooman, and Rob Albers. “Gaining Industrial Confidence for
the Introduction of Domain-Specific Languages.” In: 2013 IEEE 37th Annual Computer
Software and Applications Conference Workshops. 2013, pp. 662–667. doi: 10.1109/COMPSACW.
2013.83.

[245] L. Moors, A. Luxton-Reilly, and P. Denny. “Transitioning from Block-Based to Text-Based
Programming Languages.” In: 2018 International Conference on Learning and Teaching in
Computing and Engineering (LaTICE). 2018, pp. 57–64. doi: 10.1109/LaTICE.2018.000-5.

[246] Luke Moors and Robert Sheehan. “Aiding the Transition from Novice to Traditional
Programming Environments.” In: Proceedings of the 2017 Conference on Interaction De-
sign and Children. IDC ’17. Stanford, California, USA: ACM, 2017, pp. 509–514. isbn:
9781450349215. doi: 10.1145/3078072.3084317.

[247] Peter D. Mosses. “Modular Structural Operational Semantics.” In: Journal of Logic and
Algebraic Programming 60–61 (2004), pp. 195–228. doi: 10.1016/j.jlap.2004.03.008.

[248] José Miguel Mota et al. “Augmented reality mobile app development for all.” In:
Computers & Electrical Engineering 65 (2018), pp. 250–260. issn: 0045-7906. doi: 10.1016/
j.compeleceng.2017.08.025.

[249] José Miguel Mota et al. “Learning Analytics in Mobile Applications Based on Multi-
modal Interaction.” In: Software Data Engineering for Network eLearning Environments:
Analytics and Awareness Learning Services. Springer, 2018, pp. 67–92. isbn: 978-3-319-
68318-8. doi: 10.1007/978-3-319-68318-8\_4.

[250] JetBrains MPS. Editor Actions. https://bit.ly/3pN7k5l. [Online, accessed 26 September
2021]. 2021.

[251] M. Müller et al. “Enabling Teenagers to Create and Share Apps.” In: 2018 IEEE Conference
on Open Systems (ICOS). 2018, pp. 25–30. doi: 10.1109/ICOS.2018.8632815.

[252] Brad A. Myers, Andrew J. Ko, and Margaret M. Burnett. “Invited Research Overview:
End-User Programming.” In: CHI ’06 Extended Abstracts on Human Factors in Computing
Systems. CHI EA ’06. Montréal, Québec, Canada: ACM, 2006, pp. 75–80. isbn: 1595932984.
doi: 10.1145/1125451.1125472.

[253] Sandeep Nagar. “IPython.” In: Introduction to Python for Engineers and Scientists: Open
Source Solutions for Numerical Computation. Apress, 2018, pp. 31–45. isbn: 978-1-4842-
3204-0. doi: 10.1007/978-1-4842-3204-0\_3.

https://scratch.mit.edu
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1016/0890-5401(91)90052-4
https://snap.berkeley.edu
https://doi.org/10.1109/COMPSACW.2013.83
https://doi.org/10.1109/COMPSACW.2013.83
https://doi.org/10.1109/LaTICE.2018.000-5
https://doi.org/10.1145/3078072.3084317
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1016/j.compeleceng.2017.08.025
https://doi.org/10.1016/j.compeleceng.2017.08.025
https://doi.org/10.1007/978-3-319-68318-8\_4
https://bit.ly/3pN7k5l
https://doi.org/10.1109/ICOS.2018.8632815
https://doi.org/10.1145/1125451.1125472
https://doi.org/10.1007/978-1-4842-3204-0\_3


bibliography 251

[254] Istvan Nagy et al. “VPDSL: A DSL for Software in the Loop Simulations Covering
Material Flow.” In: Proceedings of the 2012 IEEE 17th International Conference on Engineering
of Complex Computer Systems. ICECCS ’12. IEEE Computer Society, 2012, pp. 318–327.
isbn: 9782954181004.

[255] H. Nergaard, N. Ulltveit-Moe, and T. Gjøsæter. “A scratch-based graphical policy editor
for XACML.” In: 2015 International Conference on Information Systems Security and Privacy
(ICISSP). 2015, pp. 1–9.

[256] Henrik Nergaard, Nils Ulltveit-Moe, and Terje Gjøsæter. “ViSPE: A Graphical Policy
Editor for XACML.” In: Information Systems Security and Privacy. Springer, 2015, pp. 107–
121. isbn: 978-3-319-27668-7.

[257] Jakob Nielsen and Rolf Molich. “Heuristic Evaluation of User Interfaces.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’90. Seattle,
Washington, USA: ACM, 1990, pp. 249–256. isbn: 0201509326. doi: 10.1145/97243.
97281.

[258] Keith J. O’Hara, Douglas Blank, and James Marshall. “Computational Notebooks for AI
Education.” In: Proceedings of the 28th International Florida Artificial Intelligence Research
Society Conference May (2015), pp. 263–268. doi: 10.13140/2.1.2434.5928.

[259] Keith O’Hara, Douglas Blank, and James Marshall. Computational Notebooks for AI
Education. 2015. url: https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/
view/10349/10312.

[260] Bruno C. d. S. Oliveira and William R. Cook. “Extensibility for the Masses - Practical
Extensibility with Object Algebras.” In: ECOOP 2012 – Object-Oriented Programming.
Springer, 2012, pp. 2–27.

[261] Jacqueline Shao Yi Ong et al. “Demo: Expanding Blocks4All with Variables and Func-
tions.” In: The 21st International ACM SIGACCESS Conference on Computers and Accessi-
bility. ASSETS ’19. Pittsburgh, PA, USA: ACM, 2019, pp. 645–647. isbn: 9781450366762.
doi: 10.1145/3308561.3354588.

[262] Jesper Öqvist and Görel Hedin. “Concurrent Circular Reference Attribute Gram-
mars.” In: Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2017. Vancouver, BC, Canada: ACM, 2017, pp. 151–162. isbn:
9781450355254. doi: 10.1145/3136014.3136032.

[263] Terence Parr. ANTLR. https://www.antlr.org/. [Online, accessed 10 October 2021].
2021.

[264] Terence Parr and Jurgen Vinju. “Towards a Universal Code Formatter through Machine
Learning.” In: Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2016. Amsterdam, Netherlands: ACM, 2016, pp. 137–151.
isbn: 9781450344470. doi: 10.1145/2997364.2997383.

[265] E. Pasternak, R. Fenichel, and A. N. Marshall. “Tips for creating a block language with
blockly.” In: 2017 IEEE Blocks and Beyond Workshop (B B). 2017, pp. 21–24.

[266] Evan W. Patton, Michael Tissenbaum, and Farzeen Harunani. “MIT App Inventor:
Objectives, Design, and Development.” In: Computational Thinking Education. Springer,
2019, pp. 31–49. isbn: 978-981-13-6528-7. doi: 10.1007/978-981-13-6528-7\_3.

https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
https://doi.org/10.13140/2.1.2434.5928
https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/view/10349/10312
https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/view/10349/10312
https://doi.org/10.1145/3308561.3354588
https://doi.org/10.1145/3136014.3136032
https://www.antlr.org/
https://doi.org/10.1145/2997364.2997383
https://doi.org/10.1007/978-981-13-6528-7\_3


252 bibliography

[267] Klint Paul. “A Meta-Environment for Generating Programming Environments.” In:
ACM Transactions on Software Engineering and Methodology (TOSEM) 2.2 (1993), pp. 176–
201. issn: 1049-331X. doi: 10.1145/151257.151260.

[268] Fernando Pérez and Brian E. Granger. “IPython: A System for Interactive Scientific
Computing.” In: Computing in Science and Engineering 9.3 (2007), pp. 21–29. doi: 10.
1109/MCSE.2007.53.

[269] Matthew Pickering, Nicolas Wu, and Csongor Kiss. “Multi-stage programs in context.”
In: Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell, HaskellICFP
2019, Berlin, Germany, August 18-23, 2019. ACM, 2019, pp. 71–84. doi: 10.1145/3331545.
3342597.

[270] João Felipe Nicolaci Pimentel et al. “Collecting and Analyzing Provenance on Interactive
Notebooks: When IPython Meets No Workflow.” In: Proceedings of the 7th USENIX
Conference on Theory and Practice of Provenance. TaPP’15. Edinburgh, Scotland: USENIX
Association, 2015, p. 10.

[271] João Felipe Pimentel et al. “A Large-scale Study About Quality and Reproducibility of
Jupyter Notebooks.” In: MSR ’19 (2019), pp. 507–517. doi: 10.1109/MSR.2019.00077.

[272] Gordon D. Plotkin. “A Structural Approach to Operational Semantics.” In: Journal of
Logic and Algebraic Programming 60–61 (2004). Reprint of Technical Report FN-19, DAIMI,
Aarhus University, 1981, pp. 17–139. doi: 10.1016/j.jlap.2004.05.001.

[273] Gordon D. Plotkin. “A structural approach to operational semantics.” In: The Journal of
Logic and Algebraic Programming 60-61 (2004), pp. 17–139. issn: 1567-8326. doi: 10.1016/
j.jlap.2004.05.001.

[274] Nicolai Pöhner et al. “BlocklySQL: A New Block-Based Editor for SQL.” In: Proceedings
of the 14th Workshop in Primary and Secondary Computing Education. WiPSCE’19. Glasgow,
Scotland, Uk: ACM, 2019. isbn: 9781450377041. doi: 10.1145/3361721.3362104.

[275] Guillaume Pothier, Éric Tanter, and José Piquer. “Scalable omniscient debugging.” In:
ACM SIGPLAN Notices 42.10 (2007), pp. 535–552. doi: 10.1145/1297105.1297067.

[276] Thomas W. Price and Tiffany Barnes. “Comparing Textual and Block Interfaces in a
Novice Programming Environment.” In: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research. ICER ’15. Omaha, Nebraska,
USA: ACM, 2015, pp. 91–99. isbn: 9781450336307. doi: 10.1145/2787622.2787712.

[277] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. “ISnap: Towards Intelligent
Tutoring in Novice Programming Environments.” In: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. SIGCSE ’17. Seattle, Washington,
USA: ACM, 2017, pp. 483–488. isbn: 9781450346986. doi: 10.1145/3017680.3017762.

[278] Thomas W. Price, Rui Zhi, and Tiffany Barnes. “Hint Generation Under Uncertainty: The
Effect of Hint Quality on Help-Seeking Behavior.” In: Artificial Intelligence in Education.
Springer, 2017, pp. 311–322. isbn: 978-3-319-61425-0.

[279] Roman Rädle et al. “Codestrates: Literate Computing with Webstrates.” In: Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology. UIST
’17. Québec City, QC, Canada: ACM, 2017, pp. 715–725. isbn: 9781450349819. doi:
10.1145/3126594.3126642.

https://doi.org/10.1145/151257.151260
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1145/3361721.3362104
https://doi.org/10.1145/1297105.1297067
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/3017680.3017762
https://doi.org/10.1145/3126594.3126642


bibliography 253

[280] Jonathan Ragan-Kelley et al. “Decoupling Algorithms from Schedules for Easy Opti-
mization of Image Processing Pipelines.” In: ACM Transactions on Graphics (TOG) 31.4
(2012). issn: 0730-0301. doi: 10.1145/2185520.2185528.

[281] Norman Ramsey. “Literate Programming Simplified.” In: IEEE Software 11.5 (1994),
pp. 97–105. issn: 0740-7459. doi: 10.1109/52.311070.

[282] Rascal. Pico. 2017. url: http://tutor.rascal-mpl.org/Recipes/Recipes.html%5C#
/Recipes/Languages/Pico/Pico.html.

[283] Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore. “The Evolution of
Forth.” In: The Second ACM SIGPLAN Conference on History of Programming Languages.
HOPL-II. Cambridge, Massachusetts, USA: ACM, 1993, pp. 177–199. isbn: 0897915704.
doi: 10.1145/154766.155369.

[284] Patrick Rein et al. “Exploratory and Live, Programming and Coding.” In: The Art, Science,
and Engineering of Programming 3.1 (2018). issn: 2473-7321. doi: 10.22152/programming-
journal.org/2019/3/1.

[285] Achim Reinhardt et al. “Didactic Robotic Fish – An EPSISEP 2016 Project.” In: Interactive
Collaborative Learning. Springer, 2017, pp. 239–253. isbn: 978-3-319-50337-0.

[286] Thomas W. Reps and Tim" Teitelbaum. “Defining Hybrid Editors with the Synthesizer
Generator.” In: The Synthesizer Generator: A System for Constructing Language-Based Editors.
New York, NY: Springer, 1989, pp. 95–142. isbn: 978-1-4613-9623-9. doi: 10.1007/978-
1-4613-9623-9_6.

[287] Thomas Reps and Tim Teitelbaum. “The Synthesizer Generator.” In: SDE 1 (1984),
pp. 42–48. doi: 10.1145/800020.808247.

[288] Mitchel et al. Resnick. “Scratch: Programming for All.” In: Commun. ACM 52.11 (2009),
pp. 60–67. issn: 0001-0782.

[289] John C. Reynolds. “Definitional Interpreters for Higher-Order Programming Lan-
guages.” In: Proceedings of the ACM Annual Conference - Volume 2. Boston, Massachusetts,
USA, 1972, pp. 717–740. isbn: 9781450374927. doi: 10.1145/800194.805852.

[290] John C. Reynolds. “Definitional Interpreters for Higher-Order Programming Lan-
guages.” In: Higher-Order and Symbolic Computation 11.4 (1998), pp. 363–397. doi:
10.1023/A:1010027404223.

[291] John C. Reynolds. “Definitional Interpreters Revisited.” In: Higher-Order and Symbolic
Computation 11.4 (1998), pp. 355–361. doi: 10.1023/A:1010075320153.

[292] G. Robles et al. “Software clones in scratch projects: on the presence of copy-and-paste in
computational thinking learning.” In: 2017 IEEE 11th International Workshop on Software
Clones (IWSC). 2017, pp. 1–7. doi: 10.1109/IWSC.2017.7880506.

[293] F. J. Rodríguez et al. “Toward a Responsive Interface to Support Novices in Block-Based
Programming.” In: 2019 IEEE Blocks and Beyond Workshop (B B). 2019, pp. 9–13. doi:
10.1109/BB48857.2019.8941205.

[294] R V Roque. “OpenBlocks: an extendable framework for graphical block programming
systems.” In: Retrieved Dec (2007). url: http://hdl.handle.net/1721.1/41550.

https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1109/52.311070
http://tutor.rascal-mpl.org/Recipes/Recipes.html%5C#/Recipes/Languages/Pico/Pico.html
http://tutor.rascal-mpl.org/Recipes/Recipes.html%5C#/Recipes/Languages/Pico/Pico.html
https://doi.org/10.1145/154766.155369
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1007/978-1-4613-9623-9_6
https://doi.org/10.1007/978-1-4613-9623-9_6
https://doi.org/10.1145/800020.808247
https://doi.org/10.1145/800194.805852
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010075320153
https://doi.org/10.1109/IWSC.2017.7880506
https://doi.org/10.1109/BB48857.2019.8941205
http://hdl.handle.net/1721.1/41550


254 bibliography

[295] Ricarose Vallarta Roque. “OpenBlocks: An Extendable Framework for Graphical Block
Programming Systems.” MA thesis. Massachusetts Institute of Technology, Dept. of
Electrical Engineering and Computer Science, 2007.

[296] Simon P. Rose, M.P. Jacob Habgood, and Tim Jay. “Using Pirate Plunder to Develop
Children’s Abstraction Skills in Scratch.” In: Extended Abstracts of the 2019 CHI Conference
on Human Factors in Computing Systems. CHI EA ’19. Glasgow, Scotland Uk: ACM, 2019,
LBW0172:1–LBW0172:6. isbn: 978-1-4503-5971-9. doi: 10.1145/3290607.3312871.

[297] Daniel J. Rough and Aaron Quigley. “End-User Development of Experience Sampling
Smartphone Apps -Recommendations and Requirements.” In: Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 4.2 (2020). doi: 10.1145/3397307.

[298] Daniel Rough and Aaron Quigley. “Challenges of Traditional Usability Evaluation
in End-User Development.” In: End-User Development. Springer, 2019, pp. 1–17. isbn:
978-3-030-24781-2.

[299] Arjen Rouvoet et al. “Intrinsically-Typed Definitional Interpreters for Linear, Session-
Typed Languages.” In: Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP’20). 2020, pp. 284–298. isbn: 9781450370974. doi:
10.1145/3372885.3373818.

[300] Dashley K. Rouwendal van Schijndel, Audun Stolpe, and Jo E. Hannay. “Using Block-
Based Programming and Sunburst Branching to Plan and Generate Crisis Training
Simulations.” In: HCI International 2020 - Posters. Springer, 2020, pp. 463–471. isbn:
978-3-030-50732-9.

[301] Riemer van Rozen and Tijs van der Storm. “Toward live domain-specific languages.”
In: Software & Systems Modeling 18.1 (2019), pp. 195–212. issn: 1619-1374. doi: 10.1007/
s10270-017-0608-7.

[302] Lisa F. Rubin. “Syntax-directed pretty printing–a first step towards a syntax-directed
editor.” In: IEEE Transactions on Software Engineering 2 (1983), pp. 119–127.

[303] Adam Rule. “Design and Use of Computational Notebooks.” PhD thesis. University of
California San Diego, 2018. url: https://adamrule.com/files/dissertation/rule%
5C_dissertation.pdf.

[304] Adam Rule, Aurélien Tabard, and James D. Hollan. “Exploration and Explanation in
Computational Notebooks.” In: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. CHI ’18. Montreal QC, Canada: ACM, 2018. isbn: 9781450356206.
doi: 10.1145/3173574.3173606.

[305] SonarSource SA. SonarQube. https://www.sonarqube.org. [Online, accessed 15 July
2021]. 2008.

[306] Janan Saba, Hagit Hel-Or, and Sharona T. Levy. “"When is the Pressure Zero inside a
Container? Mission Impossible": 7<sup>th</sup> Grade Students Learn Science by
Constructing Computational Models Using the Much.Matter.in.Motion Platform.” In:
Proceedings of the Interaction Design and Children Conference. IDC ’20. London, United King-
dom: ACM, 2020, pp. 293–298. isbn: 9781450379816. doi: 10.1145/3392063.3394442.

https://doi.org/10.1145/3290607.3312871
https://doi.org/10.1145/3397307
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1007/s10270-017-0608-7
https://adamrule.com/files/dissertation/rule%5C_dissertation.pdf
https://adamrule.com/files/dissertation/rule%5C_dissertation.pdf
https://doi.org/10.1145/3173574.3173606
https://www.sonarqube.org
https://doi.org/10.1145/3392063.3394442


bibliography 255

[307] Aryan Saini et al. “Aesop: Authoring Engaging Digital Storytelling Experiences.” In:
The Adjunct Publication of the 32nd Annual ACM Symposium on User Interface Software and
Technology. UIST ’19. New Orleans, LA, USA: ACM, 2019, pp. 56–59. isbn: 9781450368179.
doi: 10.1145/3332167.3357114.

[308] Johannes Sametinger. “Literate Programming.” In: Software Engineering with Reusable
Components. Springer, 1997, pp. 211–216. isbn: 978-3-662-03345-6. doi: 10.1007/978-3-
662-03345-6\_18.

[309] Sheeba Samuel and Birgitta König-Ries. “ProvBook: Provenance-based Semantic En-
richment of Interactive Notebooks for Reproducibility.” In: Proceedings of the ISWC 2018
Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th Interna-
tional Semantic Web Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018.
2018.

[310] Henrique Reinaldo Sarmento et al. “Supporting the Development of Computational
Thinking: A Robotic Platform Controlled by Smartphone.” In: Learning and Collaboration
Technologies. Springer, 2015, pp. 124–135. isbn: 978-3-319-20609-7.

[311] Anthony Savidis and Crystalia Savaki. “Complete Block-Level Visual Debugger for
Blockly.” In: Human Systems Engineering and Design II. Springer, 2020, pp. 286–292. isbn:
978-3-030-27928-8.

[312] B. Selwyn-Smith et al. “Co-located Collaborative Block-Based Programming.” In: 2019
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 2019,
pp. 107–116. doi: 10.1109/VLHCC.2019.8818895.

[313] Mazyar Seraj et al. “Smart Homes Programming: Development and Evaluation of an
Educational Programming Application for Young Learners.” In: Proceedings of the 18th
ACM International Conference on Interaction Design and Children. IDC ’19. Boise, ID, USA:
ACM, 2019, pp. 146–152. isbn: 978-1-4503-6690-8. doi: 10.1145/3311927.3323157.

[314] Amazon Web Services. AWS CloudFormation Documentation. https://go.aws/3ENgF1k.
[Online, accessed 12 July 2021]. 2021.

[315] Teddy Seyed et al. “MakerArcade: Using Gaming and Physical Computing for Playful
Making, Learning, and Creativity.” In: Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI EA ’19. Glasgow, Scotland Uk: ACM, 2019,
LBW0174:1–LBW0174:6. isbn: 978-1-4503-5971-9. doi: 10.1145/3290607.3312809.

[316] J. C. Shaw. “JOSS: A designer’s view of an experimental on-line computing system.” In:
AFZPS Conference Proceedings, vol. 26, 1964 Fall Joint Computer Conference. 1964, pp. 455–
464.

[317] Helen Shen. “Interactive Notebooks.” In: Nature 515 (2014), pp. 151–152.

[318] D. Shepherd et al. “[Engineering Paper] An IDE for Easy Programming of Simple
Robotics Tasks.” In: 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM). 2018, pp. 209–214. doi: 10.1109/SCAM.2018.00032.

[319] Yasin N. Silva and Jaime Chon. “DBSnap: Learning Database Queries by Snapping
Blocks.” In: Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
SIGCSE ’15. Kansas City, Missouri, USA: ACM, 2015, pp. 179–184. isbn: 978-1-4503-
2966-8. doi: 10.1145/2676723.2677220.

https://doi.org/10.1145/3332167.3357114
https://doi.org/10.1007/978-3-662-03345-6\_18
https://doi.org/10.1007/978-3-662-03345-6\_18
https://doi.org/10.1109/VLHCC.2019.8818895
https://doi.org/10.1145/3311927.3323157
https://go.aws/3ENgF1k
https://doi.org/10.1145/3290607.3312809
https://doi.org/10.1109/SCAM.2018.00032
https://doi.org/10.1145/2676723.2677220


256 bibliography

[320] Yasin N. Silva et al. “DBSnap++: Creating Data-driven Programs by Snapping Blocks.”
In: Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education. ITiCSE 2018. Larnaca, Cyprus: ACM, 2018, pp. 170–175. isbn: 978-1-
4503-5707-4. doi: 10.1145/3197091.3197114.

[321] Charles Simonyi, Magnus Christerson, and Shane Clifford. “Intentional Software.” In:
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications. OOPSLA ’06. Portland, Oregon, USA: ACM, 2006,
pp. 451–464. isbn: 1595933484. doi: 10.1145/1167473.1167511.

[322] Cynthia Solomon et al. “History of Logo.” In: Proc. ACM Program. Lang. 4.HOPL (2020).
doi: 10.1145/3386329.

[323] Andreas Stahlbauer, Marvin Kreis, and Gordon Fraser. “Testing Scratch Programs
Automatically.” In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. ES-
EC/FSE 2019. Tallinn, Estonia: ACM, 2019, pp. 165–175. isbn: 978-1-4503-5572-8. doi:
10.1145/3338906.3338910.

[324] William Stein and David Joyner. “SAGE: system for algebra and geometry experimenta-
tion.” In: ACM SIGSAM Bulletin (2005). issn: 0163-5824. doi: 10.1145/1101884.1101889.

[325] Tijs van der Storm. Rascal QL - Tutorial. 2019. url: https://bit.ly/3HlHwTM (visited on
12/22/2019).

[326] Tijs van der Storm. Salix. 2019. url: https://github.com/cwi-swat/salix (visited on
12/22/2019).

[327] Andrew Stratton, Chris Bates, and Andy Dearden. “Quando: Enabling Museum and Art
Gallery Practitioners to Develop Interactive Digital Exhibits.” In: End-User Development.
Springer, 2017, pp. 100–107. isbn: 978-3-319-58735-6.

[328] Glenn Strong, Sean O’Carroll, and Nina Bresnihan. “A Block Based Editor for Python.”
In: Proceedings of the 13th Workshop in Primary and Secondary Computing Education. WiPSCE
’18. Potsdam, Germany: ACM, 2018, 30:1–30:2. isbn: 978-1-4503-6588-8. doi: 10.1145/
3265757.3265788.

[329] C. J. Sutherland and B. A. MacDonald. “NaoBlocks: A Case Study of Developing a
Children’s Robot Programming Environment.” In: 2018 15th International Conference on
Ubiquitous Robots (UR). 2018, pp. 431–436. doi: 10.1109/URAI.2018.8441843.

[330] Ryo Suzuki et al. “Implementing Node-Link Interface into a Block-Based Visual Pro-
gramming Language.” In: Human-Computer Interaction. Interaction in Context. Springer,
2018, pp. 455–465. isbn: 978-3-319-91244-8.

[331] A. Swidan, A. Serebrenik, and F. Hermans. “How do Scratch Programmers Name
Variables and Procedures?” In: 2017 IEEE 17th International Working Conference on Source
Code Analysis and Manipulation (SCAM). 2017, pp. 51–60. doi: 10.1109/SCAM.2017.12.

[332] S. Doaitse Swierstra, Pablo R. Azero Alcocer, and João Saraiva. “Designing and imple-
menting combinator languages.” In: Advanced Functional Programming. Springer, 1999,
pp. 150–206. doi: 10.1007/10704973\_4.

[333] A. G. Tamilias et al. “B@SE: Blocks for @rduino in the Students’ educational process.”
In: 2017 IEEE Global Engineering Education Conference (EDUCON). 2017, pp. 910–915. doi:
10.1109/EDUCON.2017.7942956.

https://doi.org/10.1145/3197091.3197114
https://doi.org/10.1145/1167473.1167511
https://doi.org/10.1145/3386329
https://doi.org/10.1145/3338906.3338910
https://doi.org/10.1145/1101884.1101889
https://bit.ly/3HlHwTM
https://github.com/cwi-swat/salix
https://doi.org/10.1145/3265757.3265788
https://doi.org/10.1145/3265757.3265788
https://doi.org/10.1109/URAI.2018.8441843
https://doi.org/10.1109/SCAM.2017.12
https://doi.org/10.1007/10704973\_4
https://doi.org/10.1109/EDUCON.2017.7942956


bibliography 257

[334] Steven L. Tanimoto. “A perspective on the evolution of live programming.” In: 1st
International Workshop on Live Programming (LIVE’13). IEEE. 2013, pp. 31–34. doi: 10.
1109/LIVE.2013.6617346.

[335] Karen Tatarian et al. “Tailoring a ROS Educational Programming Language Architec-
ture.” In: Robotics in Education. Springer, 2019, pp. 217–229. isbn: 978-3-319-97085-1.

[336] S. Taylor et al. “Position: IntelliBlox: A Toolkit for Integrating Block-Based Programming
into Game-Based Learning Environments.” In: 2019 IEEE Blocks and Beyond Workshop (B
B). 2019, pp. 55–58. doi: 10.1109/BB48857.2019.8941222.

[337] The Haml Team. HAML. url: http://haml.info/ (visited on 12/22/2019).

[338] P. Techapalokul and E. Tilevich. “Understanding recurring quality problems and their
impact on code sharing in block-based software.” In: 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 2017, pp. 43–51. doi: 10.1109/VLHCC.
2017.8103449.

[339] P. Techapalokul and E. Tilevich. “Code Quality Improvement for All: Automated Refac-
toring for Scratch.” In: 2019 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 2019, pp. 117–125. doi: 10.1109/VLHCC.2019.8818950.

[340] P. Techapalokul and E. Tilevich. “Position: Manual Refactoring (by Novice Programmers)
Considered Harmful.” In: 2019 IEEE Blocks and Beyond Workshop (B B). 2019, pp. 79–80.
doi: 10.1109/BB48857.2019.8941201.

[341] Warren Teitelman. “PILOT: A Step Toward Man-Computer Symbiosis.” PhD thesis. MIT,
1966. url: http://hdl.handle.net/1721.1/6905.

[342] Warren Teitelman. “History of Interlisp.” In: Celebrating the 50th Anniversary of Lisp.
Nashville, Tennessee: ACM, 2008. isbn: 9781605583839. doi: 10.1145/1529966.1529971.

[343] Marilyn Tenorio Melenje María et al. “Debugging Block-Based Programs.” In: Human-
Computer Interaction. Springer, 2019, pp. 98–112. isbn: 978-3-030-05270-6.

[344] Ulyana Tikhonova et al. “Constraint-based Run-time State Migration for Live Modeling.”
In: Proceedings of the 11th ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2018. Boston, MA, USA: ACM, 2018, pp. 108–120. isbn: 978-1-4503-
6029-6. doi: 10.1145/3276604.3276611.

[345] J. Trenouth. “A Survey of Exploratory Software Development.” In: The Computer Journal
34.2 (1991), pp. 153–163. issn: 0010-4620. doi: 10.1093/comjnl/34.2.153.

[346] Franklyn Turbak et al. “Events-first Programming in APP Inventor.” In: J. Comput. Sci.
Coll. 29.6 (2014), pp. 81–89. issn: 1937-4771.

[347] Tommaso Turchi, Daniela Fogli, and Alessio Malizia. “Fostering computational thinking
through collaborative game-based learning.” In: Multimedia Tools and Applications 78.10

(2019), pp. 13649–13673. issn: 1573-7721. doi: 10.1007/s11042-019-7229-9.

[348] Tommaso Turchi, Alessio Malizia, and Alan Dix. “TAPAS: A tangible End-User Devel-
opment tool supporting the repurposing of Pervasive Displays.” In: Journal of Visual
Languages & Computing 39 (2017), pp. 66–77. issn: 1045-926X. doi: 10.1016/j.jvlc.
2016.11.002.

https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/BB48857.2019.8941222
http://haml.info/
https://doi.org/10.1109/VLHCC.2017.8103449
https://doi.org/10.1109/VLHCC.2017.8103449
https://doi.org/10.1109/VLHCC.2019.8818950
https://doi.org/10.1109/BB48857.2019.8941201
http://hdl.handle.net/1721.1/6905
https://doi.org/10.1145/1529966.1529971
https://doi.org/10.1145/3276604.3276611
https://doi.org/10.1093/comjnl/34.2.153
https://doi.org/10.1007/s11042-019-7229-9
https://doi.org/10.1016/j.jvlc.2016.11.002
https://doi.org/10.1016/j.jvlc.2016.11.002


258 bibliography

[349] Phil Turner and Susan Turner. “Supporting Cooperative Working Using Shared Note-
books.” In: Proceedings of the Fifth European Conference on Computer Supported Cooperative
Work. Springer, 1997, pp. 281–295. isbn: 978-94-015-7372-6. doi: 10.1007/978-94-015-
7372-6\_19.

[350] Adilson Vahldick, António José Mendes, and Maria José Marcelino. “Learning Analytics
Model in a Casual Serious Game for Computer Programming Learning.” In: Serious
Games, Interaction and Simulation. Springer, 2017, pp. 36–44. isbn: 978-3-319-51055-2.

[351] Tijs van der Storm. “Semantic deltas for live DSL environments.” In: 1st International
Workshop on Live Programming (LIVE). IEEE, 2013, pp. 35–38. isbn: 978-1-4673-6265-8.
doi: 10.1109/LIVE.2013.6617347.

[352] A. van Deursen, P. Klint, and F. Tip. “Origin tracking.” In: Journal of Symbolic Computation
15.5 (1993), pp. 523–545. issn: 0747-7171. doi: 10.1016/S0747-7171(06)80004-0.

[353] Eric Van Wyk et al. “Forwarding in Attribute Grammars for Modular Language Design.”
In: Compiler Construction. Vol. 2304. Lecture Notes in Computer Science. Springer, 2002,
pp. 128–142. isbn: 978-3-540-43369-9. doi: 10.1007/3-540-45937-5\_11.

[354] Michael L. Van de Vanter, Marat Boshernitsan, and San Antonio Avenue. “Displaying
and Editing Source Code in Software Engineering Environments.” In: 2000.

[355] Mauricio Verano Merino and Tijs van der Storm. “Block-Based Syntax from Context-
Free Grammars.” In: Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering. SLE 2020. Virtual, USA: ACM, 2020, pp. 283–295. isbn:
9781450381765. doi: 10.1145/3426425.3426948.

[356] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. “Bacatá: A Language
Parametric Notebook Generator (Tool Demo).” In: SLE 2018 (2018), pp. 210–214. doi:
10.1145/3276604.3276981.

[357] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. Bacata. Version 1.0.0.
2020. doi: 10.5281/zenodo.3636179.

[358] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. Bacata-demos. Ver-
sion 1.0.0. 2020. doi: 10.5281/zenodo.3636103.

[359] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. “Bacatá: Notebooks for
DSLs, Almost for Free.” In: The Art, Science, and Engineering of Programming 4.3 (2020).
issn: 2473-7321. doi: 10.22152/programming-journal.org/2020/4/11.

[360] Mauricio Verano Merino et al. “Getting Grammars into Shape for Block-Based Editors.”
In: Proceedings of the 14th ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2021. Virtual, USA: ACM, 2021. isbn: 978-1-4503-9111-5/21/10. doi:
10.1145/3486608.3486908.

[361] Jacques Verriet et al. “Model-Driven Development of Logistic Systems Using Domain-
Specific Tooling.” In: Complex Systems Design & Management. Springer, 2013, pp. 165–176.
isbn: 978-3-642-34404-6.

[362] R. Vinayakumar, K. Soman, and P. Menon. “Alg-Design: Facilitates to Learn Algorithmic
Thinking for Beginners.” In: 2018 9th International Conference on Computing, Communi-
cation and Networking Technologies (ICCCNT). 2018, pp. 1–6. doi: 10.1109/ICCCNT.2018.
8493952.

https://doi.org/10.1007/978-94-015-7372-6\_19
https://doi.org/10.1007/978-94-015-7372-6\_19
https://doi.org/10.1109/LIVE.2013.6617347
https://doi.org/10.1016/S0747-7171(06)80004-0
https://doi.org/10.1007/3-540-45937-5\_11
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3276604.3276981
https://doi.org/10.5281/zenodo.3636179
https://doi.org/10.5281/zenodo.3636103
https://doi.org/10.22152/programming-journal.org/2020/4/11
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1109/ICCCNT.2018.8493952
https://doi.org/10.1109/ICCCNT.2018.8493952


bibliography 259

[363] R. Vinayakumar, K. Soman, and P. Menon. “CT-Blocks: Learning Computational Think-
ing by Snapping Blocks.” In: 2018 9th International Conference on Computing, Communi-
cation and Networking Technologies (ICCCNT). 2018, pp. 1–7. doi: 10.1109/ICCCNT.2018.
8493669.

[364] R. Vinayakumar, K. Soman, and P. Menon. “DB-Learn: Studying Relational Algebra
Concepts by Snapping Blocks.” In: 2018 9th International Conference on Computing, Com-
munication and Networking Technologies (ICCCNT). 2018, pp. 1–6. doi: 10.1109/ICCCNT.
2018.8494181.

[365] R. Vinayakumar, K. Soman, and P. Menon. “Fractal Geometry: Enhancing Computa-
tional Thinking with MIT Scratch.” In: 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT). 2018, pp. 1–6. doi: 10.1109/
ICCCNT.2018.8494172.

[366] R. Vinayakumar, K. Soman, and P. Menon. “Map-Blocks: Playing with Online Data
and Infuse to Think in a Computational Way.” In: 2018 9th International Conference on
Computing, Communication and Networking Technologies (ICCCNT). 2018, pp. 1–6. doi:
10.1109/ICCCNT.2018.8493700.

[367] Markus Voelter et al. “Efficient Development of Consistent Projectional Editors Using
Grammar Cells.” In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. SLE 2016. Amsterdam, Netherlands: ACM, 2016, pp. 28–
40. isbn: 9781450344470. doi: 10.1145/2997364.2997365.

[368] P. Voštinár. “Programming LEGO EV3 in Microsoft MakeCode.” In: 2020 IEEE Global En-
gineering Education Conference (EDUCON). 2020, pp. 1868–1872. doi: 10.1109/EDUCON45650.
2020.9125170.

[369] Premysl Vysoký, Pavel Parízek, and Václav Pech. INGRID: Creating Languages in MPS
from ANTLR Grammars. Tech. rep. D3S-TR-2018-01. Department of Distributed and
Dependable Systems, Charles University, 2018, pp. 1–18.

[370] Theodore W. Gray and Stephen Wolfram. “Method and system for presenting input
expressions and evaluations of the input expressions on a workspace of a computational
system.” 2013.

[371] Aditi Wagh and Uri Wilensky. “EvoBuild: A Quickstart Toolkit for Programming Agent-
Based Models of Evolutionary Processes.” In: Journal of Science Education and Technology
27.2 (2018), pp. 131–146. issn: 1573-1839. doi: 10.1007/s10956-017-9713-1.

[372] Michał Walicki and Sigurd Meldal. “Algebraic Approaches to Nondeterminism – an
Overview.” In: ACM Computing Surveys 29.1 (1997), pp. 30–81. issn: 0360-0300. doi:
10.1145/248621.248623.

[373] Wengran Wang et al. “Crescendo: Engaging Students to Self-Paced Programming
Practices.” In: Proceedings of the 51st ACM Technical Symposium on Computer Science
Education. SIGCSE ’20. Portland, OR, USA: ACM, 2020, pp. 859–865. isbn: 9781450367936.
doi: 10.1145/3328778.3366919.

[374] Martin Ward. “Language Oriented Programming.” In: Software-Concepts & Tools 15

(1994), pp. 147–161. doi: 10.1007/978-1-4302-2390-0_12.

https://doi.org/10.1109/ICCCNT.2018.8493669
https://doi.org/10.1109/ICCCNT.2018.8493669
https://doi.org/10.1109/ICCCNT.2018.8494181
https://doi.org/10.1109/ICCCNT.2018.8494181
https://doi.org/10.1109/ICCCNT.2018.8494172
https://doi.org/10.1109/ICCCNT.2018.8494172
https://doi.org/10.1109/ICCCNT.2018.8493700
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1109/EDUCON45650.2020.9125170
https://doi.org/10.1109/EDUCON45650.2020.9125170
https://doi.org/10.1007/s10956-017-9713-1
https://doi.org/10.1145/248621.248623
https://doi.org/10.1145/3328778.3366919
https://doi.org/10.1007/978-1-4302-2390-0_12


260 bibliography

[375] D. Weintrop et al. “Blockly goes to work: Block-based programming for industrial
robots.” In: 2017 IEEE Blocks and Beyond Workshop (B B). 2017, pp. 29–36. doi: 10.1109/
BLOCKS.2017.8120406.

[376] David Weintrop. “Block-based Programming in Computer Science Education.” In:
Commun. ACM 62.8 (2019), pp. 22–25. issn: 0001-0782. doi: 10.1145/3341221.

[377] David Weintrop and Uri Wilensky. “To Block or Not to Block, That is the Question:
Students’ Perceptions of Blocks-Based Programming.” In: Proceedings of the 14th Inter-
national Conference on Interaction Design and Children. IDC ’15. Boston, Massachusetts:
ACM, 2015, pp. 199–208. isbn: 9781450335904. doi: 10.1145/2771839.2771860.

[378] David Weintrop and Uri Wilensky. “Between a Block and a Typeface: Designing and
Evaluating Hybrid Programming Environments.” In: Proceedings of the 2017 Conference on
Interaction Design and Children. IDC ’17. Stanford, California, USA: ACM, 2017, pp. 183–
192. isbn: 9781450349215. doi: 10.1145/3078072.3079715.

[379] David Weintrop and Uri Wilensky. “How block-based, text-based, and hybrid block/text
modalities shape novice programming practices.” In: International Journal of Child-
Computer Interaction 17 (2018), pp. 83–92. issn: 2212-8689. doi: 10.1016/j.ijcci.2018.
04.005.

[380] David Weintrop and Uri Wilensky. “How block-based, text-based, and hybrid block/text
modalities shape novice programming practices.” In: International Journal of Child-
Computer Interaction 17 (2018), pp. 83–92. issn: 22128689. doi: 10.1016/j.ijcci.2018.
04.005.

[381] David Weintrop and Uri Wilensky. “Transitioning from introductory block-based and
text-based environments to professional programming languages in high school com-
puter science classrooms.” In: Computers & Education 142 (2019), p. 103646. issn: 0360-
1315. doi: 10.1016/j.compedu.2019.103646.

[382] David Weintrop et al. “Evaluating CoBlox: A Comparative Study of Robotics Program-
ming Environments for Adult Novices.” In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada: ACM, 2018, 366:1–
366:12. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.3173940.

[383] David Weintrop et al. “Evaluating CoBlox: A Comparative Study of Robotics Program-
ming Environments for Adult Novices.” In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems - CHI ’18 (2018), pp. 1–12. doi: 10.1145/3173574.
3173940.

[384] David S. Wile. “Abstract Syntax from Concrete Syntax.” In: Pulling Together, Proceedings
of the 19th International Conference on Software Engineering, Boston, Massachusetts, USA,
May 17-23, 1997. Ed. by W. Richards Adrion et al. ACM, 1997, pp. 472–480. doi: 10.
1145/253228.253388.

[385] MICHELLE WILKERSON-JERDE, ADITI WAGH, and URI WILENSKY. “Balancing
Curricular and Pedagogical Needs in Computational Construction Kits: Lessons From
the DeltaTick Project.” In: Science Education 99.3 (2015), pp. 465–499. doi: 10.1002/sce.
21157.

[386] Manuel Wimmer and Gerhard Kramler. “Bridging grammarware and modelware.” In:
International Conference on Model Driven Engineering Languages and Systems. Springer.
2005, pp. 159–168.

https://doi.org/10.1109/BLOCKS.2017.8120406
https://doi.org/10.1109/BLOCKS.2017.8120406
https://doi.org/10.1145/3341221
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/3078072.3079715
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1145/253228.253388
https://doi.org/10.1145/253228.253388
https://doi.org/10.1002/sce.21157
https://doi.org/10.1002/sce.21157


bibliography 261

[387] Stephen Wolfram. The Mathematica Book (4th Edition). Cambridge University Press, 1999.
isbn: 0521643147.

[388] Yihui Xie. “knitr: A General-Purpose Tool for Dynamic Report Generation in R.” In: 8.1
(2013), pp. 1–12. url: https://bit.ly/3HsB5ye.

[389] Yihui Xie, Joseph J. Allaire, and Garrett Grolemund. R Markdown: The Definitive Guide.
2018. isbn: 1439144834. doi: 10.1016/B978-0-12-814447-3.00041-0.

[390] Stelios Xinogalos, Maya Satratzemi, and Christos Malliarakis. “Microworlds, games,
animations, mobile apps, puzzle editors and more: What is important for an introductory
programming environment?” In: Education and Information Technologies 22.1 (2017),
pp. 145–176. issn: 1573-7608. doi: 10.1007/s10639-015-9433-1.

[391] Susan A. Yoon, Jooeun Shim, and Noora Noushad. “Trade-Offs in Using Mobile Tools
to Promote Scientific Action with Socioscientific Issues.” In: TechTrends 63.5 (2019),
pp. 602–610. issn: 1559-7075. doi: 10.1007/s11528-019-00408-z.

[392] Vadim Zaytsev. “Recovery, Convergence and Documentation of Languages.” In: (Oct.
2010). PhD thesis, Vrije Universiteit.

[393] Yuchen Zhao et al. “Structured and uncertainty-aware data storytelling.” In: CHI-19
Workshop on HCI for Accurate, Impartial and Transparent Journalism: Challenges and Solutions.
2019. url: https://eprints.soton.ac.uk/431822/.

[394] Sharon Zhou et al. “Ingenium: Engaging Novice Students with Latin Grammar.” In:
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI
’16. San Jose, California, USA: ACM, 2016, pp. 944–956. isbn: 978-1-4503-3362-7. doi:
10.1145/2858036.2858239.

[395] Abigail Zimmermann-Niefield et al. “Youth Making Machine Learning Models for
Gesture-Controlled Interactive Media.” In: Proceedings of the Interaction Design and
Children Conference. IDC ’20. London, United Kingdom: ACM, 2020, pp. 63–74. isbn:
9781450379816. doi: 10.1145/3392063.3394438.

[396] Hubert Zimmermann. “OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection.” In: IEEE Transactions on Communications 28.4 (1980),
pp. 425–432. issn: 0090-6778. doi: 10.1109/TCOM.1980.1094702.

https://bit.ly/3HsB5ye
https://doi.org/10.1016/B978-0-12-814447-3.00041-0
https://doi.org/10.1007/s10639-015-9433-1
https://doi.org/10.1007/s11528-019-00408-z
https://eprints.soton.ac.uk/431822/
https://doi.org/10.1145/2858036.2858239
https://doi.org/10.1145/3392063.3394438
https://doi.org/10.1109/TCOM.1980.1094702




C U R R I C U L U M V I TA E

Mauricio Verano Merino was born on the 7th of December of 1990 in Bogotá, Colombia.
Mauricio decided to study Systems and Computer Engineering at Universidad de
Los Andes (Bogotá, Colombia), because he wanted to explore how to create new
ways of interacting with computers. When he graduated in 2013, the university had
the possibility to start a partnership with Heinsohn Business Technology through a
project on how to migrate on-premise enterprise web applications to the cloud. Prof. dr.
Rubby Casallas and dr. Kelly Garces brought Mauricio on board to settle the partnership
where he worked as a Graduate Research Assistant. Here he learned how to understand,
(re)design and (re)build software to adapt it into new environments. When he finished
in 2014, Mauricio had a chance to be a lecturer at the university and so his career in
academia started. After a while, in 2016, Eindhoven University of Technology had a
PhD position to work initially in collaboration with Canon Production Printing (former
Océ) and later on with Siemens Digital Industries Software. Mauricio started working
there under the supervision of prof.dr. Jurgen Vinju, prof. dr. Mark van den Brand,
prof.dr. Tijs van der Storm, dr. Lou Sommers, and dr.Ing Mike Nicolai. During these five
years he explored how to offer different user interfaces for Domain-Specific Languages
to increase their adoption in different contexts. This was when everything came to
place and he managed to understand, (re)design and (re)build software structures to
create an accessible way of interacting with computers through programming. All these
explorations, paths and discoveries, everything he found during this time is contained
here and is presented in this dissertation.

After finishing his PhD, Mauricio will continue his journey in academia as an
Assistant professor at the Vrije Universiteit Amsterdam.

263



ipa dissertation series

Titles in the IPA Dissertation Series since 2019

S.M.J. de Putter. Verification of Concur-
rent Systems in a Model-Driven Engineer-
ing Workflow. Faculty of Mathematics and
Computer Science, TU/e. 2019-01

S.M. Thaler. Automation for Information
Security using Machine Learning. Faculty
of Mathematics and Computer Science,
TU/e. 2019-02

Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Practical
General Top-down Parsers. Faculty of Sci-
ence, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algorithms
for Geometric Network Problems. Faculty
of Mathematics and Computer Science,
TU/e. 2019-05

J. Moerman. Nominal Techniques and Black
Box Testing for Automata Learning. Faculty
of Science, Mathematics and Computer
Science, RU. 2019-06

V. Bloemen. Strong Connectivity and Short-
est Paths for Checking Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2019-07

T.H.A. Castermans. Algorithms for Visu-
alization in Digital Humanities. Faculty
of Mathematics and Computer Science,
TU/e. 2019-08

W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty of Mathematics
and Computer Science, TU/e. 2019-09

J.J.G. Meijer. Efficient Learning and Analy-
sis of System Behavior. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix Lan-
guage and its Application in Control and Au-
diting. Faculty of Science, UvA. 2019-11

A.A. Sawant. The impact of API evolu-
tion on API consumers and how this can
be affected by API producers and language
designers. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2019-12

W.H.M. Oortwijn. Deductive Techniques
for Model-Based Concurrency Verification.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2019-13

M.A. Cano Grijalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-simulation
Construction. Faculty of Science,
Mathematics and Computer Science,
RU. 2020-02

R.A. van Rozen. Languages of Games and
Play: Automating Game Design & Enabling
Live Programming. Faculty of Science,
UvA. 2020-03



B. Changizi. Constraint-Based Analysis of
Business Process Models. Faculty of Mathe-
matics and Natural Sciences, UL. 2020-04

N. Naus. Assisting End Users in Workflow
Systems. Faculty of Science, UU. 2020-05

J.J.H.M. Wulms. Stability of Geometric Al-
gorithms. Faculty of Mathematics and
Computer Science, TU/e. 2020-06

T.S. Neele. Reductions for Parity Games and
Model Checking. Faculty of Mathematics
and Computer Science, TU/e. 2020-07

P. van den Bos. Coverage and Games in
Model-Based Testing. Faculty of Science,
RU. 2020-08

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Science,
TU/e. 2020-09

D.Frumin. Concurrent Separation Logics for
Safety, Refinement, and Security. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2021-01

A. Bentkamp. Superposition for Higher-
Order Logic. Faculty of Sciences, Depart-
ment of Computer Science, VUA. 2021-02

P. Derakhshanfar. Carving Information
Sources to Drive Search-based Crash Repro-
duction and Test Case Generation. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2021-03

K. Aslam. Deriving Behavioral Specifica-
tions of Industrial Software Components. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2021-04

W. Silva Torres. Supporting Multi-Domain
Model Management. Faculty of Mathemat-
ics and Computer Science, TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Automated
Reasoning. Faculty of Mathematics and
Computer Science, TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03

M. Verano Merino. Engineering Language-
Parametric End-User Programming Environ-
ments for DSLs. Faculty of Mathematics
and Computer Science, TU/e. 2022-04



colophon

The cover of this thesis was designed and printed by Mauricio Verano Merino and
Jan-Willem van der Looij at Mizdruk in Eindhoven. For the cover, we used several
wood and metal typefaces, and the “Pim and the Analog Pixels” typeface designed by
Pieter van Rosmalen. This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The style was inspired
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