996 research outputs found

    IMPROVEMENT OF POWER QUALITY OF HYBRID GRID BY NON-LINEAR CONTROLLED DEVICE CONSIDERING TIME DELAYS AND CYBER-ATTACKS

    Get PDF
    Power Quality is defined as the ability of electrical grid to supply a clean and stable power supply. Steady-state disturbances such as harmonics, faults, voltage sags and swells, etc., deteriorate the power quality of the grid. To ensure constant voltage and frequency to consumers, power quality should be improved and maintained at a desired level. Although several methods are available to improve the power quality in traditional power grids, significant challenges exist in modern power grids, such as non-linearity, time delay and cyber-attacks issues, which need to be considered and solved. This dissertation proposes novel control methods to address the mentioned challenges and thus to improve the power quality of modern hybrid grids.In hybrid grids, the first issue is faults occurring at different points in the system. To overcome this issue, this dissertation proposes non-linear controlled methods like the Fuzzy Logic controlled Thyristor Switched Capacitor (TSC), Adaptive Neuro Fuzzy Inference System (ANFIS) controlled TSC, and Static Non-Linear controlled TSC. The next issue is the time delay introduced in the network due to its complexities and various computations required. This dissertation proposes two new methods such as the Fuzzy Logic Controller and Modified Predictor to minimize adverse effects of time delays on the power quality enhancement. The last and major issue is the cyber-security aspect of the hybrid grid. This research analyzes the effects of cyber-attacks on various components such as the Energy Storage System (ESS), the automatic voltage regulator (AVR) of the synchronous generator, the grid side converter (GSC) of the wind generator, and the voltage source converter (VSC) of Photovoltaic (PV) system, located in a hybrid power grid. Also, this dissertation proposes two new techniques such as a Non-Linear (NL) controller and a Proportional-Integral (PI) controller for mitigating the adverse effects of cyber-attacks on the mentioned devices, and a new detection and mitigation technique based on the voltage threshold for the Supercapacitor Energy System (SES). Simulation results obtained through the MATLAB/Simulink software show the effectiveness of the proposed new control methods for power quality improvement. Also, the proposed methods perform better than conventional methods

    Exploring Cyber Security Issues and Solutions for Various Components of DC Microgrid System

    Get PDF
    Nowadays, considering the growing demand for the DC loads and simplified interface with renewable power generation sources, DC microgrids could be cost effective solution for the power supply in small scale area. the supervisory control and data acquisition (SCADA) system maintain the bidirectional power communication through the internet connectivity with the microgrid. However, this intelligent and interactive feature may pose a cyber-security threat to the power grid. this work aims to exploring cyber-security issues and their solutions for the DC microgrid system. To mitigate the adverse effects of various cyber-attacks such as the False Data Injection (FDI) attack, Distributed Denial of Service (DDoS) attack etc., two new techniques based on non-linear and proportional-integral (PI) controllers have been proposed. Simulation results obtained from MATLAB/Simulink software demonstrate the effectiveness of the proposed methods in mitigating the adverse effects of cyber-attacks on the DCMG system performance

    State of the art of cyber-physical systems security: An automatic control perspective

    Get PDF
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds light on how security is actually addressed when dealing with cyber-physical systems from an automatic control perspective. The provided map of 138 selected studies is defined empirically and is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia

    Statistical Methods for Detection and Mitigation of the Effect of Different Types of Cyber-Attacks and Inconsistencies in Electrical Design Parameters in a Real World Distribution System

    Get PDF
    In the present grid real time control systems are the energy management systems and distribution management systems that utilize measurements from real-time units (RTUs) and Supervisory Control and Data Acquisition (SCADA). The SCADA systems are designed to operate on isolated, private networks without even basic security features which are now being migrated to modern IP-based communications providing near real time information from measuring and controlling units. To function brain (SCADA) properly heart (RTUs) should provide necessary response thereby creating a coupling which makes SCADA systems as targets for cyber-attacks to cripple either part of the electric transmission grid or fully shut down (create blackout) the grid. Cyber-security research for a distribution grid is a topic yet to be addressed. To date firewalls and classic signature-based intrusion detection systems have provided access control and awareness of suspicious network traffic but typically have not offered any real-time detection and defense solutions for electric distribution grids.;This thesis work not only addresses the cyber security modeling, detection and prevention but also addresses model inconsistencies for effectively utilizing and controlling distribution management systems. Inconsistencies in the electrical design parameters of the distribution network or cyber-attack conditions may result in failing of the automated operations or distribution state estimation process which might lead the system to a catastrophic condition or give erroneous solutions for the probable problems. This research work also develops a robust and reliable voltage controller based on Multiple Linear Regression (MLR) to maintain the voltage profile in a smart distribution system under cyber-attacks and model inconsistencies. The developed cyber-attack detection and mitigation algorithms have been tested on IEEE 13 node and 600+ node real American electric distribution systems modeled in Electric Power Research Institute\u27s (EPRI) OpenDSS software

    Microgrid Control and Protection: Stability and Security

    Get PDF
    When the microgrid disconnects from the main grid in response to, say, upstream disturbance or voltage fluctuation and goes to islanding mode, both voltage and frequency at all locations in the microgrid have to be regulated to nominal values in a short amount of time before the operation of protective relays. Motivated by this, we studied the application of intelligent pinning of distributed cooperative secondary control of distributed generators in islanded microgrid operation in a power system. In the first part, the problem of single and multi-pinning of distributed cooperative secondary control of DGs in a microgrid is formulated. It is shown that the intelligent selection of a pinning set based on the number of its connections and distance of leader DG/DGs from the rest of the network, i.e., degree of connectivity, strengthens microgrid voltage and frequency regulation performance both in transient and steady state. The proposed control strategy and algorithm are validated by simulation in MATLAB/SIMULINK using different microgrid topologies. It is shown that it is much easier to stabilize the microgrid voltage and frequency in islanding mode operation by specifically placing the pinning node on the DGs with high degrees of connectivity than by randomly placing pinning nodes into the network. In all of these research study cases, DGs are only required to communicate with their neighboring units which facilitates the distributed control strategy. Historically, the models for primary control are developed for power grids with centralized power generation, in which the transmission lines are assumed to be primarily inductive. However, for distributed power generation, this assumption does not hold since the network has significant resistive impedance as well. Hence, it is of utmost importance to generalize the droop equations, i.e., primary control, to arrive at a proper model for microgrid systems. Motivated by this, we proposed the secondary adaptive voltage and frequency control of distributed generators for low and medium voltage microgrid in autonomous mode to overcome the drawback of existing classical droop based control techniques. Our proposed secondary control strategy is adaptive with line parameters and can be applied to all types of microgrids to address the simultaneous impacts of active and reactive power on the microgrids voltage and frequency. Also, since the parameters in the network model are unknown or uncertain, the second part of our research studies adaptive distributed estimation/compensation. It is shown that this is an effective method to robustly regulate the microgrid variables to their desired values. The security of power systems against malicious cyberphysical data attacks is the third topic of this dissertation. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes

    Micro Smart Micro-grid and Its Cyber Security Aspects in a Port Infrastructure

    Get PDF
    Maritime ports are intensive energy areas with a plenty of electrical systems that require an average power of many tens of megawatts (MW). Competitiveness, profits, reduction of pollution, reliability of operations, carbon emission trading are important energy related considerations for any port authority. Current technology allows the deployment of a local micro-grid of the size of tenths of MW, capable of islanded operation in case of emergency and to grant an increasing energy independency. Ownership of the grid permits a large flexibility on prices of energy sold inside the port, trading on local electric market and reduction of pollution. Renewable energy generation has a large impact on costs since features a low marginal cost. Unfortunately the smart grid is a critical asset within the port infrastructure and its intelligence is a high-level target for cyberattacks. Such attacks are often based on malicious software (malware), which makes use of a controlling entity on the network to coordinate and propagate. In this document, we will outline some features of a port smart grid and typical characteristics of cyber-attacks including potential ways to recognize it and suggestion for effective countermeasures
    corecore