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ABSTRACT

When the microgrid disconnects from the main grid in response to, say, upstream disturbance or

voltage fluctuation and goes to islanding mode, both voltage and frequency at all locations in the

microgrid have to be regulated to nominal values in a short amount of time before the operation of

protective relays. Motivated by this, we studied the application of intelligent pinning of distributed

cooperative secondary control of distributed generators in islanded microgrid operation in a power

system. In the first part, the problem of single and multi-pinning of distributed cooperative sec-

ondary control of DGs in a microgrid is formulated. It is shown that the intelligent selection of a

pinning set based on the number of its connections and distance of leader DG/DGs from the rest of

the network, i.e., degree of connectivity, strengthens microgrid voltage and frequency regulation

performance both in transient and steady state. The proposed control strategy and algorithm are

validated by simulation in MATLAB/SIMULINK using different microgrid topologies. It is shown

that it is much easier to stabilize the microgrid voltage and frequency in islanding mode operation

by specifically placing the pinning node on the DGs with high degrees of connectivity than by

randomly placing pinning nodes into the network. In all of these research study cases, DGs are

only required to communicate with their neighboring units which facilitates the distributed control

strategy.

Historically, the models for primary control are developed for power grids with centralized power

generation, in which the transmission lines are assumed to be primarily inductive. However, for

distributed power generation, this assumption does not hold since the network has significant re-

sistive impedance as well. Hence, it is of utmost importance to generalize the droop equations,

i.e., primary control, to arrive at a proper model for microgrid systems. Motivated by this, we

proposed the secondary adaptive voltage and frequency control of distributed generators for low

and medium voltage microgrid in autonomous mode to overcome the drawback of existing classi-
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cal droop based control techniques. Our proposed secondary control strategy is adaptive with line

parameters and can be applied to all types of microgrids to address the simultaneous impacts of

active and reactive power on the microgrids voltage and frequency. Also, since the parameters in

the network model are unknown or uncertain, the second part of our research studies adaptive dis-

tributed estimation/compensation. It is shown that this is an effective method to robustly regulate

the microgrid variables to their desired values.

The security of power systems against malicious cyberphysical data attacks is the third topic of this

dissertation. The adversary always attempts to manipulate the information structure of the power

system and inject malicious data to deviate state variables while evading the existing detection

techniques based on residual test. The solutions proposed in the literature are capable of immu-

nizing the power system against false data injection but they might be too costly and physically

not practical in the expansive distribution network. To this end, we define an algebraic condition

for trustworthy power system to evade malicious data injection. The proposed protection scheme

secures the power system by deterministically reconfiguring the information structure and corre-

sponding residual test. More importantly, it does not require any physical effort in either microgrid

or network level. The identification scheme of finding meters being attacked is proposed as well.

Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the

proposed schemes.

iv



ACKNOWLEDGMENTS

First, I would like to express my deepest appreciation to my advisor Prof. Aman Behal for the

continuous support of my Ph.D study, for his patience, motivation, and immense knowledge. His

guidance helped me through my research and the writing of this dissertation. I could not have

imagined having a better advisor and mentor for my Ph.D study.

I also need to express my sincere gratitude to Dr. Saeed Manaffam without whose guidance and

persistent help this dissertation would not have been possible. I also need to express my sincere

thanks to Dr. Amit Jain, whose support and advice was very helpful and important to me. I would

also like to thank the other members of my committee for reviewing my dissertation, providing

feedback and advice and attending my defense: Dr. Nasser Kutkut, Dr. Michael Haralambous and

Dr. Wei Sun.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: INTELLIGENT PINNING COOPERATIVE SECONDARY CONTROL . . 5

System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Primary Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Modeling of Inverter Based DG . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Distributed Cooperative Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Secondary Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Secondary frequency control . . . . . . . . . . . . . . . . . . . . . . . . . 11

Control Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Lower and upper bounds on pinning . . . . . . . . . . . . . . . . . . . . . . . . . 16

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



Communication Topology in Microgrid . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 3: NUMERICAL RESULTS OF INTELLIGENT PINNING COOPERATIVE

SECONDARY CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Case 1: Single Pinning and Multi-Pinning illustrative examples under directed and

undirected network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Case 2: Alternative Single and Multi-Pinning illustrative examples under undi-

rected and failed link communication network . . . . . . . . . . . . . . . . 33

Case 3: Comparison with Existing Work . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER 4: ADAPTIVE SECONDARY CONTROL . . . . . . . . . . . . . . . . . . . 42

Adaptive secondary voltage and frequency gain control . . . . . . . . . . . . . . . . . . 42

System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Adaptive secondary control via pinning in medium and low voltage microgrid . . . . . . 48

Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Droop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Inverter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Numerical Example/ Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 5: MICROGRID PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . 61

Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bad Data Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Existence of Malicious Data Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 64

Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Strategy I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Strategy II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Illustrative Example and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 6: CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

APPENDIX : SIMULATION PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . 86

Networks and Inverters Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



LIST OF FIGURES

Figure 2.1 Inverter DG block diagram . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2 Sample topology where the farthest node from the pinning set, I0, is

k = 2. I0 is assumed to be the pinning set. . . . . . . . . . . . . . . . . . . . 23

Figure 3.1 (a) Single line diagram of 5 bus ring system configuration network(dash

arrows represent information flow):, (b) undirected communication network,

(c) directed communication network. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to Fig. 3.1c communication network: (a) Pinning DG1,(b) Pin-

ning DG2, (c) Pinning DG3,(d) Pinning DG4, (e) Pinning DG5. . . . . . . . 29

Figure 3.3 DGs terminal voltage amplitudes (at left) and frequency (at right) cor-

responding to Fig. 3.1b communication network: (a) Pinning DG1, (b) Pin-

ning DG2, (c) Pinning DG3, (d) Pinning DG4, (e) Pinning DG5. . . . . . . 30

Figure 3.4 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to Fig. 3.1c communication network: (a) pinning DG2 and DG4,

(b) pinning DG3 and DG4, (c) pinning DG2 and DG5 (d) pinning DG1 and

DG3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.5 Single line diagram of 5 Bus system: (a) system configuration, (b)

communication network, (c) communication network with failed link. . . . . 34

x



Figure 3.6 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to Fig. 3.5b communication network: (a) pinning DG2 and DG4,

(b) pinning DG1 and DG5, (c) pinning DG1 and DG4, (d) pinning DG3 and

DG5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.7 DGs terminal voltage amplitudes (at left) and frequency (at right) cor-

responding to Fig. 3.5c communication network: (a) pinning DG2 and DG4,

(b) pinning DG1 and DG5, (c) pinning DG1 and DG4, (d) pinning DG2 and

DG5,, (e) pinning DG3 and DG5. . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.8 Single line diagram of 4 Bus system (dash arrows represent informa-

tion flow): (a) system configuration, (b) communication network. . . . . . . 39

Figure 3.9 DGs terminal amplitudes voltages (at left) and frequency (at right) for

several pinning scenarios corresponding to Fig. 3.8b (a) pinning DG1, (b)

pinning DG2, (c) pinning DG3. . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.1 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to Fig. 3.8 communication network. . . . . . . . . . . . . . . . . 46

Figure 4.2 Voltage communication link gain (at left) and frequency communica-

tion link gain (at right) corresponding to Fig. 3.8 communication network.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.3 Voltage and frequency pinning gain corresponding to Fig. 3.8 com-

munication network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.4 Simple DG inverter block connected to the microgrid . . . . . . . . . 50

xi



Figure 4.5 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to microgrid with R
X

= 1. . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.6 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to microgrid with R
X

= 10. . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.7 DGs terminal amplitudes voltage (at left) and frequency (at right) cor-

responding to microgrid R
X

= 0.1. . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.1 Rationale of Protection of Power Systems against Malicious Cyber-

Physical Data Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.2 Rationale of Protection of Power Systems against Malicious Cyber-

Physical Data Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.3 Rationale of Protection of Power Systems against Malicious Cyber-

Physical Data Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.4 Protection scheme for Power system against malicious data attack . . . 75

Figure 5.5 Identification scheme for Power system against malicious data attack . 76

Figure 5.6 A single line diagram of modified IEEE 30-bus power system . . . . . 78

xii



LIST OF TABLES

Table 3.1 Single pinning of undirected 5 bus ring network given in Fig. 3.1b. . . . 27

Table 3.2 Single pinning of directed 5 bus ring network given in Fig. 3.1c. . . . . 28

Table 3.3 Multi pinning of 5 bus ring network given in Fig. 3.1c. . . . . . . . . . 31

Table 3.4 Multi pinning of alternative 5 bus network given in Figs. 3.5b. . . . . . 36

Table 3.5 Multi pinning of alternative 5 bus network given in Figs. 3.5c. . . . . . 36

Table 3.6 Single pinning of 4 bus system given in 3.8. . . . . . . . . . . . . . . . 40

Table 4.1 Microgrid Test System Specifications . . . . . . . . . . . . . . . . . . 58

Table 5.1 Choices of Malicious Data Attack Vectors . . . . . . . . . . . . . . . . 79

xiii



CHAPTER 1: INTRODUCTION

Power system is the backbone of a country’s economy and it has evolved in the last two decades

to meet the rapid changes in consumer demands, decrease CO2 emission, governmental incen-

tives, and using alternative energy resources. The US Energy Information Administration (EIA)

estimates that by 2040 consumption of renewable energy will be about 25% of the total world en-

ergy consumption and U.S. holds second place in its investments on renewable energy sector after

China [1].

During past decades, significant changes have been made to power systems, however, any mean-

ingful impact of smart technologies on the power system operation yet to be seen. The need for this

transformation from conventional bulk power system to an intelligent one brought new concepts

which are called smart grid and microgrid [2–5]. Based on the U.S. Department of Energy, the mi-

crogrid is identified as “a group of interconnected loads and distributed energy resources (DERs)

with clearly defined electrical boundaries that acts as a single controllable entity with respect to the

grid and can connect and disconnect from the grid to enable it to operate in both grid-connected or

islanded mode” [6] [7]. Thus, the proper control of microgrid is a requirement for stable and eco-

nomically efficient operation in both grid connected and islanded mode. In addition to the control

of output active and reactive power flow, voltage and frequency regulation of DERs are the main

criteria of the microgrid control structure in both operating modes [8] [9] [10].

When the microgrid is connected to the main grid, voltage and frequency of DERs are dictated

from the main grid but in the case of upstream disturbance or voltage fluctuation, the microgrid

disconnects from the main grid and goes to islanding mode. In the islanding mode operation, the

so-called primary control is insufficient to maintain the voltage and frequency stability of DERs.

Therefore, the secondary control should be applied to restore the DERs’ voltage and frequency to
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the nominal values.

In the microgrid, the stability of voltage and frequency of DERs is achieved by the primary control

which is implemented by droop characteristics technique, which emulates the behavior of syn-

chronous generator [11–14]. The droop employs the fact that in power systems, the frequency

depends mostly on the active power, while the voltage depends mostly on the reactive power.

However, due to the linearity of the droop equations, the voltage and frequency of DG’s cannot

adjust automatically to nominal operation point of the network, hence the offset values in these

equations should be calculated by some other means [8] [15]. One of the prominent approaches to

set the offset values in droop equations is to introduce a secondary control [10] [16]. Conventional

secondary controls have a centralized structure and requires communications between the central

controller and all individual distributed generators (DG) [10] [17] [18]. In this technique, com-

plex and expensive communication infrastructure may be required while the failure in the central

controller or the communication links can obscure the functionality of the secondary control and

consequently, the performance of the network. To alleviate these issues, the secondary control can

be implemented in a distributed and cooperative manner where a sparse and reliable communica-

tion network can be employed. One of the main advantages of the distributed cooperative control

is that it tolerates certain changes in the underlying topology of the microgrid and it is robust to

communication link failures. Given the inherent dynamism in power systems, e.g., plug and play,

this feature makes the cooperative approach a suitable candidate for regulating the microgrids.

Distributed cooperative control has been investigated and successfully applied in various fields [19]

[20]. The application of cooperative control for distributed generator (DG) operation in power

systems in grid connected mode was introduced in [21] where the dynamics of the inverter was

neglected. The consensus control of microgrid based on distributed secondary frequency control

with a strict assumption of lossless power network model was proposed in [22]. The work of

[22] has been extended in [23] with the addition of secondary voltage control for a lossy power
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network model. The application of the cooperative control in maintaining the microgrid voltage

and frequency in the islanded mode of operation using energy storage system is investigated in [24].

To drive the network to its nominal operation point, the nominal values for voltage and frequency

should be provided to cooperative controller in one or multiple DGs. This technique of providing

the reference values in distributed systems is called pinning where a fraction of the systems in the

network have the reference values [25]. Pinning based control for network synchronization based

on simulation results has been studied in [26] [27]. In [28], pinning control in microgrid islanding

mode using energy storage system (ESS) as master unit was recently studied. In [29], Bidram et

al employed multi-agents distributed cooperative secondary voltage control of the microgrid. The

objective of the paper was that each DG would operate and converge to the reference voltage value

dictated by the leader/master distributed generator in autonomous operation mode of the microgrid.

In these studies, the selection of the leader DG(s) has been assumed to be arbitrary. However, as

it has been shown in [30–32], the performance and robustness of the network is directly related

to choice of the leader(s). Motivated by this gap, in this paper, first we formulate the problem

of single and multi pinning of multi agent distributed cooperative control in microgids. The DG

dynamics in our tracking synchronization problem is adopted from [29]. Next, the effect of proper

selection of pinning DG(’s) is analyzed. Then we propose a suboptimal algorithm based on degree

and distance of the candidate leader(s) from the rest of the microgrid. We also show that intelligent

selection of the pinning point(s) (Leader DG/DGs) would result in faster convergence and further

robustness of DG’s terminal profiles both in transient and steady state, ensuring the stability of

the microgrid. Also flexibility and effectiveness of the proposed algorithm are presented in the

simulation results for several power system topologies and communication networks in Chapter 3.

The intelligent pinning of DGs in microgrid autonomous mode has been geared towards microgrid

and DGs with fixed and known system parameters, i.e. control gain and weight of the communi-
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cation links are assumed constant and ideal. In practice, it is desirable to have an adaptive control

model that compensates for the nonlinear and uncertain dynamics of DGs and communication net-

work. The adaptive voltage and frequency gain controller scheme is proposed in Chapter 4. The

proposed controller applied together with conventional DG droop equation and secondary intel-

ligent cooperative controller to real time, calculate the voltage and frequency gain controller and

communication links gain controller to minimizes system transients in the islanding process and to

ensure microgrid stability. The proposed control technique and numerical results have been shown

in Chapter 4.

Additionally this research considered the generalized droop equation in which both R and X pa-

rameters of the line are reflected to address the simultaneous impacts of active and reactive power

fluctuations on the microgrids voltage and frequency. Based on that we formulate the problem of

adaptive distributed cooperative control in the microgrids to overcome the drawback of conven-

tional droop based control methods and improve the power sharing and voltage regulation. Our

proposed secondary control strategy is adaptive with line parameters and can be applied to all types

of microgrids. Flexibility and effectiveness of the proposed control technique are presented in the

simulation results for microgrid with different line parameters and communication networks in

Chapter 4.

Finally in this dissertation, an enhanced protection scheme against malicious false data injection

is proposed in Chapter 5. An algebraic criterion is derived to ensure a trustworthy power system

against malicious cyber-physical data attacks. The proposed protection scheme takes advantage

of expansive nature of power grids, reconfigures its subsystem data structure deterministically,

and makes it impossible to organize a successful injection. The identification scheme for finding

meters being attacked is proposed as well. The effectiveness of proposed protection scheme has

been shown in IEEE 30 bus system.
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CHAPTER 2: INTELLIGENT PINNING COOPERATIVE SECONDARY

CONTROL

System Model

The primary and secondary control of microgrid in islanding operation is explained as follows.

Primary Control

The frequency and voltage of each DG is controlled by regulation of the active and reactive powers,

respectively. This is called droop controller

 ωni
− ωi = mPi

Pi,

Vni
− V ?

i,mag = nQi
Qi,

(2.1)

where ωi and V ?
i,mag are the frequency and voltage amplitude of the ith DG, respectively; Pi and

Qi are the active and reactive powers going out of the ith DG. ωni
and Vni

are reference angu-

lar frequency and voltage set point for droop equation, respectively; and mPi
and nQi

are droop

coefficients, respectively.

Inherent trade-off between the active and reactive power sharing and the frequency and voltage

amplitude accuracy in droop controller, results in the frequency and voltage deviation from the

nominal set points. Thus, it is desirable to deploy additional controller to restore the frequency and

amplitude deviations produced by the primary droop controllers. A centralized secondary control

is designed to set the references Vn and ωn in (2.1) to restore nominal values of microgrid and

to compensate for voltage-frequency deviations. However, limits and restrictions in centralized
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controller method such as complex and expensive communication infrastructure, black out of the

whole microgrid in case of failure of the central controller, and the need for redesigning the central

controller in the case of installing/uninstalling new DGs, make it undesirable [33]. Hence to dy-

namically adjust the nominal values in primary controller, we will use distributed control method.

However, prior to designing the cooperative controller, a model of DG is required.

Modeling of Inverter Based DG

The block diagram of voltage source inverter (VSI) based DG is shown in Fig. 2.1.

Figure 2.1: Inverter DG block diagram

This model consists of three legged inverter bridge connected to DC voltage source such as solar

photovoltaic cells. The DC bus dynamics and switching process of the inverter can be neglected

due to the assumption of ideal DC source from DG side and realization of high switching frequency

of the bridge, respectively [29] [34].

The primary controller of a DG inverter consists of three parts: power, voltage, and current con-
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trollers which set the voltage magnitude and frequency of the inverter [34] [35]. As shown in Fig.

4.4, the control process of primary controller are expressed in d− q coordinate system. The objec-

tive of the primary controller is to align the output voltage of each DG on d−axis to the inverter ’s

reference frame and set the q−axis reference to zero

 V ?
odi

= Vni
− nQi

Qi,

V ?
oqi

= 0.
(2.2)

The instantaneous active and reactive powers of inverter output are passed through low pass filters

with cut-off frequency of ωc to obtain the fundamental component of active and reactive powers:

Pi and Qi. The dynamics of the power controller can be written as [29] [34]

Ṗi = −ωciPi + ωci(vodiiodi + voqiioqi) (2.3a)

Q̇i = −ωciQi + ωci(voqiiodi − vodiioqi). (2.3b)

The state and algebraic equations of voltage controller are

φ̇di = V ?
odi
− Vodi , (2.4c)

φ̇qi = V ?
oqi
− Voqi , (2.4d)

i?ldi = Fiiodi − ωbCfiVoqi +KPV i(V
?
odi
− Vodi) +KIV iφdi, (2.4e)

i?lqi = Fiioqi + ωbCfiVodi +KPV i(V
?
oqi
− Voqi) +KIVi

φqi , (2.4f)
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and the state and algebraic equations of current controller are as follows

γ̇di = i?ldi − ildi , (2.5g)

γ̇qi = i?lqi − ilqi , (2.5h)

V ?
idi

= −ωbLfiilqi +KPCi
(i?ldi − ildi) +KICi

γdi , (2.5i)

V ?
iqi

= ωbLfiildi +KPCi
(i?lqi − ilqi) +KICi

γqi , (2.5j)

where the (V ?
odi
, V ?

oqi
) are the voltage references for inner voltage controller loop provided by power

controller, (φ̇di , φ̇qi) and (γ̇di , γ̇qi) are the auxiliary state variables defined for PI controllers for

voltage and current control loop, respectively; Kpvi, KV Ii , KPCi
, KICi

are the parameters of the

PI controller of the DG i, ωb is the nominal angular frequency, Fi is current feed forward gain,

[Lfi , Cfi ] are the elements of LC filter, (i?ldi , i
?
lqi

) are the reference values for inner current con-

troller loop of the DG provided by voltage controller. A complete state-space small-signal model

and dynamics of the the ith inverter can be found in [29] [34].

Distributed Cooperative Control

A secondary voltage and frequency control of DGs in islanding operation is introduced in [29] [36].

The proposed controller is based on distributed cooperative controller design for a output feedback

linearized model of the plant.

Secondary Voltage Control

The objective of secondary voltage controller is to synchronize the voltages of the terminals of all

DGs to reference value dictated by leader DG via the communication matrix.

8



The procedure of designing the secondary voltage control by neglecting the fast dynamic respond

of the primary control is

Vodi = Vni
− nQi

Qi, (2.6k)

Voqi = 0. (2.6l)

By differentiating (2.6k), the droop dynamics can be expressed as

V̇odi = V̇ni
− nQi

Q̇i ≡ uvi , (2.7)

where uvi is an auxiliary control input to substitute the actual control input Vni
for primary control

in (2.1). Hence, the secondary voltage control of microgrid can be expressed as



V̇od1 = uv1

V̇od2 = uv2
...

V̇odN = uvN

. (2.8)

In addition, (2.8) represents the input-output feedback linearization of the microgrid. To synchro-

nize the voltage of the ith DG to the nominal value via the communication network, the uvi is

chosen as

uvi = −cvevi , (2.9)

where cv is the control gain and evi is the local tracking error of the ith DG with respect to the

reference signal and the neighboring DG’s

evi =
N∑
j=1

aij(Vodi − Vodj) + giζi(Vodi − Vref ), (2.10)

9



where A = [aij] is the adjacency matrix of the communication network, aij = 1 indicates a

connection from jth DG to ith DG and otherwise aij = 0; gi is the pinning gain of the ith DG and

ζi ∈ {0, 1} indicates which nodes are pinned to the reference value. Hence, the primary control

input, Vni
, can be calculated as

Vni
=

∫
(uvi + nQi

Q̇i)dt, (2.11)

where the dynamics of Qi is given in (2.3a).

Secondary frequency control

The objective of the secondary frequency controller is to synchronize the angular frequency of

all the DGs to reference the value dictated by the leader DG via the communication matrix. The

system dynamics for calculating the reference angular frequency of ωn for primary controller can

be obtained by differentiating the frequency droop characteristics as

ω̇i = ω̇ni
−mPi

Ṗi ≡ uωi
, (2.12)

where uωi
is an auxiliary control input to substitute the actual control input ωni

for primary control

in (2.1). Hence, the secondary frequency control of microgrid for the networked DGs can be

expressed as 

ω̇1 = uω1

ω̇2 = uω2

...

ω̇N = uωN

. (2.13)
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To ensure the frequency synchronization of the ith DG to the reference value, the uωi
is chosen as

uωi
= −cωeωi

, (2.14)

where cω is the control gain and eωi
is the local tracking error of the ith DG with respect to the

reference signal and the neighboring DGs

eωi
=

N∑
j=1

aij(ωi − ωj) + giζi(ωi − ωref ), (2.15)

where A = [aij] is the adjacency matrix of the communication network, aij = 1 indicates a

connection from jth DG to ith DG and otherwise aij = 0; gi is the pinning gain of the ith DG and

ζi ∈ {0, 1} indicates which nodes are pinned to the reference value.

In the microgrid with N DG’s, load demand is shared among the DG units proportional to the

active power rating of units. Hence, the slopes ω-P should satisfy

mP1P1 = · · · = mPi
Pi. (2.16)

Therefore, by defining additional distributed cooperative frequency control for mPi
Ṗi for the ith

DG in (2.12) as uPi
to satisfy (2.16) as

upi = −cpepi , (2.17)

where cp is the control gain and epi is the local tracking error of the ith DG with respect to the

neighboring DGs

epi =
N∑
j=1

aij(mPi
Pi −mPj

Pj). (2.18)
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Therefore, according to (2.12)-(2.18), the primary control input, ωn, can be calculated as

ωni
=

∫
(uωi

+ upi)dt. (2.19)

Control Problem Definition

Differentiating from (2.10) and substituting from (2.8), we have

ėvi =
N∑
i=1

aij(uvi − uvj) + giζiuvi , (2.20)

which can be rewritten as

ėv = (L + GZ)uv, (2.21)

where ev = [ev1 , ev2 , · · · , evN ]T is the output voltage tracking error of the network,

uv = [uvi , · · · , uvN ]T is the auxiliary control input of the network, G = diag([g1, g2, · · · , gN ]) is

the network ’s pinning gain matrix, Z = diag([ζ1, ζ2, · · · , ζN ]) is the pinning matrix, and L = [lij]

is the Laplacian matrix of the communication network defined as

lij =

 −aij i 6= j∑N
j=1 aij i = j.

(2.22)

Substituting uv from (2.9) in (2.20), the tracking error dynamics for voltage can be derived as

ėv = −cv(L + GZ)ev. (2.23)

Similar to voltage synchronization formulation, the dynamics of angular frequency error can be
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obtained by differentiating from (2.15) and substituting uω from (2.14)

ėω = −cω(L + GZ)eω. (2.24)

As it is known from linear time-invariant system theory, the performance and robustness of the

systems in (2.23) and (2.24) are directly dependent on the eigenvalues of L + GZ. For instance,

the convergence rate of the distributed errors for voltage and frequency are cvλmin(L + GZ) and

cωλmin(L + GZ), respectively. Therefore, choosing which DG(s) to provide the reference values,

i.e., Z, carries an important role on performance of the microgrid. This problem can be formulated

as

Problem 1. Let G = gIN and the number of desired pinning nodes be m0, then

Z? = argmax φ(Z, g)

s. t. ‖Z‖0 = m

Z = diag([ζ1 · · · ζN ]), ζi ∈ {0, 1} ∀i ∈ N ,

(2.25)

where ‖ · ‖0 denotes norm 0, and φ(Z) , λmin(L + gZ).

Another problem of interest is to minimize the number of pinning nodes while guaranteeing a

certain convergence rate, λ?, which can be formulated as

Problem 2. Let λ? be the desired convergence rate and G = gIN , then

min ‖Z‖0

s. t. φ(Z, g) ≥ λ?

Z = diag([ζ1 · · · ζN ]), ζi ∈ {0, 1} ∀i ∈ N ,

(2.26)

where φ(Z) , λmin(L + gZ).
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As it has been shown, the optimal solution of problem in (2.25) and (2.26) are NP-hard, i.e., their

solutions have exponential complexity. Due to exponential complexity of the optimal solution in

microgrids with large number of DGs, finding the optimal solution is not practical which renders

the suboptimal solutions with polynomial time complexity to be of immense interest [30–32, 37].

This is the topic which we will pursue in the next section.

Main Results

The following will be used in the sequel. Let assume that the nodes I0 = {i1, · · · , im0} are

pinned, this is called the pinning set. Let the farthest node to pinning set, I0, be k. Then define the

set Ij,∀j ∈ {1, · · · , k} as

Ij =

{
i
∣∣∣api = 1, ∀p ∈ Ij−1, i ∈ N \

j−1⋃
m=1

Im

}
, (2.27)

where api are entries of the adjacency matrix of the communication network, N = {1, · · · , N},

and \ denotes minus operation for sets.

Fig. 2.2 illustrates the sets defined in (2.27).

For each set in (2.27), we define the following

dout
i,j =

∑
p∈Ij+1

api, i ∈ Ij, (2.28)

din
i,j =

∑
p∈Ij−1

aip, i ∈ Ij, (2.29)

where I−1 = Ik+1 = ∅. Please note, due to the definition in (2.27), dout
i,j ≥ 1, ∀j ∈ {0, · · · , k−1}.
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Lower and upper bounds on pinning

In the first step to solve Problem 1, let the number of pinning nodes, I0 = {i}. This is called single

pinning method.

Theorem 1. [37, Theorem 2] Let the network be connected and undirected, and di denote the

degree of the node i, then if I0 = {i}, we have

φl(L, i, g) ≤ φ(L, i, g) ≤ φu(L, i, g), (2.30)

where

φu(L, i, g) ,
g

2
+

Ndi
2(N − 1)

−

√
g2

4
+

(
Ndi

2(N − 1)

)2

+
(N − 2)gdi
2(N − 1)

.

N is the network size, g is the pinning gain; The lower bound, φl(L, i, g) is smallest positive root

of the polynomials, αi(µ) i = 0, · · · , k − 1

αi(µ) = dout
min, i−1 + din

i,min − µ− din
max, i

2
/αi+1(µ), (2.31)
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where

αk(µ) = din
min, k − µ

din
min, i = min

j∈Ii
(din

j,i)

dout
min, i = min

j∈Ii
(dout

j,i ))

din
max, i = max

j∈Ii
(din

j,i)

dout
min,−1 = g.

Remark 1. φu(L, i, g) have the following properties [37]

• φu(L, i, g) is a strictly increasing function of pinning degree, di, and pinning gain g;

• φu(L, i, g), is alway bounded by 1,

φu(L, i, g) ≤ lim
g→∞

φu(L, i, g) ≤ dmax

N − 1
,

where dmax is the maximum degree in the network. This implies that no matter how large

the pinning gain is chosen, in single pinning strategy, the convergence rate of the errors in

(2.23) and (2.24) cannot exceed cv and cω, respectively;

• In case the coupling network is a tree, Theorem 1 implies that the worst pinning nodes would

be the end nodes and the most proper node to pin the network is the node with highest degree.

Generalization of Theorem 1 to the case of multiple pinning can be given as

Theorem 2. [37, Theorem 3] Let the communication network, L, be connected and undirected.
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Given the pinning set, I0, with m = |I0|, then

φl(L,Z, g) ≤ φ(L,Z, g) ≤ φu(L,Z, g), (2.32)

where

φu(L,Z, g) = β

1−

√
1−

∑m
i=1 d

in
0, i

2

(N −m)β2

 (2.33)

β =

∑m
i=1 d

out
i, 0 + (N −m)(g + din

min, 0)

2(N −m)
.

The lower bound, φl(L,Z, g), is the smallest positive root of the polynomials, αi(µ) i = 0, · · · , k−

1

αi(µ) = dout
min, i−1 + din

i,min − µ− din
max, i

2
/αi+1(µ), (2.34)

where

αk(µ) = din
min, k − µ,

din
min, i = min

j∈Ii
(dj,i,

in )

dout
min, i = min

j∈Ii
(dj,i,

out ))

din
max, i = max

j∈Ii
(dj,i,

in )

dout
min,−1 = g.

Remark 2. φu(L,Z, g) have the following properties [37]

• φu(L,Z, g) is a strictly increasing function of pinning gain g;
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• φu(L,Z, g) is always bounded by the size of pinning set, m,

φu(L,Z, g) ≤ lim
g→∞

φu(L,Z, g) ≤ mdmax

N − 1
.

This implies that no matter how large the pinning gain is chosen, the convergence rate of the

errors in (2.23) and (2.24) cannot exceed mcv and mcω, respectively;

• Also Theorem 2 indicates that the smaller the distance of the pinning set from the farthest

node in the network, the higher is the lower bound, which in turn leads to better pinning

performance. This will be illustrated in the numerical results.

Algorithm

Based on remarks 1 and 2, in the previous section, the following heuristic algorithm can be given

to solve Problem 2. This algorithm has linear search complexity and its pinning performance is

very close to the optimal solution which has an exponential complexity.

Let us define

N = {1, · · · , N},

I = {i | di ≥ bµ?c+ 1} ,

I0 = N \ I : set of nodes to be pinned,
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where

path(i, I0) =


shortest path length from I0 6= ∅

node i to super node

di I0 =, ∅

pj(i, I0) = number of path lengths of 1 from node i

to super node I0,

where µ? is the desired connectivity of the network to the reference node.

1. I = {i | di ≥ bµ?c+ 1}

2. I0 = N \ I, and set mp = |I0|

3. if |I0| < m then

(a) while mp ≤ m, do

• path(di1 , I0) ≥ path(di2 , I0) ≥ · · · ≥ path(di|I| , I0) ∀ij ∈ I,

• if path(di1 , I0) = · · · = path(dik , I0) then sort these nodes by dij − p1(ij, I0),

• I0 = I0 ∪ {i1}, I = I \ {i1}, and mp = |I0|,

(b) if L + gZ− µ?IN � 0, then stop

else: set m = m+ 1 and go to 3a.

4. if |I0| = m then

(a) if L + gZ− µ?IN � 0, then stop

else: set m = m+ 1 and go to 3a.

5. if |I0| > m then
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(a) while mp > m do

• path(di1 , I0 \ {i1}) ≤ path(di2 , I0 \ {i2}) ≤ · · · ≤ path(di|I0| , I0 \ {i|I0|}),

∀ij ∈ I0,

• if path(di1 , I0) = · · · = path(dik , I0) then sort these nodes by p1(ij, I0 \ {ij})−

dij ,

• I0 = I0 \ {i1}, I = I ∪ {i1}, and mp = |I0|,

(b) if L + gZ− µ?IN � 0, then stop

else: set m = m+ 1 and go to 3a.

Since in Problem 1, there is no target µ?, the algorithm starts with µ? = 0 andm is set to the desired

number of pinnings in the constraint; when the algorithm reaches the condition L+gZ−µ?IN � 0

in step 3-b, which is always satisfied, the algorithm stops with the size of pinning set |I0| = m.

This algorithm can also be used for a directed network. However, in a directed network, instead of

using A in the calculations, Anew = A + AT , should be used.
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Communication Topology in Microgrid

Due to the microgrid physical structure, any communication network topology and redundancy

scheme can be readily configured depending on the requirement and cost targets [38]. The pro-

posed intelligent pinning control must be supported by a local communication network that pro-

vides its required information flows. Our study cases uses both two ways and one-way commu-

nication links in the microgrid. [29] implemented its fully distributed control strategy through a

communication network with one-way communication links. In the one-way communication link,

we restrict the transition function so that the new state of the sender (pinning location) does not

depend on the state of receiver (neighboring DG). It can be assumed that an interaction does not

change the state of pinning DG/DGs at all. Also one-way communication link can be supported by

plug and play operation capability of DGs and existence of communication hardware. Importance

of location of DG and load in network topology i.e. if the DG is feeding any critical load or not

can be considered as a cost effective decision factor to have one-way communication link as well.

Communication between DGs in microgrid with small geographical span can be done through

CAN Bus and PROFIBUS communication protocols [39]. It should be noted that although time

delays are inherent in microgrid communication infrastructures but due to large time scale of sec-

ondary control, its effect on the microgrid performance is neglected. The secondary controllers are

expected to operate five to ten times slower or more than the primary controllers [40].
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Figure 2.2: Sample topology where the farthest node from the pinning set, I0, is k = 2. I0 is
assumed to be the pinning set.
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CHAPTER 3: NUMERICAL RESULTS OF INTELLIGENT PINNING

COOPERATIVE SECONDARY CONTROL

Main Results

In this section, we have used the Simpower System Toolbox of Simulink for 4 bus and 5 bus

power systems with different topologies and communication networks to show the adaptability

and effectiveness of the proposed control method. Microgrid operates on a 3-phase, 380V(L-L),

and frequency of 50 Hz (ω0 = 314.15(rad/s)). DGs are connected through distribution series RL

branches and loads are constant. In the first case study, single and multi pinning algorithm under

directed and undirected communication networks is studied. The second case study investigates

the application of single and multi pinning algorithm in undirected and failed link communication

networks. And the final case study is a comparison of our single pinning algorithm with existing

work. Optimal pinning gain value can be calculated based on communication network topology to

adjust the speed of pinning control methodology. This study, in all cases, assumes the pinning gain

is calculated offline and is set to g = 1. As mentioned earlier, an ideal DC source is assumed from

DG side; therefore, the weather effect is not considered in this study. It should also be noted that

the undershoot and overshoot of voltage amplitude and frequency of the DGs in microgrid during

the transient from grid connected to islanding mode should not exceed 10-20 cycles to avoid the

operation of 27, 59, and 81 protective relays. The protective power relay’s voltage and frequency

elements are typically set to 0.88 (p.u.) ≤ vmag ≤ 1.1 (p.u.) and 47 (Hz) ≤ f ≤ 50.5 (Hz) for

10-20 cycles. The reminder of the network parameters, the specifications of DGs, and loads are

given in the appendix.
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Case 1: Single Pinning and Multi-Pinning illustrative examples under directed and undirected

network

Fig. 3.1 shows microgrid one-line diagram with the five bus ring system and its communication

network.

(a)

(b) (c)

Figure 3.1: (a) Single line diagram of 5 bus ring system configuration network(dash arrows rep-
resent information flow):, (b) undirected communication network, (c) directed communication
network.
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Here, we consider the single and multi pinning methods for undirected and directed networks. In

the undirected network case which is shown in Fig. 3.1b, all DGs are able to send and receive data

from their immediate neighbors. In the directed network shown in Fig. 3.1c, DG1 and DG4 are

not receiving any data from DG5. The microgrid’s main breaker opens at t = 0 (s) and goes to the

islanding mode at the same time the secondary voltage and frequency control are activated. DGs

terminal voltage amplitudes and frequencies with the single pinning method are shown in Fig. 3.3

and Fig. 3.2 for two different communication networks corresponding to Fig. 3.1b and Fig. 3.1c,

respectively.

In the undirected communication network of Fig. 3.1b, all DGs are able to send and receive data

from their neighbors and all DGs are also equally located apart from each other, hence based on

our proposed algorithm, the performance of the single pinning of any arbitrary DG is expected

to be the same. It can be observed from Fig. 3.3 that the consensus is reached for the voltage

and frequency and the steady state errors, ‖essv‖
v0

(%),
‖essf ‖

f0
(%), are zero. Application of intelligent

pinning control for micrgrid voltage stabilization in lossless power system can be found at [37].

From Fig. 3.3 and Table 3.1, it can be seen that the performance of pinning any DGs are the same.

For instance, when pinning DG3, the DGs terminal voltages and frequencies reach to the steady

state values at tsv = 0.26 (s) and tsf = 0.19 (s) which are given in Fig. 3.3c, respectively. Pinning

DG1 results in tsv = 0.26 (s) and tsf = 0.19 (s) as indicated in Fig. 3.3a.
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Table 3.1: Single pinning of undirected 5 bus ring network given in Fig. 3.1b.

Pinning DG tsv tsf
‖essv‖
Vref

(%)
‖essf ‖

f0
(%)

DG1 0.26 (s) 0.19 (s) 0.00% 0.00%

DG2 0.26 (s) 0.20 (s) 0.00% 0.00%

DG3 0.26 (s) 0.19 (s) 0.00% 0.00%

DG4 0.26 (s) 0.19 (s) 0.00% 0.00%

DG5 0.26 (s) 0.20 (s) 0.00% 0.00%

Table 3.1 gives the performance of the network given in Fig. 3.1b for several cases of single

pinning in terms of settling time and the norm of all DGs terminal voltage and frequency errors

from reference values. tsv and tsf denote the settling times for voltage and frequency, respectively.

‖essv‖ and ‖essf‖ denote the norm of network errors from the reference values for voltage and

frequency, respectively. The error vectors for voltage and frequency are defined in (2.23) and

(2.24), respectively. In the directed communication network given in Fig. 3.1c, for single pinning,

m = 1 is set in Algorithm 1 and we have path(DG1, N\{DG1}) = path(DG4, N\{DG4}) = 7,

path(DG2, N \ {DG3}) = 6 and path(DG5, N \ {DG5}) =∞. Since out degree of both DG2

and DG3 are the same, the algorithm predicts that the performance of the pinning, for pinning

either one of the DGs, should be identical. As it can be seen from Figs. 3.2c and 3.2b, pinning

DG2 and DG3 gives the same performance results, i.e., tsv = 0.24 (s) and tsf = 0.19 (s). As

determined by the algorithm and shown by the results in Fig. 3.2e, pinning DG5 will not help

microgrid stabilization because it does not share any information with its neighboring DGs. As it

can be seen from Figs. 3.2a and 3.2d, pinning DG1 and DG4 results in the microgird reaching its

frequency stability at tsf = 0.25 (s) which exceeds the maximum allowance time setting point of

frequency relay (20 cycle). Table 3.2 summarizes the performance of the network in Fig.3.1c for
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several cases of single pinning in terms of settling time and the norm of all DGs terminal voltage

and frequency errors from reference values. N/A in the row related to DG5 pinning location means

microgrid did not stabilize at all. This is expected as DG5 does not share any information with the

rest of the network.

Table 3.2: Single pinning of directed 5 bus ring network given in Fig. 3.1c.

Pinning DG tsv tsf
‖essv‖
Vref

(%)
‖essf ‖

f0
(%)

DG1 0.34 (s) 0.25 (s) 0.00% 0.00%

DG2 0.24 (s) 0.19 (s) 0.00% 0.00%

DG3 0.24 (s) 0.19 (s) 0.00% 0.00%

DG4 0.34 (s) 0.25 (s) 0.00% 0.00%

DG5 N/A (s) N/A (s) N/A% N/A%

Next, the effectiveness of the proposed multiple pinning method is studied. Fig.3.4 shows the

evolution of the terminal voltages and frequencies when multiple DGs are pinned in the directed,

i.e., Fig. 3.1c, communication networks. The concept of pinning more than one DG can be used

in the microgrid with a larger geographical span when the communication network would be more

complex and costly [21]. It would also increases the robustness of the network to adverse events

such as fault and/or communication failure among DGs. This advantage of multi-pinning method

will be demonstrated in the next case study.
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Figure 3.2: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to Fig.
3.1c communication network: (a) Pinning DG1,(b) Pinning DG2, (c) Pinning DG3,(d) Pinning
DG4, (e) Pinning DG5. 28
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Figure 3.3: DGs terminal voltage amplitudes (at left) and frequency (at right) corresponding to Fig.
3.1b communication network: (a) Pinning DG1, (b) Pinning DG2, (c) Pinning DG3, (d) Pinning
DG4, (e) Pinning DG5. 29



If the desired number of nodes to be pinned is set to m = 2 in the first iteration as before, ei-

ther DG2 or DG3 should be selected. If DG2 is selected, at the start of the second iteration, we

have I = {DG1, DG3, DG4, DG5} and path({DG2, DG1}, I \ { DG1}) = path(DG2, DG3, I \

{DG3}) = path({DG2, DG5}, I \{ DG5}) = 4 and path({DG2, DG4}, I \{DG4}) = 3. There-

fore, for m = 2 the pinning is P = {DG2, DG4}. If in the first iteration DG3 is selected, then

path({DG2, DG4}, I \ {DG4}) = 3 and the pinning set P = {DG1, DG3}, which also predicts

that the performance of the pinning {DG1, DG3} is the same as pinning {DG2, DG4}. This can

also be deduced from the symmetry in the network. Fig. 3.4 shows the evolution of the terminal

voltages and frequencies when multiple DGs are pinned in the directed, i.e., Fig. 3.1c, communi-

cation network. As observed from the results of pinning set of DG1 and DG3 in Fig. 3.4d, both

DGs’ terminal voltage and frequency reach to the reference value at tsv = 0.08 (s) and tsf = 0.10

(s) while pinning set of DG2 and DG4 in Fig. 3.4a results in tsv = 0.08 (s) and tsf = 0.12 (s).

Several candidates with their corresponding performances are given in Table 3.3. As it can be seen,

the proposed method of pinning results in much better performance both in transient over voltage

and frequency and settling time of voltage and frequency for the microgrid. Also, as predicted

by our algorithm, it can be observed from the results in Fig. 3.4c, that choosing DG5 as one of

the candidates for pinning location set of DG2 and DG5, results in microgrid stability with poor

performance because DG5 does not share any information with its neighbor.

Pinning DG tsv tsf
‖essv‖
Vref

(%)
‖essf ‖

f0
(%)

DG1 and DG3 0.08 (s) 0.10 (s) 0.00% 0.00%
DG2 and DG4 0.08 (s) 0.12 (s) 0.00% 0.00%
DG3 and DG4 0.21 (s) 0.21 (s) 0.00% 0.00%
DG2 and DG5 0.26 (s) 0.17 (s) 0.00% 0.00%

Table 3.3: Multi pinning of 5 bus ring network given in Fig. 3.1c.
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Figure 3.4: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to Fig.
3.1c communication network: (a) pinning DG2 and DG4, (b) pinning DG3 and DG4, (c) pinning
DG2 and DG5 (d) pinning DG1 and DG3. 31



(a)
(b)

(c)

Figure 3.5: Single line diagram of 5 Bus system: (a) system configuration, (b) communication
network, (c) communication network with failed link.

Case 2: Alternative Single and Multi-Pinning illustrative examples under undirected and failed

link communication network

Another 5 bus topology with its communication network is shown in Fig. 3.5. In this example,

two different communication networks are studied. First scenario follows the undirected commu-

nication topology, which is shown in Fig. 3.5b, and in the second scenario, it is assumed that there

is a communication failure between DG2 and DG5 and that they cannot communicate with one

another depicted in Fig 3.5c.

Similar to case study 1, the microgrid’s main breaker opens at t = 0 (s) and goes to the islanding

mode while secondary control is activated.
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Multi-pinning of Fig. 3.5 with m = 2 is given in Fig. 3.6 and for the link failure in Fig. 3.7,

following two communication network conditions as stated earlier: In the first scenario, the com-

munication network is unchanged, Fig. 3.5b, while in the second scenario, the communication link

between DG2 and DG5 failed, Fig. 3.5c. Following the proposed multi pinning scheme for Fig.

3.5b, our algorithm gives DG3 and DG5 , i.e., I0 = {3, 5} or DG2 and DG4, I0 = {2, 4}, as best

pinning set location(s). These simulation results validate our proposed algorithm that choosing

the pinning set of DG5/DG2 with a high degree of connectivity and communication links to their

neighboring DGs and DG3/DG4, which is the furthest DG in respect to DG5/DG2, at the same

time would help the voltage and frequency recovery of the microgrid in both transient response

and steady state condition. Simulation results of DG2 and DG4 or DG3 and DG5 pinning sets are

shown in Fig 3.6a and Fig. 3.6d, respectively, and validate our pinning algorithm strategy. As it

was predictable, other arrangement sets of pinning nodes i.e. pinning DG1 and DG5 has poorer

performance for network transient respond for microgrid islanding operation and its selling time

is tsv = 0.12 (s) and tsf = 0.19 (s), shown in Fig 3.6b . Table 3.4 summarizes the results of dif-

ferent multi pinning sets for the microgrid related to Fig 3.5b. The simulation results also indicate

the effectiveness of our proposed algorithm in the time of communication failure. Our algorithm

chooses DG2 and DG5 for the best pinning location. It is important to recognize that the failed

communication link between DG2 and DG5 can group the communication network of microgrid

into two clusters of (DG1, DG2, DG3) and (DG1, DG5, DG4). Therefore, following our pro-

posed algorithm in single pinning, selecting DG2 in the first cluster and DG5 in the second cluster

as a pinning location with a high degree of connectivity will improve voltage and frequency of the

microgrid both in transient response and steady state condition shown in Fig. 3.7d. Also, as deter-

mined by our multi pinning algorithm and the evidence indicated by the results in Figs. 3.7a and

3.7e, the performance of another pinning set arrangements, i.e., DG3 and DG5 or DG2 and DG4

demonstrate the effectiveness of our proposed algorithm. Other pinning set arrangements such as

DG1 and DG5 or DG1 and DG4 did not help the recovery of the islanded microgrid and may cause
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the operation of under/over voltage protective relays before microgrid reaches to its stabilization.

Table 3.5 reviews the several multi pinning set location results for micrgrid in Fig 3.5c.

Table 3.4: Multi pinning of alternative 5 bus network given in Figs. 3.5b.

Pinning DG tsv tsf
‖essv‖
Vref

(%)
‖essf ‖

f0
(%)

DG2 and DG4 0.09 (s) 0.13 (s) 0.00% 0.00%

DG1 and DG5 0.12 (s) 0.19 (s) 0.00% 0.00%

DG1 and DG4 0.18 (s) 0.21 (s) 0.00% 0.00%

DG3 and DG5 0.07 (s) 0.15 (s) 0.00% 0.00%

Table 3.5: Multi pinning of alternative 5 bus network given in Figs. 3.5c.

Pinning DG tsv tsf
‖essv‖
Vref

(%)
‖essf ‖

f0
(%)

DG2 and DG4 0.09 (s) 0.09 (s) 0.00% 0.00%

DG1 and DG5 0.25 (s) 0.23 (s) 0.00% 0.00%

DG1 and DG4 0.27 (s) 0.27 (s) 0.00% 0.00%

DG2 and DG5 0.09 (s) 0.10 (s) 0.00% 0.00%

DG3 and DG5 0.06 (s) 0.10 (s) 0.00% 0.00%
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Figure 3.6: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to Fig.
3.5b communication network: (a) pinning DG2 and DG4, (b) pinning DG1 and DG5, (c) pinning
DG1 and DG4, (d) pinning DG3 and DG5. 35
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Figure 3.7: DGs terminal voltage amplitudes (at left) and frequency (at right) corresponding to Fig.
3.5c communication network: (a) pinning DG2 and DG4, (b) pinning DG1 and DG5, (c) pinning
DG1 and DG4, (d) pinning DG2 and DG5,, (e) pinning DG3 and DG5.
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(a) (b)

Figure 3.8: Single line diagram of 4 Bus system (dash arrows represent information flow): (a)
system configuration, (b) communication network.

Case 3: Comparison with Existing Work

Here, we assume that the network is to be stabilized by single pinning method. The bus and

communication networks are given in Fig. 3.8. In this configuration, it is assumed that the DGs

communicate with each other through a fixed communication network shown in Fig. 3.8b.

The diagram shows that the DGs only communicate with their neighboring DG. In this scenario,

the microgrid’s main breaker opens at t = 0 (s) and it goes to the islanding mode while at the same

time the secondary voltage and frequency control are initiated. DGs terminal voltage amplitude

and frequency for different reference single pinning scenario are shown in Fig. 3.9. Based on

the tracking synchronization control strategy, it can be seen that all DGs’ terminal voltage and

frequency return to the reference value dictated by the leader DG. However, pinning DG2 results

in a faster and more robust convergence in comparison with DG1 presented in [29]. Please note
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that in [29], because of its minimum directed communication topology, pinning DG1 is suggested

while our pinning algorithm indicates that DG2 should be pinned, which also coincides with the

optimal solution of Problem 1.

Table 3.6 provides information about settling time and the norm of all DGs’ terminal voltage and

frequency errors from reference value for both pinning cases. As it can be observed in Fig. 3.9c,

pinning DG2 results in superior performance, i.e., transient behavior as well as convergence rate,

compared to pinning the other DGs in the network. It should be noted that DG4 cannot be selected

as a leader because it does not share information with DG3 causing microgrid weaken performance

similar to directed case study of pinning DG5 in Fig. 3.2e.

Table 3.6: Single pinning of 4 bus system given in 3.8.

Pinning DG tsv tsf
‖essv‖
Vref

(%)
‖essf ‖

f0
(%)

DG1 0.26 (s) 0.23 (s) 0.00% 0.00%

DG2 0.16 (s) 0.13 (s) 0.00% 0.00%

DG3 0.28 (s) 0.18 (s) 0.00% 0.00%

We have introduced algorithms for stabilizing DGs’ terminal voltage and frequency to their homo-

geneous state by intelligent pinning of microgrid nodes using their local communication network

in distributed way, which deters the necessity of a centralized approach. The placement of the pin-

ning node is affected by the topology of the network. It is shown that it is much easier to stabilize

the microgrid voltage and frequency in islanding mode operation by specifically placing the pin-

ning node on the DGs with high degrees of connectivity than by randomly placing pinning nodes

into the network.
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Figure 3.9: DGs terminal amplitudes voltages (at left) and frequency (at right) for several pinning
scenarios corresponding to Fig. 3.8b (a) pinning DG1, (b) pinning DG2, (c) pinning DG3.
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CHAPTER 4: ADAPTIVE SECONDARY CONTROL

Adaptive secondary voltage and frequency gain control

The stable operation of the microgrid capability to continue after disconnecting from the main

grid depends directly upon its control strategy. As studied in previous chapters, the most common

method to control the Distributed Generators (DGs) in microgrid is based on well-known conven-

tional droop characteristics. A droop controller employs the fact that the microgrid voltage and

frequency are dependent on active and reactive power, respectively. However, even in the presence

of this primary control (Droop technique), DGs’ voltage and frequency in autonomous operation

can still diverge from it nominal values. Therefore, a further control level, distributed cooperative

secondary control, is required to restore voltage and frequency values [29, 37].

In chapter 3, we proposed the intelligent pinning of DGs in microgrid autonomous mode. However,

this has been geared towards microgrid and DGs with fixed and known system parameters, i.e.

control gain and weight of the communication links are assumed constant and ideal. In practice,

it is desirable to have an adaptive control model that compensates for the nonlinear and uncertain

dynamics of DGs and communication network.

The proposed adaptive control scheme, applied together with DG droop controls and secondary

intelligent cooperative voltage and frequency controller to real time, calculate the voltage and

frequency gain controller in addition to weights of communication links in microgrid to minimizes

system transients in the islanding process and to ensure microgrid voltage and frequency stability.
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System Model

A secondary distributed cooperative voltage and frequency control of DGs in islanding operation

was introduced in chapter 2. The objective of secondary voltage and frequency controller is to

synchronize the voltages and frequency of the terminals of all DGs to reference value dictated by

leader DG via the communication matrix by defining the auxiliary control ui = Cevi .

evi is the local tracking error of the ith DG with respect to the reference signal and neighboring

DGs and C is controller gain. xi defined as

evi =
N∑
j=1

ζiaij(xi − xj) + giηi(xi − xref ), (4.1)

where ζi is pinning location and gi and aij are pinning gain and communication link gain respec-

tively.

In previous problem formulation, gi and aij were considered ideal and constant in all network

conditions.

Assumption 1. The network is connected and symmetric.

Problem 3. Let Assumption 1 hold. For any given ζi, can one adaptively choose gi and aij such

that the network in (4.1) asymptotically converges to any given reference value, xref?

Control Algorithm

Let us assume the system dynamics to be

ẋi = ui,∀i ∈ N , xi, ui ∈ R, (4.2)
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we propose the following adaptive design

ui =
N∑
j=1

ζiaij(t)(xi − xj) + gi(t)ηi(xi − xref ), (4.3)

ȧij = 1/2(xi − xj)2, (4.4)

ġi =
1

2
‖ei‖ =

1

2
(xi − xref )2, (4.5)

where xref is the reference trajectory, ei is the state error,xi, from reference trajectory, ηi are the

pinning location and ζi indicates existence of communication link from node j to node i.

Theorem 3. Give that the network is bidirectional and connected, the system above asymptotically

converges to the reference trajectory/state.

Proof. Let

Vi =
1

2

N∑
j=1

ei
2 +

1

2

N∑
j=1

ζi(aij − āij)2 +
1

2

N∑
j=1

ηi(gi − ḡi)2. (4.6)

After taking time derivative of 4.6

V̇i =
N∑
j=1

eiėi +
N∑
j=1

ζi(aij − āij)ȧij +
N∑
j=1

ηi(gi − ḡi)ġi, (4.7)

substituting for ȧij and ġi

V̇i = −
∑
i,j∈N

ζi(aij(t)ei(ei − ej)−
∑
i∈N

ηigie
2
i +

∑
i,j∈N

ζiaij ȧij −
∑
i,j∈N

ζiāij ȧij +
∑
i∈N

ηigiġi −
∑
i∈N

ηiḡiġi.

(4.8)
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Simplification of (4.8) will result in

V̇i =
∑
i,j∈N

ζijaij[ei(ei − ej)− ˙ai,j]−
∑
i∈N

ηigi(ei
2 − ġi)−

∑
i,j∈N

ζij āij ȧij −
∑
i∈N

ηij ḡiġi. (4.9)

We know ġi = ‖ei‖2; therefore, second term in 4.10 will be eliminated to achieve

V̇i =
∑
i,j∈N

ζijaij[ei(ei − ej)− ˙ai,j]−
∑
i,j∈N

ζij āij ȧij −
∑
i∈N

ηij ḡi‖ei‖2, (4.10)

substituting ȧij = 1
2
(ei − ej)2 will result in

V̇i = −1

2

∑
i∈N

(
∑
j∈N

ζijaij)‖ei‖2 +
1

2

∑
j∈N

(
∑
i∈N

ζijaij)‖ej‖2 −
∑
i,j∈N

āijζij‖ei − ej‖2
∑
i∈N

ηigi‖ei‖2.

(4.11)

If the communication matrix is symmetrical /bidirectional then

V̇i = −
∑

i,j=1N

āijζij‖ei − ej‖2 −
∑
i=1N

ηij ḡi‖ei‖2. (4.12)

V̇i is a negative definite function of the states errors from the reference trajectory if there exist a

ηi 6= 0 for some i

∃ i 3 ηi 6= 0 (ηi = 1).

Hence

‖ei‖ → 0

.
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Case study

A microgrid in islanded mode with four DGs, corresponding to Fig. 3.8a, is used to verify the

performance of the adaptive voltage and frequency control gain strategy. The nominal voltage and

frequency are 380V and 50 Hz., respectively. DGs are connected to each other through three

RL lines. The DG, line, and load specifications can be found in the appendix. Based on our

proposed intelligent pinning algorithm stated in chapter four, related to Fig. 3.8b, pinning DG2 is

the best pinning location. Voltage and frequency profile of microgrid applying adaptive pinning

gain control technique is shown in Fig. 4.1.
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Figure 4.1: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to
Fig. 3.8 communication network.

Figs. 4.2 and 4.3 are communication link control gains for microgrid lines and pinning control

gains for voltage and frequency, respectively. Each communication line has its own communication

link gain. As it can be seen, voltage communication link gain control for the line between DG2 and

DG3 ,L23, settled at 350 while frequency communication link gain reached 250. Our intelligent

pinning gain results in chapter four were based on fixed communication links and pinning gain of

400. As indicated in Fig 4.1, adaptive voltage gain controller restores the DGs’ voltage amplitude

to the reference voltage (380 V ) at tsv = 0.6 (s) while the microgrid frequency restoration occur

at tsf = 0.8 (s). In practical, the microgid has few cycles to restore its voltage and frequency to
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prevent the operation of voltage and frequency relays. The protective power relays’ voltage and

frequency elements are typically set to 0.88 (p.u.) ≤ vmag ≤ 1.1 (p.u.) and 295.3(rad/s) ≤ ω ≤

317.3(rad/s) for 10-20 cycles. Results indicated in this case study showed the proposed adaptive

frequency control strategy is impractical in microgrid islanding operation since all DGs’ output

frequency reach under 317.3(rad/s) after 20 cycles. The proposed adaptive voltage gain control

can be applied solely since the microgrid is much less sensitive to voltage fluctuation.
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Figure 4.2: Voltage communication link gain (at left) and frequency communication link gain (at
right) corresponding to Fig. 3.8 communication network.
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Figure 4.3: Voltage and frequency pinning gain corresponding to Fig. 3.8 communication network.
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Adaptive secondary control via pinning in medium and low voltage microgrid

The microgrid voltage and frequency regulations are essential for both grid connected and au-

tonomous mode and it can be achieved by using several control techniques either with or without

communication signals. In grid connected mode, voltage and frequency are dictated by the main

grid while in islanded operation mode, it is necessary to have reference voltage and frequency

signals in the distributed generators (DGs) control to regulate both voltage and frequency at all

locations [41] [42].

Typical microgrid control hierarchy includes primary and secondary controller. Usually a well-

known voltage and frequency droop control technique is applied in the primary controller of the

microgrid for deriving the reference signals for the inverter DGs input to ensure active and reactive

power sharing [43–48]. Decentralize techniques such as distributed cooperative control as a sec-

ondary controller is recently introduced in the microgrid to compensate for voltage and frequency

deviations of the DGs from reference value caused by primary controller [49–51]. For microgrid

synchronization to reach nominal point, the reference values for voltage and frequency should be

provided to the cooperative controller in one or multiple DGs via pinning control technique where

a fraction of the DGs in the network have the reference values [27]. Pinning based control for net-

work synchronization based on the simulation results has been studied in [25][27]. Pinning based

strategy application in the microgrid autonomous mode using classical droop equation is studied

in [37].

Classical droop equation is written based on power flow theory for AC transmission system which

is considered mostly an inductive network. In an inductive network, the frequency depends on the

active power, while the voltage depends on the reactive power [52–55]. There has been research

and studies for the droop technique called opposite droop, written for resistive network where

frequency depends on the reactive power while voltage depends on the active power [56–58].
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Despite its reputation, classical droop has well known limitations such as poor transient, power

sharing accuracy, and output voltage regulation [59]. Accurate active power sharing of the DGs

in islanding operation can be usually reached by droop equation. However, the performance of

reactive power sharing under droop control may be weakened due to the impact of output line

impedance between the DGs and loads which causes an inherent trade-off between power sharing

and voltage regulation [60–63]. Several techniques have been proposed to overcome reactive power

sharing issues in classical droop equation [60, 64–67]. Classical and opposite droop equations do

not completely reflect the line parameters in medium or low voltage microgrid because resistive

or inductive parts of the line between sources cannot be neglected. In such situations, there is a

coupling between active and reactive power controls. This research considered the general droop

equation adopted from [68] in which both R and X parameters of the line are reflected to address

the simultaneous impacts of active and reactive power fluctuations on the microgrids voltage and

frequency. Based on that we formulate the problem of adaptive distributed cooperative control in

the microgrids to overcome the drawback of existing droop based control methods and improve

the power sharing and voltage regulation. Our proposed secondary control strategy is adaptive

with line parameters and can be applied to all types of microgrids. Flexibility and effectiveness of

the proposed control technique are presented in the simulation results for power system topology

with different line parameters and communication networks. The DG dynamics in our tracking

synchronization problem is adopted from [29] [34].

Preliminaries

Droop Control

The output power flow of the ith inverter shown in Fig. 4.4 can be calculated as:
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Figure 4.4: Simple DG inverter block connected to the microgrid

Pi =
Vi

R2
i +X2

i

[Ri(Vi − VLicosδi) +XiVLisinδi], (4.13)

Qi =
Vi

R2
i +X2

i

[−RiVLisinδi +Xi(Vi − VLicosδi)]. (4.14)

Assuming the transmission line when Xi � Ri and small power angle δi, 4.13 and 4.14 result in

δi =
XiPi

ViVLi
, (4.15)

Vi − VLi =
XiQi

Vi
, (4.16)

which shows the dependency of the power angle and inverter output voltage to P and Q, respec-

tively. These conclusions form the basis of the well-known classical frequency and voltage droop

regulation through, respectively, active and reactive power.

{
ω?
i = ωni

−mPi
Pi

V ?
i,mag = Vni

− nQi
Qi,

(4.17)

where ω?
i and V ?

i,mag are the desired angular frequency and voltage amplitude of the ith DG, respec-

tively; Pi and Qi are the active and reactive power outputs of the ith DG; ωni
and Vni

are reference

angular frequency and voltage set points determined by the secondary control, respectively; and
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mPi
and nQi

are droop coefficients for real and reactive power.

In the generalized droop equation, Ri, which is the key parameter in medium and low voltage

microgrid, is no longer neglected. Considering both Ri and Xi results in the effect of active

and reactive power on voltage and frequency regulation. Adopted from [68], modified active and

reactive power P ′i and Q′i are

P ′i =
Xi

Zi

Pi −
Ri

Zi

Qi, (4.18)

Q′i =
Ri

Zi

Pi +
Xi

Zi

Qi. (4.19)

Substituting 4.18 and 4.19 in 4.15 and 4.16 results in the generalized droop equation

{
ω?
i − ωni

= −mPi

Xi

Zi
Pi +mPi

Ri

Zi
Qi

V ?
i,mag − Vni

= −nQi

Ri

Z
Pi − nQi

Xi

Zi
Qi,

(4.20)

which shows the simultaneous impact of active and reactive power on voltage and frequency reg-

ulation.

Inverter Model

The block diagram of voltage source inverter (VSI) based DG with the primary and secondary

control was shown in chapter 2, Fig. 2.1. This model consists of three legged inverter bridge con-

nected to DC voltage source such as solar photovoltaic cells. The DC bus dynamics and switching

process of the inverter can be neglected due to the assumption of ideal DC source from the DG and

realization of high switching frequency of the bridge, respectively [29] [34].

The primary controller of a DG inverter consists of three parts: power, voltage, and current con-

trollers which set the voltage magnitude and frequency of the inverter [34] [35]. As shown in Fig.
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2.1, the control process of primary controller is expressed in d − q coordinate system. The objec-

tive of the primary controller is to align the output voltage of each DG on d−axis to the inverter’s

reference frame and set the q−axis reference to zero.

The instantaneous active and reactive powers of inverter output are passed through low pass filters

with cut-off frequency of ωc to obtain the fundamental component of active and reactive powers:

Pi and Qi. The dynamics of the power controller can be written as

Ṗi = −ωciPi + ωci(vodiiodi + voqiioqi), (4.21)

Q̇i = −ωciQi + ωci(voqiiodi − vodiioqi). (4.22)

Inverter model and specifications were fully covered in chapter 3.

System Model

In general, the droop equations are [68]

ωi = ωni
−mPi θ1i Pi +mPi θ2iQi, (4.23)

Vi = Vni
− nQi θ2i Pi − nQi θ1iQi, (4.24)

where θ1i , Xi/Zi and θ2i , Ri/Zi.

Assumption 2. The network is connected and symmetric.
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Problem formulation

To properly formulate the control problem, let us define the following variables

θi , [θ1i θ2i]
T , θ , [θ1

T · · · θNT ]T ,

xi , [ωi Vi]
T , x , [xT

1 · · · xT
N ]T ,

xni
, [ωni

Vni
]T , xn , [xT

n1
· · · xT

nN
]T ,

Wi ,

 miṖi −miQ̇i

niQ̇i niṖi

 W , diag([W1 · · ·WN ]T ).

By differentiating from (4.23) and (4.24), we have

ẋi = ˙xni
−Wi θi. (4.25)

Problem 4. Let Assumption 2 hold. Assume that θij’s are constant and unknown, then what is

the proper choice of xni
such that the network in (4.25) asymptotically converges to any given

reference values, xref?

Main Results

Since the θi is assumed to be unknown/uncertain, in order to achieve synchronization in the net-

work, let

˙xni
= ui + Wi θ̂i, (4.26)
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where θ̂i is the estimate of θi and will be derived later. Substituting (4.26) in (4.25), we have

ẋi = ui−Wi(θi − θ̂i). (4.27)

If the θi’s are correctly estimated, then cooperative control law to achieve synchronization to ref-

erence signal can be chosen as

ui =
N∑
j=1

aijC(xj − xi) + giζiC(xref − xi), (4.28)

where C , diag([cω cV ]) are the controller gains. If we let u , [uT
1 · · · uT

N ]T , then we have

u = −[(L + GZ)⊗C](x− 1N ⊗ xref). (4.29)

Hence, the dynamic of the network, can be written as

ė = −[(L + GZ)⊗C]e−W(θ − θ̂), (4.30)

where e , x− 1N ⊗ xref is the synchronization error.

Theorem 4. If Assumption 2 holds and there exists at least ζi = 1, then the network with input

ẋni
= −

N∑
j=1

aijC(xi − xj)− giζiC(xi − xref) + Wiθ̂i, (4.31)

˙̂
θi = −kiWT

i

N∑
j=1

aijC (xi − xj)− kiWT
i giζiC (xi − xref) ∀ki, gi > 0, (4.32)

asymptotically converges to xref.
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Proof. Consider the following Lyapunov function

V =
1

2
eTPe +

N∑
i=1

1

2ki
(θi − θ̂i)T (θi − θ̂i), (4.33)

where P is some symmetric positive definite matrix. Differentiating from equation above, we have

V̇ = eT P

V̇ = −eT P
(

(L + GZ)⊗C
)
e. (4.34)

It is known if Assumption 2 holds and there exits at least one ζi = 1, then (L + GZ) ⊗ C is

a symmetric positive definite matrix, consequently, P
(

(L + GZ) ⊗ C
)

is positive definite1, by

using Barbalet’s Lemma, we can conclude that

lim
t→∞

eT P
(

(L + GZ)⊗C
)
e = 0 ⇒ lim

t→∞
e = 0,

which proves that xi asymptotically converge to xref.

Although this analysis is true for any symmetric positive definite matrix P, however, as xref is

not available in all the nodes, for any arbitrary symmetric positive definite P, does not lead to an

implementable estimation/adaptation of θi’s. One candidate matrix for P is (L+GZ)⊗C, where

we have

W
(
L + GZ)⊗C

)
e = W

(
L⊗C

)
e + W

(
(GZ)⊗C

)
e

= W
(
L⊗C

)
x + W

(
(GZ)⊗C

)
(x− 1⊗ xref), (4.35)

1Product of two symmetric positive definite matrices are positive definite, this can be easily shown by Weyl’s
inequalities for product .
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which requires the knowledge of xref only on the pinning location(s).

In summary the reference in droop equations, namely, ωni
and Vni

are set by the following set of

equations.

Case 1: No power sharing

In the non power sharing scheme, there is no real power control for DGs’ output power. DGs

will inject active power based on their droop coefficient and maximum allowable power limit.

This scheme may cause the increasing the power losses in the microgrid autonomus mode. The

reference signals, ωni
and Vni

, set by

ωni
= −

∫ [ N∑
j=1

aij(ωi − ωj) + giζi(ωi − ωref)−miθ̂1iṖi +miQ̇iθ̂2i

]
dt,

Vni
= −

∫ [ N∑
j=1

aij(Vi − Vj) + giζi(Vi − Vref)− niθ̂2iṖi − niQ̇iθ̂1i

]
dt,

˙̂
θ1i = −ki

(
cωmiṖi

N∑
j=1

aij(ωi − ωj) + cωmiṖigiζi(ωi − ωref)

+ cvniQ̇i

N∑
j=1

aij(Vi − Vj) + cvniQ̇igiζi(Vi − Vref)

)
,

˙̂
θ2i = −ki

(
−cωmiQ̇i

N∑
j=1

aij(ωi − ωj)− cωmiQ̇igiζi(ωi − ωref)

+ cvniṖi

N∑
j=1

aij(Vi − Vj) + cvniṖigiζi(Vi − Vref)

)
.

where the dynamics ofṖi and Q̇i are given in (4.21) and (4.22) respectively.

Case 2: Power sharing based on frequency droop

The power sharing method is proposed since the frequency of the microgrid freely fluctuates when
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none of the DG units are able to enforce the base frequency during an autonomous mode. In this

method, the load demand is shared among the DG units proportional to the active power rating of

units. The reference signals, ωni
and Vni

, set by

ωni
= −

∫ [ N∑
j=1

aij(ωi − ωj) + giζi(ωi − ωref)−miṖiθ̂1i +miQ̇iθ̂2i

]
dt,

Vni
= −

∫ [ N∑
j=1

aij(Vi − Vj) + giζi(Vi − Vref)− niṖiθ̂2i − niQ̇iθ̂1i

]
dt,

˙̂
θ1i = −ki

(
cωmiṖi

N∑
j=1

aij(ωi − ωj) + cωmiṖigiζi(ωi − ωref)

+ cvniQ̇i

N∑
j=1

aij(Vi − Vj) + cvniQ̇igiζi(Vi − Vref)

)
,

˙̂
θ2i = −ki

(
−cωmiQ̇i

N∑
j=1

aij(ωi − ωj)− cωmiQ̇igiζi(ωi − ωref)

+ cvniṖi

N∑
j=1

aij(Vi − Vj) + cvniṖigiζi(Vi − Vref)

)
,

where the dynamics of Q̇i is given in (4.22) and dynamics of Ṗi can be calculated as

Ṗi = − cp
mi

N∑
j=1

aij (mi Pi −mj Pj).

Numerical Example/ Case Study

The proposed control methodology is verified with Simpower System Toolbox in MATLAB/Simulink.

The microgrid consists of four DGs and it operates on a 3-phase, 380V(L-L) and frequency of 50

Hz (ω0 = 314.15(rad/s)). DGs are connected through resistance dominated RL branches to re-

flect the distribution network and loads are constant . The cut-off frequency of power controller

is set to 10% of nominal angular frequency of ω0 = 314.15(rad/s). The value chosen for the PI
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controllers for voltage and current control loops of each DG, Kpvi, KV Ii , KPCi
, KICi

, are given

in Table 4.1. The controller gains cv and cω and pinning gain g are all set to 400, 500 and 1

respectively. The network parameters, the specifications of DGs, and loads are given in Table 4.1.

Table 4.1: Microgrid Test System Specifications

DGs

DG1 and DG2 DG3 and DG4
mp 9.4× 10−5 mp 12.5× 10−5

nQ 1.3× 10−3 nQ 1.5× 10−3

Rc 0.03 Ω Rc 0.03 Ω
Lc 0.35 mH Lc 0.35 mH
Rf 0.1 Ω Rf 0.1 Ω
Lf 1.35 mH Lf 1.35 mH
Cf 50 µF Cf 50 µF
KPV 1 KPV 1
KIV 4 KIV 4
KPC 5 KPC 5
KIC 40 KIC 40

Loads

Load1 Load2

PL1 12 KW PL2 12 KW

QL1 12 KV AR QL2 12 KV AR

Lines
L12 L23 L34

R12 0.1 Ω R23 0.1 Ω R34 0.1 Ω
X12 0.1 Ω X23 0.1 Ω X34 0.1 Ω

To ensure that the proposed control strategy is able to obtain voltage and frequency stability in

inductive, resistive and all types of microgrid, simulations have been done in states of R
X

= 1,

R
X

= 10, and R
X

= 0.1 for the network configuration of Fig. 3.8a. In this configuration, it is

assumed that the DGs communicate with each other through a fixed communication network and

only communicate with their neighboring DG. In all cases of line parameters , the microgrid’s

main breaker opens at t = 0 (s) and it goes to the islanding mode while at the same time the

secondary adaptive voltage and frequency control are initiated. DGs terminal voltage amplitude

and frequency for microgrid with different line parameters for non power sharing case are shown in

56



Fig. 4.5, 4.6, and 4.7. Based on the adaptive control strategy, it can be seen that all DGs’ terminal

voltage and frequency return to the reference value dictated by the leader DG.
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Figure 4.5: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to
microgrid with R

X
= 1.
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Figure 4.6: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to
microgrid with R

X
= 10.

Voltage and frequency regulations of the islanded microgrid based on an adaptive secondary con-

trol using generalized droop equation was proposed. In contrast, with existing secondary control

techniques using the classical droop, our proposed secondary control strategy is adaptive with line

parameters and can be applied to all types of microgrids. Simulation results have been presented

to validate the proposed control scheme, showing voltage and frequency regulation of islanded

microgrid when the network is resistive, inductive, or unbalanced resistive/inductive.
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Figure 4.7: DGs terminal amplitudes voltage (at left) and frequency (at right) corresponding to
microgrid R

X
= 0.1.
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CHAPTER 5: MICROGRID PROTECTION

The trustworthy issue of the power system is of great crisis towards both human being’s and in-

dustrial civilization. In order to secure the power system, numerous meters are deployed through

power grids, including interconnected generation plants, transmission lines, transformers and loads,

to attain updated state information. These information will be provided to the control center or en-

ergy management system (i.e. EMS) and analyzed for the prevention from unreliable factors. Most

of unreliability accounts for the false date injection, which is usually induced by adversary or hard-

ware failure. The reliability level of system will be tremendously compromised if such injection is

not identified and accumulated, especially when it is maliciously initiated by adversary [69] [70].

In this respect, research on the power system’s protection and identification scheme from malicious

data injection is of theoretical and practical interest.

Cyber-physical data attack attempts to deviate the accurate data by introducing erroneous value into

certain state variable. Intuitively, such injection is able to be identified by comparing the current

state with the outcome of distributed estimation of overall power grid [69] [71] [72]. The results

merely demonstrated that this detection scheme can identify attacks initiated by random phenom-

ena, such as measurement noise, hardware failure or structure error. Recent research [70] indicated

a certain type of attack vector, under which the ordinary residual-based scheme is rendered impo-

tent. Apparently, adversary successfully exploits the measurement matrix and manipulates the state

variables with malicious data injection composed by a combination of vectors in the null space of

P−I . In this case, the residual remains unchanged, which fails ordinary bad data detection (BDD).

Further, the vulnerability of large-scale power system to malicious data injection can not be omit-

ted due to the significant financial impact of such stealth attack on electricity market [73]. To this

end, a greedy algorithm based protection scheme was proposed in [74], which aims at deploying

necessary amount secure meters at key buses to ensure a reliable estimation and evade injection.
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Similar work was introduced in [75] and [77], which illustrates how to secure a state estimator

from such injection by encrypting a sufficient/minimum number of meters. The protection strat-

egy of [70] is extended further using a polynomial-time algorithm in [76]. A generalized likehood

ratio detection scheme (via convex optimization) is introduced to defense such attack. In addition,

several countermeasures to these attacks were also proposed, from additional protected measuring

devices [78], to the implementation of improved BDD schemes [70]. Methods to efficiently rank

the measurements in terms of their vulnerability and finding sparse attacks requiring the corruption

of a low number of measurements were also proposed in [78], [79], and [80]. In [81], a concept of

load redistribution (LR) attacks, a special type of false data injection attacks, was introduced and

analyzed regarding their damage to power system operation in different time steps with different

attacking resource limitations.

From the power system’s point of view, the solutions mentioned above are surely functional but

they might be too expensive and not be physically practical for expansive distributed network.

An enhanced protection scheme against malicious false data injection is proposed. An algebraic

criterion is derived to ensure a trustworthy power system against malicious cyber-physical data

attacks. The proposed protection scheme takes advantage of expansive nature of power grids,

reconfigures its subsystem data structure deterministically, and makes it impossible to organize a

successful injection. The identification scheme for finding meters being attacked is proposed as

well. Then, analysis can be further performed to remove the sources of malicious data injection.
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Preliminary Results

State Estimation

The state estimation problem in power systems is to determine the power system state variables

such as voltage angles and magnitudes at all system buses based on the meter measurements. Given

that the general measurement function for the power system is

z = h(x) + e, (5.1)

where x ∈ Rn is the overall state vector, z ∈ Rm is the overall measurement vector and usually

m > n, h(x) is the nonlinear function derived from the power flow equations of the overall power

grid, and e ∈ Rm represents the measurement noise whose covariance matrix is R. It is assumed

that the system (5.1) is observable that is a very well-established hypothesis for any centralized

algorithm of state estimation. The linearized model of the measurement function (5.1) at time k is

z(k) = H(k)x(k) + e(k) (5.2)

with a full-rank observation matrix H as rank(H) = n, where rank(·) denotes the rank of matrix.

The state estimation problem under the assumption of global observability can be formulated with

standard WLS which is given by [82]

x̂(k + 1) = x̂(k) +K(k)HT (k)R−1(k) [z(k)−H(k)x̂(k)] , (5.3)

where x̂ is the estimate of state and K(k) =
[
HT (k)R−1(k)H(k)

]−1 is the error covariance.
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Bad Data Detection

With the estimated state vector x̂ obtained by state estimation algorithm (5.3), a common approach

to verify the integrity of state vector is by computing the L − norm of measurement residual (i.e.

difference between the measurement vector and estimated vector)

E
4
= ‖z −Hx̂‖. (5.4)

A threshold CT is pre-defined to control the tolerance of residuals in terms of accuracy of state

estimation. If measurement residual is greater than the threshold value, i.e., E > CT , the mea-

surement vector z has a bad data and the state estimation algorithm is not convergent due to either

significant measurement/computation errors or gross false data injections. Accordingly, analysis

can be performed to position where errors occurs and isolate the suspicious data sources.

Existence of Malicious Data Attacks

In the case that an adversary has access to whole information ofH , he is able to launch a malicious

attack to the system such that the resulting corrupted state can avoid being detected by the residual

test in the sense that E < CT or E ≈ 0. Following lemma shows how the adversary chooses such

a ‘stealth’ attack which is summarized in [70].

Lemma 2.1: ( [70]) Let za ∈ Rm be amended coordinated attack vector, which will be injected

to original measurement vector z in observation equation (5.2). za = Hc where c is the corrupted

state induced by the attack vector za. Let P = H
(
HTH

)−1
HT , where P is the projection of

observation matrix H ∈ Rm×n and clearly PH = H . All possible choices of coordinated attack

vector za ∈ Rm lie in the null space of matrix (P − I), that is, (P − I)za = 0.
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According to Lemma 2.1, the dimension of null space of matrix (P−I) is n regarding the available

measurements in power grid. Note that in the power system, it is typical that the number of meters

m (both essential and redundant measurements) are greater than number of state variables n. The

coordinated attack vectors za always exists if the adversary can get access to all meters’ data,

power network topology and line data of subsystem to construct H . The attack vectors can be

chosen to be a linear combination of the vectors in the null space of (P − I). Secure meters’

placement can be considered as one methodology for preventing those coordinated attack vectors

and maintaining the subsystem in normal status. However, it could be expensive and physically

impractical in expansive distribution network.

Problem Formulation

A power system consists of electric generators, transmission lines, and transformers that form an

electrical network. We consider a power system whose electric power grid can be partitioned into

a group of ` subsystems (shown in figure 5.1). Monitoring the power flow and voltage of each

subsystem is important in maintaining system reliability. It is assumed that the subsystem has the

capability of reconfiguring its information structure, performing state estimation, and reporting its

findings to the upper-level EMS (energy management system).

 

Distribution 

EMS 

Transmission 

EMS

 

  

0000 

Figure 5.1: Rationale of Protection of Power Systems against Malicious Cyber-Physical Data At-
tack
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In the customary case of state estimation, it is common to find the observation matrix H for the

subsystem to estimate the state variables. Hence, if the adversary is capable of getting access to

information structure, he always can easily fake the eigen-structure of matrix [P − I] and attempt

to corrupt the state vector by a stealth false data injection without being detected by the ordinary

BDDs according to the Lemma 2.1. Obviously, the counter measurement method is secure me-

ters’ placement at sufficient number of locations to prevent measurements being manipulated by

adversary. Such an approach would work well for certain size of transmission networks but not for

expansive distribution networks.

As an alternative solution, algebraic conditions are proposed in the following section to secure the

power system against malicious data attacks.

Protection

Strategy I

Partitioning observation matrixH to two separate sub-matricesHa andHb as depicted in figure 5.2.

Proposition 3.1: Consider the power system with observation eq. (5.2), the power system is

considered secured from malicious data attacks if the observation matrix H can be reconfigured byHa

Hb

 where Ha and Hb are full rank and partitioned by two parts, H1 =

Ha

0

 and H2 =

 0

Hb


, such that

rank

 P1 − I

P2 − I

 = m, (5.5)

where P1 and P2 is the projection matrix of H1 and H2, respectively.
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Figure 5.2: Rationale of Protection of Power Systems against Malicious Cyber-Physical Data At-
tack

The second strategy has defined with having common information in two batches of data H1 and

H2.

Strategy II

Partitioning observation matrix H to three separate sub-matrices Ha,Hb and Hc as depicted in

figure 5.3.

Proposition 3.2: Under scenario above, the power system is considered secured from malicious

data attacks if the observation matrixH can be reconfigured by


Ha

Hb

Hc

 and partitioned by two parts,
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H1 =


Ha

Hb

0

 and H2 =


0

Hb

Hc

, such that

rank

 P1 − I

P2 − I

 = m, (5.6)

where P1 and P2 is the projection matrix of H1 and H2, respectively.
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Figure 5.3: Rationale of Protection of Power Systems against Malicious Cyber-Physical Data At-
tack

Proof: It is straightforward to see that, under condition (5.5,5.6), the only admissible solution of

attack vector is za = 0. In other words, any attack vector rather than 0 yields a non-zero residual

even if the adversary knows H precisely. �

It is worthy to note that the proposed method is employing reconfiguration of observation matrix

to secure the power system from any attack, and it works as long as the power system has sufficient

redundancy to ensure the observability for the sub-areas represented by H1 and H2. The proof for
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the feasibility of finding sub-matrices H1 and H2 will be provided in the next section.

Main Results

In this section, we will first present the feasibility of finding sub-matrices H1 and H2 for H in both

strategies, and then the protection and identification schemes for power systems against malicious

data attacks.

Recall the property of Idempotent Matrix in [83], it is straightforward to see that P1 and P2 are

both idempotent. Thus, I − P1 and I − P2 are idempotent as well. Let us define A = P1 − I and

C = P2 − I , then the following facts are obvious:

Fact 4.1: −A and −C are idempotent. Also,

A2 = −A,C2 = −C, (−A)] = −A, (5.7)

where ] denotes the generalized inverse of a matrix.

Fact 4.2: P1 is the projection matrix of H1,

trace(P1) = rank(P1) = rank(H1) (5.8)

where trace(·) denotes the trace of a matrix.

Based on the above facts, we have the following proposition.
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Proposition 4.3: rank(A) = m− n if rank(H1) = n. Proof: With Fact 4.2

rank(A) = rank(P1 − I) = rank(I − P1)

= trace(I − P1) = trace(I)− trace(P1)

= m− rank(H1) = m− n,

(5.9)

if H1 is observable to the entire system, which means rank(H1) = n. �

The following lemma will be used for the main result as well.

Lemma 4.4: ( [84]) Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then,

rank([A,B]) = rank(A) + rank(B − AA]B)

= rank(B) + rank(A−BB]A)

rank(

A
C

) = rank(A) + rank(C − CA]A)

= rank(C) + rank(A− AC]C)

rank(

A B

C 0

) = rank(B) + rank(C)

+ rank[(Im −BB])A(In − C]C)]

rank(

A B

C D

) = rank(A)

+ rank(

 0 B − AA]B

C − CA]A D − CA]B

).

(5.10)

Then, we are ready to present the first main result as follows.
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Theorem 4.5: Given H =

 Ha ∈ Rl×n

Hb ∈ Rm−l×n

, rank

 P1 − I

P2 − I

 = m holds if H1 =

Ha

0

,

H2 =

 0

Hb

, and rank(H1) = rank(H2) = n.

Proof: Recall second equation of (9) in Lemma 4.4,

rank(

A
C

) = rank(A) + rank(C − CA]A)

= m− n+ rank(C − CA]A)

(5.11)

due to Proposition 4.3, which requires rank(H1) = rank(Ha) = n.

Given H1 =

Ha

0

,

P1 = H1(H
T
1 H1)

−1HT
1 =

Ha(H
T
a Ha)

−1HT
a 0

0 0

 , (5.12)

and H2 =

 0

Hb

,

P2 = H2(H
T
2 H2)

−1HT
2 =

0 0

0 Hb(H
T
b Hb)

−1HT
b

 . (5.13)
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Then, with Fact 4.1,

C − CA]A = C(I − A]A) = C(I − A2)

= C(I + A) = CP1

=

−I 0

0 Hb(H
T
b Hb)

−1HT
b − I


·

Ha(H
T
a Ha)

−1HT
a 0

0 0


=

−Ha(H
T
a Ha)

−1HT
a 0

0 0



(5.14)

Thus,

rank(C − CA]A) = rank(Ha) = rank(H1). (5.15)

It finalizes the proof by also noticing that both H1 and H2 are required to be full rank n. �

Theorem 4.6: Given H =


Ha ∈ Rl×n

Hb ∈ Rk×n

Hc ∈ Rm−l−k×n

, rank

 P1 − I

P2 − I

 = m holds if H1 =


Ha

Hb

0

,

H2 =


0

Hb

Hc

, and one of four conditions below satisfies:

rank(Ha) = rank

Hb

Hc

 = n, rank(Hc) = rank

Ha

Hb

 = n,

rank(Hb) = rank

Ha

Hc

 = n ,and
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rank(HT
a Ha +HT

b HbĤH
T
c Hc) = n, where

Ĥ = (HT
b Hb +HT

c Hc)
−1.

Proof:Again, recall second equation of (9) in Lemma 4.4 then,

rank(

P1 − I

P2 − I

) = rank(P1 − I) + rank((P2 − I)−

(P2 − I)(P1 − I)](P1 − I))

= m− n+ rank((P2 − I)P1)

(5.16)

due to Proposition 4.3, which requires rank((P2 − I)P1) = n.

Given H1 =


Ha

Hb

0

 and H2 =


0

Hb

Hc

,

(P2 − I)P1 =
−HaH̃H

T
a −HaH̃H

T
b 0

HbĤH
T
b HbH̃H

T
a −HbH̃H

T
a HbĤH

T
b HbH̃H

T
b −HbH̃H

T
b 0

HcĤH
T
b HbH̃H

T
a HcĤH

T
b HbH̃H

T
b 0

 ,
(5.17)

where
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Ĥ = (HT
b Hb +HT

c Hc)
−1 and H̃ = (HT

a Ha +HT
b Hb)

−1.

rank((P2 − I)P1)

= rank(


−Ha

HbĤH
T
b Hb −Hb

HcĤH
T
b Hb


[
H̃HT

a H̃HT
b 0

]
)

= rank(


−Ha

HbĤH
T
b Hb −Hb

HcĤH
T
b Hb

) = rank(


−Ha

−HbĤH
T
c Hc

HcĤH
T
b Hb

)

(5.18)

due to rank(

[
H̃HT

a H̃HT
b 0

]
) = n since H̃ and H1 are with full rank n.

Lemma 1:If the rank(Ha) = n then rank(


Ha

HbĤH
T
c Hc

HcĤH
T
b Hb

) = n and with noticing that rank(


0

Hb

Hc

) =

n, It finalize the proof. The proof of second and third condition can be shown in the same way.

Lemma 2:If rank(Ha) 6= n, then rank(


−Ha

−HbĤH
T
c Hc

HcĤH
T
b Hb

)

= rank(

[
−HT

a −HT
c HcĤH

T
b HT

b HbĤH
T
c

]
−Ha

−HbĤH
T
c Hc

HcĤH
T
b Hb

)

= rank(

[
HT

a Ha +HT
b HbĤH

T
c Hc

]
)

= rank(

[
HT

a Ha HT
b Hb

] I

ĤHT
c Hc

)

If rank(Hc) = n, then full rank is achieved. Otherwise, which means neither Ha nor Hc is with

full rank n, then rank(HT
a Ha + HT

b HbĤH
T
c Hc) = n has to be satisfied which finalizes the proof
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for strategy II .

Theorems 4.5 and 4.6 provide mathematical solutions to find the sub-matrices H1 and H2 such that

eq. (5) and (6) hold. Together with Proposition 3.1 and 3.2, they also manifest that reconfiguring

information structure and corresponding residual test are capable of securing the power system

against malicious data attacks.
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Figure 5.4: Protection scheme for Power system against malicious data attack

Remark 4.6: It is worth noting that rank(

A
C

) = m − n if and only if Ha = 0l×n. It implies

that any row elimination of H will contribute the increase of rank. Until eliminating Ha with

rank n, the full rank will be met. Also note that the full-rank requirement of H1 and H2 leads to

n ≤ l ≤ m− n, which also indicates sufficient measures are required in the sense that m ≥ 2n.

73



In what follows, an innovative protection scheme based on Propositions 3.1, 3.2 and Theorems

4.5, 4.6 are proposed in figure 5.4 for power system to enhance the security against malicious

data attacks. It is a purely mathematical approach and does not require any physical effort either

microgrid or network level in comparison with existing work.

 

  

  

 

 

Figure 5.5: Identification scheme for Power system against malicious data attack

Bad meters identification formulation is shown in following section.

Identification

Vice verse, the identification scheme is also right on hand based on Proposition 3.1 and Theorem

4.5. The meters that are being attacked by malicious data attack can be identified through the

calculation of attack vector z̄a given the residual vectors r1 and r2 generated by two sub-areas H1
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and H2,

z̄a = (P̄ T P̄ )−1P̄ T

r1
r2

 , (5.19)

where P̄ =

P1 − I

P2 − I

. It is true that all the meters corresponding to the non-zero elements in attack

vector are being attacked. Further analysis can be performed to remove the sources of malicious

data attack. The procedure of identification can be found in figure 5.5.

The performance of the proposed protection and identification schemes will be illustrated in the

next section.

Illustrative Example and Results

In this section, a IEEE modified 30-bus system depicted in figure 5.6 is adopted to validate the

effectiveness of proposed schemes. In terms of the system’s setup , bus 1 is the reference bus

(θ1 = 0, V1 = 1) and the phase angles θ2 up to θ30 are the state variables due to the simplicity. The

voltage magnitude of each bus is assumed to be known. It is also assumed that the measurement

vector z of system is given by a total set of 86 meters which measure 82 active/reactive branch

flow and 4 power injection measurements. For more details, line data and operational point of the

system are given in appendix A. The observation matrix H ∈ R86×29 are all derived by partial

derivative of available measurements with respect to state vector θ =

[
θ2 · · · θ30

]T
as follows.
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Figure 5.6: A single line diagram of modified IEEE 30-bus power system

Partial data has been omitted due to the limited space:

H =



−15.0358 0 · · · 0 0 0
0 −4.8717 · · · 0 0 0

5.1686 0 · · · 0 0 0
0 22.6778 · · · 0 0 0

4.6507 0 · · · 0 0 0
4.9159 0 · · · 0 0 0

...
... · · ·

...
...

...
0 0 · · · 0 0 0.6279
0 0 · · · 0 −0.8509 0.8509
0 0 · · · 1.3204 0 0
0 0 · · · 4.7335 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0


Note that m = 86 > 58 = 2n guarantees the sufficient redundancy of measurements which is

required in Theorem 4.5. It can be obtained that rank(P − I) = 57 < 86 and hence there are 29

linearly independent choices of coordinated attack vectors. In other words, 29 attack vectors are

available to be used for injecting malicious data to corrupt the state estimation. By inspecting the
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null space of P − I , the data attack vectors za which correspond to 86 meters are given in table I:

(partial data has been omitted due to the limited space)

Table 5.1: Choices of Malicious Data Attack Vectors

z1a z2a z3a · · · z27a z28a z29a

-0.0013 0.0010 -0.0003 · · · -0.0004 -0.0003 -0.0003

0.0006 -0.0003 0.0002 · · · 0.0000 0.0001 0.0001

0.0066 0.0231 -0.0171 · · · -0.0514 0.0834 0.0488

0.0398 0.0126 -0.0120 · · · -0.0245 -0.0911 0.0055

0.0512 -0.0016 0.0137 · · · 0.1520 -0.0147 0.0121

0.0199 -0.0303 0.0204 · · · 0.0703 -0.2172 -0.0807

0.0524 0.0037 -0.0236 · · · -0.1269 -0.0262 -0.0841
...

...
... · · · ...

...
...

-0.3732 0.1800 -0.0984 · · · -0.0146 -0.0657 -0.0755

0.0027 -0.0580 0.0807 · · · 0.0751 -0.0631 -0.0266

-0.0148 -0.0519 0.0385 · · · 0.1156 -0.1874 -0.1097

-0.0766 -0.0242 0.0230 · · · 0.0472 0.1752 -0.0105

-0.1201 0.0039 -0.0322 · · · -0.3565 0.0345 -0.0284

-0.0181 0.0276 -0.0185 · · · -0.0639 0.1976 0.0735

The adversary can choose any linear combination of these 29 non-zero attack vectors to inject ma-

licious data and obviously (P − I)za = 0 holds. For more clarification, assume that the adversary

is injecting z1a to real measurement z. As we discussed earlier, this type of coordinated attack will
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not be detected by the residual test since

E1 = ‖z + z1a −Hx̄‖ = 3.1187× 10−14

which is almost zero and will be surely smaller than the pre-defined threshold CT .

Next, the proposed schemes will be implemented for the illustration of effectiveness. What is

more, the statistical analysis will be adopted to verify the equivalence between standard WLS state

estimation and batch state estimation induced by our scheme.

Protection

By noticing the fact that there always exits malicious data attack vectors for the current system, we

then follow the protection scheme depicted in Fig. 2 to secure the system. Via row operation, two

sub-matrices H1 and H2 can be found by excluding 29 essential meters (independent rows) from

the observation matrix H and setting zero for rest of the rows in each of them: (partial data has

been omitted due to the limited space)

H1 =



0 0 0 · · · 0 0 0
0 0 −0.0062 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · −2.4294 −1.8435 −1.2754
0 0 0 · · · 0 −1.8435 0
0 0 0 · · · 0 1.6560 −1.6560


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with rank(H1) = 29, and another sub-matrix H2 turns out to be: (partial data has been omitted

due to the limited space)

H2 =



−15.0458 −4.8725 0 · · · 0 0 0
29.6883 0 −5.1688 · · · 0 0 0
4.8605 0 0 · · · 0 0 0

0 1.1284 0 · · · 0 0 0
−1.6750 0 1.6750 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · −0 0 0
0 0 0 · · · 0 −0.8509 0.8509
0 0 0 · · · 0 0.9256 0


.

with rank(H2) = 29. It can be shown that

rank

P1 − I

P2 − I

 = 86,

which validates the Theorem 4.5. Together with Proposition 3.1, it reveals that this reconfiguration

of power system and corresponding residual test are able to secure the modified IEEE 30-bus

system from any malicious data attack.

For more clarification, the following residual test is performed when the same attack vector z1a is

applied:

E1
2 = ‖z + z1a −H1x̄1‖ = 1.2063,

or

E2
2 = ‖z + z1a −H2x̄2‖ = 1.0893,

which is obviously easier to be detected with the pre-defined threshold CT comparing to residual

test E1. It can be observed that the malicious attack vectors are no longer ‘stealth’ within the

proposed protection scheme such that the effectiveness of proposed protection scheme is validated.
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Identification

In this subsection, the effectiveness of identification scheme will be examined. Given the residual

vectors r1 and r2 caused by z1a regarding sub-areas H1 and H2,

r1 =

[
0.0000 0.0000 · · · −0.1201 −0.0181

]T
,

and

r2 =

[
−0.0013 0.0006 · · · −0.1211 −0.0286

]T
.

Via eq. (15), we can calculate the attack vector z̄1a as follows,

z̄1a =

[
−0.0013 0.0006 · · · −0.1201 −0.0181

]T
≈ z1a

Then, we can conclude that all the meters are being attack except meters 2, 25, 40, and 79 since

the elements in the attack vector associated with these meters are zero. Furthermore, analysis can

be performed to remove the sources of malicious data attack.

Statistical Analysis

For the estimation’s purpose, the estimation algorithm under the proposed strategies turns out to

be a two-batch estimation algorithm since we partition the whole system by two. Essentially, it is

important to see the batch estimation is as good as the standard WLS estimation algorithm from

the statistical perspective. Thus, the following covariance analysis from [85] is needed:

Cov(x̂, x̂) = σ2(HTH)−1
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where the σ2 is a variance of measurement error.

Assume that the x̂1 is the estimation of the state variables using H1 and x̂2 is the estimation of the

state variables using H2. It is natural to realize that the estimation of two-batch algorithm ¯̂x is the

average of these two state estimations. Then, the covariance of two-batch estimation algorithm is

calculated as below

Cov(¯̂x, ¯̂x) = Cov(
x̂1 + x̂2

2
,
x̂1 + x̂2

2
)

=
1

4
σ2(HT

1 H1)
−1 +

1

4
σ2(HT

2 H2)
−1.

For illustrating the equivalence of two algorithms, the well-known Frobenius norm [86] is needed

to test the equality of these two covariance matrices

d2 =
1

n
trace(Cov(x̂, x̂)− Cov(¯̂x, ¯̂x))2

where d is the distance between two covariance matrices, n is the number of states. It is clear that

if two covariance matrices is exactly the same, i.e., Cov(x̂, x̂) = Cov(¯̂x, ¯̂x), then d = 0. Through

the calculation,

d2 =
1

29
trace(Cov(¯̂x, ¯̂x)− Cov(x̂, x̂))2 = 0.2425

=⇒ d = 0.4925

which indicates the approximate equivalence between two algorithms. It is shown that the proposed

scheme makes the power system secure from any malicious cyber-physical data attack with the

reconfigured information structure and corresponding residual test, which does not require any

physical effort comparing to the solutions in the literature. Furthermore, the identification scheme

is capable of identifying the meters being attacked and further analysis can be performed to remove

the sources of these attacks.
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CHAPTER 6: CONCLUSIONS

The contribution of this dissertation comes in three major categories. The major power objective

proposed in the first category of our research is the microgrid voltage and frequency stabilization

after disconnecting from the main grid. Based on this objective, chapter 2 briefly introduces the

inverter dynamic model and distributed cooperative secondary voltage and frequency control. Then

the problem of single and multi-pinning of distributed cooperative secondary control of DGs in the

microgrid islanding operation was formulated. In this chapter, it has been shown that the intelligent

selection of a pinning set based on the number of its connections and distance of leader DG(s) from

the rest of the network strengthened the microgrid’s voltage and frequency regulation performance

both in transient and steady state. In chapter 3, the proposed control strategy and algorithm was

validated by simulation in MATLAB/SIMULINK using different microgrid topologies. Results

indicated that it was easier to stabilize the microgrid’s voltage and frequency in islanding mode

operation by specifically placing the pinning node(s) on the DGs with high degrees of connectivity

than by randomly placing pinning node(s) into the network. It has been shown the placement of the

pinning node(s) was affected by the topology of the microgrid and its communication network. In

all of these research study cases, DGs were required to only communicate with their neighboring

units which facilitated the distributed control strategy.

Next, in chapter 4, the secondary adaptive voltage and frequency control of distributed generators

in low and medium voltage microgrid in autonomous mode was proposed to overcome the draw-

back of existing traditional droop based control methods. For distributed power generation, the

assumption of a purely inductive network does not hold. Our proposed secondary control strategy

is adaptive with line parameters and can be applied to all types of microgrids, i.e., resistive, induc-

tive, and unbalanced line parameters, to address the simultaneous impacts of active and reactive

power fluctuations on the microgrids voltage and frequency. Simulation results validated the ef-
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fectiveness of the proposed controller in the microgrid with different line parameters. In addition,

in this chapter, an adaptive secondary voltage and frequency gain controller was proposed. The

proposed adaptive controller takes into account the uncertainty in the microgrid and communica-

tion network parameters. The proposed adaptive control scheme, applied together with DG droop

controls and secondary cooperative voltage and frequency controller to real time, calculated the

voltage and frequency gain controller and weights of communication links in microgrid to mini-

mize system transients in the islanding process and to ensure the microgrid’s voltage and frequency

stability. In the proposed method, each DG requires its own information and the information of its

neighboring DG(s) on the communication network.

Finally, the security of power systems against malicious cyberphysical data attacks was studied in

chapter 5. An algebraic condition for trustworthy power system to evade malicious data injection

was proposed. The proposed method does not require any physical effort in either microgrid or

network level. A well-known IEEE 30-bus system was adopted to demonstrate the effectiveness

of the proposed schemes.
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APPENDIX : SIMULATION PARAMETERS
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Networks and Inverters Parameters

The specifications of the DGs, lines, and loads for four bus and five bus system are as follows:

Network Parameters of 4 Bus System

Line and Load Parameters

Parameters Values Parameters Values

Line12 0.23+j0.099 Load1 12KW+j12KVar

Line23 0.35+j0.580

Line34 0.23+j0.099 Load2 15.3KW+j7.6KVar

85



DG’s Parameters of 4 Bus System

Inverter Parameters

DG1 and DG2 DG3 and DG4

Parameters Values Parameters Values

mp 9.4× 10−5 mp 12.5× 10−5

nQ 1.3× 10−3 nQ 1.5× 10−3

Rc 0.03 Ω Rc 0.03 Ω

Lc 0.35 mH Lc 0.35 mH

Rc 0.1 Ω Rc 0.1 Ω

Lf 1.35 mH Lf 1.35 mH

Cf 50 µF Cf 50 µF

KPV 1 KPV 1

KIV 4 KIV 4

KPC 5 KPC 5

KIC 8 KIC 8
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Network Parameters of 5 Bus Ring System

Load and Line Parameters

Parameters Values Parameters Values

Line12 0.23+j0.01 Load1 12KW+j12KVar

Line23 0.23+j0.01

Line34 0.23+j0.01 Load2 15.3KW+j7.6KVar

Line45 0.23+j0.01

Line51 0.23+j0.01

Network Parameters of modified IEEE 6 Bus system

Load and Line Parameters

Parameters Values Parameters Values

Line12 0.8+j0.8 Load1 12KW+j12KVar

Line16 0.8+j0.8

Line23 0.8+j0.8

Line25 0.8+j0.8 Load2 12KW+j7.6KVar

Line34 0.23+j0.8

Line45 0.23+j0.1 Load3 12KW+j7.6KVar

Line56 0.23+j0.1
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Network Parameters of Alternative 5 Bus System

Load and Line Parameters

Parameters Values Parameters Values

Line12 0.23+j0.01 Load1 12KW+j12KVar

Line23 0.23+j0.01

Line34 0.23+j0.01

Line45 0.23+j0.01

Line51 0.23+j0.01 Load2 12 KW+j12KVar
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DG’s Parameters of 5 Bus System

Inverter Parameters

DG1, DG2 and DG5 DG3 and DG4

Parameters Values Parameters Values

mp 9.4× 10−5 mp 12.5× 10−5

nQ 1.3× 10−3 nQ 1.5× 10−3

Rc 0.03Ω Rc 0.03Ω

Lc 0.35 mH Lc 0.35 mH

Rc 0.1 Ω Rc 0.1Ω

Lf 1.35 mH Lf 1.35 mH

Cf 50 µF Cf 50 µF

KPV 1 KPV 1

KIV 4 KIV 4

KPC 5 KPC 5

KIC 8 KIC 8
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