330 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Distributed game

    Get PDF
    Dissertação de mestrado em Engenharia InformĂĄticaThe demand for online games has risen over the years, expanding multiplayer support for new and different game genres. Among them are Massively Multiplayer Online games, one of the most popular and successful game types in the industry. Nowadays, this industry is thriving, evolving alongside technological advancements and producing billions in revenue, making it an economic importance. However, as the complexity of these games grows, so do the challenges they face when constructing them. This dissertation aims to implement a distributed game, through a proof of concept or an existing game, using a distributed architecture to acquire knowledge in the construction of such complex systems and the effort involved in dealing with consistency, maintaining communication infrastructure, and managing data in a distributed way. It is also intended that this project implements multiple mechanisms capable of autonomously helping manage and maintain the correct state of the system. To evaluate the proposed solution, a detailed analysis is carried out with performance benchmark analysis, stress testing, followed by an examination of its security, scalability, and distribution’s resilience. Overall, the present research work allowed for a greater understanding of the technologies and approaches used in constructing a gaming system, establishing a new set of development opportunities to be further investi gated upon the constructed solution.A procura por jogos online aumentou ao longo dos anos, expandindo o suporte multiplayer para novos e diferentes gĂ©neros. Entre estes estĂŁo os jogos Massively Multiplayer Online, um dos tipos de jogos mais populares e bem-sucedidos na indĂșstria. Atualmente, esta indĂșstria estĂĄ a prosperar, evoluindo com os avanços tecnolĂłgicos e gerando milhares de milhĂ”es em receita, tornando-se uma importĂąncia econĂłmica. PorĂ©m, Ă  medida que a complexidade destes jogos aumenta, tambĂ©m aumenta os problemas encontrados durante a sua construção. Esta dissertação tem como objetivo implementar um jogo distribuĂ­do, atravĂ©s de uma prova de conceito ou um jogo existente, usando uma arquitetura distribuĂ­da a fim de adquirir conhecimento na construção destes sistemas complexos e o esforço envolvido em lidar com consistĂȘncia, manter a infraestrutura de comunicação e gerir dados de maneira distribuĂ­da. Para isto, Ă© pretendido que este projeto tambĂ©m implemente vĂĄrios mecanismos capazes de, forma autĂŽnoma, ajudar a gerir e manter o correto estado do sistema. Para avaliar o solução proposta, uma anĂĄlise detalhada Ă© realizada sobre o desempenho, segurança, escalabilidade e resiliĂȘncia da distribuição do sistema. De forma geral, o presente trabalho de pesquisa permitiu uma maior compreensĂŁo das tecnologias e abordagens utilizadas na construção de um sistema de jogos, estabelecendo um novo conjunto de oportunidades de desenvolvimento a serem investigadas sobre a solução construĂ­da

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Optimal configuration of active and backup servers for augmented reality cooperative games

    Get PDF
    Interactive applications as online games and mobile devices have become more and more popular in recent years. From their combination, new and interesting cooperative services could be generated. For instance, gamers endowed with Augmented Reality (AR) visors connected as wireless nodes in an ad-hoc network, can interact with each other while immersed in the game. To enable this vision, we discuss here a hybrid architecture enabling game play in ad-hoc mode instead of the traditional client-server setting. In our architecture, one of the player nodes also acts as the server of the game, whereas other backup server nodes are ready to become active servers in case of disconnection of the network i.e. due to low energy level of the currently active server. This allows to have a longer gaming session before incurring in disconnections or energy exhaustion. In this context, the server election strategy with the aim of maximizing network lifetime is not so straightforward. To this end, we have hence analyzed this issue through a Mixed Integer Linear Programming (MILP) model and both numerical and simulation-based analysis shows that the backup servers solution fulfills its design objective

    Applicability of group communication for increased scalability in MMOGs

    Full text link
    Massive multiplayer online games (MMOGs) are today the driving factor for the development of distributed interactive applications, and they are increasing in size and complex-ity. Even a small MMOG supports thousands of players, the biggest support hundreds of thousands of concurrent players. Since they are typically built as strict client-server systems, they suffer from the inherent scalability problem of the architecture. Computing power and bandwidth limita-tions close to the server limit the possible number of players. Also, the latency of communication between players through the server will be higher than using direct communication. In the paper, we address these issues and investigate im-provement options. A typical MMOG consists of a virtual world with a con-cept of time and space that is similar to the real world. In it, players are represented by avatars. Only subsets of these avatars interact with each other at any given time. This allows us to divide them into groups, and communication among group members becomes a multi-party communica-tion problem. Thus, to reduce resource consumption, we compare the performance of several algorithms for group communication with the current central server approach. We use overlay multicast as the means of providing group communication, and research algorithms for creating short-est path trees, spanning trees, delay-bounded spanning trees and, more specific, applying Steiner tree heuristics. Our experimental results indicate that different approaches are useful to reduce resource consumption while achieving a good perceived quality under varying conditions, such as frequent changes in group membership and the demand for low latency. 1

    Referee-based architectures for massively multiplayer online games

    Get PDF
    Network computer games are played amongst players on different hosts across the Internet. Massively Multiplayer Online Games (MMOG) are network games in which thousands of players participate simultaneously in each instance of the virtual world. Current commercial MMOG use a Client/Server (C/S) architecture in which the server simulates and validates the game, and notifies players about the current game state. While C/S is very popular, it has several limitations: (i) C/S has poor scalability as the server is a bandwidth and processing bottleneck; (ii) all updates must be routed through the server, reducing responsiveness; (iii) players with lower client-to-server delay than their opponents have an unfair advantage as they can respond to game events faster; and (iv) the server is a single point of failure.The Mirrored Server (MS) architecture uses multiple mirrored servers connected via a private network. MS achieves better scalability, responsiveness, fairness, and reliability than C/S; however, as updates are still routed through the mirrored servers the problems are not eliminated. P2P network game architectures allow players to exchange updates directly, maximising scalability, responsiveness, and fairness, while removing the single point of failure. However, P2P games are vulnerable to cheating. Several P2P architectures have been proposed to detect and/or prevent game cheating. Nevertheless, they only address a subset of cheating methods. Further, these solutions require costly distributed validation algorithms that increase game delay and bandwidth, and prevent players with high latency from participating.In this thesis we propose a new cheat classification that reflects the levels in which the cheats occur: game, application, protocol, or infrastructure. We also propose three network game architectures: the Referee Anti-Cheat Scheme (RACS), the Mirrored Referee Anti-Cheat Scheme (MRACS), and the Distributed Referee Anti-Cheat Scheme (DRACS); which maximise game scalability, responsiveness, and fairness, while maintaining cheat detection/prevention equal to that in C/S. Each proposed architecture utilises one or more trusted referees to validate the game simulation - similar to the server in C/S - while allowing players to exchange updates directly - similar to peers in P2P.RACS is a hybrid C/S and P2P architecture that improves C/S by using a referee in the server. RACS allows honest players to exchange updates directly between each other, with a copy sent to the referee for validation. By allowing P2P communication RACS has better responsiveness and fairness than C/S. Further, as the referee is not required to forward updates it has better bandwidth and processing scalability. The RACS protocol could be applied to any existing C/S game. Compared to P2P protocols RACS has lower delay, and allows players with high delay to participate. Like in many P2P architectures, RACS divides time into rounds. We have proposed two efficient solutions to find the optimal round length such that the total system delay is minimised.MRACS combines the RACS and MS architectures. A referee is used at each mirror to validate player updates, while allowing players to exchange updates directly. By using multiple mirrored referees the bandwidth required by each referee, and the player-to mirror delays, are reduced; improving the scalability, responsiveness and fairness of RACS, while removing its single point of failure. Direct communication MRACS improves MS in terms of its responsiveness, fairness, and scalability. To maximise responsiveness, we have defined and solved the Client-to-Mirror Assignment (CMA) problem to assign clients to mirrors such that the total delay is minimised, and no mirror is overloaded. We have proposed two sets of efficient solutions: the optimal J-SA/L-SA and the faster heuristic J-Greedy/L-Greedy to solve CMA.DRACS uses referees distributed to player hosts to minimise the publisher / developer infrastructure, and maximise responsiveness and/or fairness. To prevent colluding players cheating DRACS requires every update to be validated by multiple unaffiliated referees, providing cheat detection / prevention equal to that in C/S. We have formally defined the Referee Selection Problem (RSP) to select a set of referees from the untrusted peers such that responsiveness and/or fairness are maximised, while ensuring the probability of the majority of referees colluding is below a pre-defined threshold. We have proposed two efficient algorithms, SRS-1 and SRS-2, to solve the problem.We have evaluated the performances of RACS, MRACS, and DRACS analytically and using simulations. We have shown analytically that RACS, MRACS and DRACS have cheat detection/prevention equivalent to that in C/S. Our analysis shows that RACS has better scalability and responsiveness than C/S; and that MRACS has better scalability and responsiveness than C/S, RACS, and MS. As there is currently no publicly available traces from MMOG we have constructed artificial and realistic inputs. We have used these inputs on all simulations in this thesis to show the benefits of our proposed architectures and algorithms
    • 

    corecore