
Department of Computing

Referee-Based Architectures for Massively Multiplayer
Online Games

Steven Daniel Webb

This thesis is presented for the degree of

Doctor of Philosophy

of

Curtin University of Technology

November 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by espace@Curtin

https://core.ac.uk/display/195631154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To the best of my knowledge and belief this thesis contains no material
previously published by any other person except where due acknowledgement
has been made. This thesis contains no material which has been accepted for
the award of any other degree or diploma in any university.

04-11-2010
Steven Daniel Webb

Abstract

Network computer games are played amongst players on different hosts across the Inter-
net. Massively Multiplayer Online Games (MMOG) are network games in which thousands
of players participate simultaneously in each instance of the virtual world. Current com-
mercial MMOG use a Client/Server (C/S) architecture in which the server simulates and
validates the game, and notifies players about the current game state. While C/S is very
popular, it has several limitations: (i) C/S has poor scalability as the server is a bandwidth
and processing bottleneck; (ii) all updates must be routed through the server, reducing re-
sponsiveness; (iii) players with lower client-to-server delay than their opponents have an
unfair advantage as they can respond to game events faster; and (iv) the server is a single
point of failure.

The Mirrored Server (MS) architecture uses multiple mirrored servers connected via
a private network. MS achieves better scalability, responsiveness, fairness, and reliability
than C/S; however, as updates are still routed through the mirrored servers the problems
are not eliminated. P2P network game architectures allow players to exchange updates
directly, maximising scalability, responsiveness, and fairness, while removing the single
point of failure. However, P2P games are vulnerable to cheating. Several P2P architectures
have been proposed to detect and/or prevent game cheating. Nevertheless, they only address
a subset of cheating methods. Further, these solutions require costly distributed validation
algorithms that increase game delay and bandwidth, and prevent players with high latency
from participating.

In this thesis we propose a new cheat classification that reflects the levels in which the
cheats occur: game, application, protocol, or infrastructure. We also propose three net-
work game architectures: the Referee Anti-Cheat Scheme (RACS), the Mirrored Referee
Anti-Cheat Scheme (MRACS), and the Distributed Referee Anti-Cheat Scheme (DRACS);
which maximise game scalability, responsiveness, and fairness, while maintaining cheat
detection/prevention equal to that in C/S. Each proposed architecture utilises one or more
trusted referees to validate the game simulation - similar to the server in C/S - while allow-
ing players to exchange updates directly - similar to peers in P2P.

RACS is a hybrid C/S and P2P architecture that improves C/S by using a referee in the
server. RACS allows honest players to exchange updates directly between each other, with
a copy sent to the referee for validation. By allowing P2P communication RACS has better

iii

responsiveness and fairness than C/S. Further, as the referee is not required to forward
updates it has better bandwidth and processing scalability. The RACS protocol could be
applied to any existing C/S game. Compared to P2P protocols RACS has lower delay,
and allows players with high delay to participate. Like in many P2P architectures, RACS
divides time into rounds. We have proposed two efficient solutions to find the optimal
round length such that the total system delay is minimised.

MRACS combines the RACS and MS architectures. A referee is used at each mir-
ror to validate player updates, while allowing players to exchange updates directly. By
using multiple mirrored referees the bandwidth required by each referee, and the player-to-
mirror delays, are reduced; improving the scalability, responsiveness and fairness of RACS,
while removing its single point of failure. Direct communication MRACS improves MS
in terms of its responsiveness, fairness, and scalability. To maximise responsiveness, we
have defined and solved the Client-to-Mirror Assignment (CMA) problem to assign clients
to mirrors such that the total delay is minimised, and no mirror is overloaded. We have
proposed two sets of efficient solutions: the optimal J-SA/L-SA and the faster heuristic
J-Greedy/L-Greedy to solve CMA.

DRACS uses referees distributed to player hosts to minimise the publisher / developer
infrastructure, and maximise responsiveness and/or fairness. To prevent colluding players
cheating DRACS requires every update to be validated by multiple unaffiliated referees,
providing cheat detection / prevention equal to that in C/S. We have formally defined the
Referee Selection Problem (RSP) to select a set of referees from the untrusted peers such
that responsiveness and/or fairness are maximised, while ensuring the probability of the
majority of referees colluding is below a pre-defined threshold. We have proposed two
efficient algorithms, SRS-1 and SRS-2, to solve the problem.

We have evaluated the performances of RACS, MRACS, and DRACS analytically and
using simulations. We have shown analytically that RACS, MRACS and DRACS have
cheat detection/prevention equivalent to that in C/S. Our analysis shows that RACS has
better scalability and responsiveness than C/S; and that MRACS has better scalability and
responsiveness than C/S, RACS, and MS. As there is currently no publicly available traces
from MMOG we have constructed artificial and realistic inputs. We have used these inputs
on all simulations in this thesis to show the benefits of our proposed architectures and
algorithms.

Acknowledgements

This thesis would not have been possible without the support of many people. In particular,
I am extremely grateful to my supervisor Dr Sieteng Soh for the support and encouragement
he has given me throughout my PhD. He was a tremendous supervisor and a good friend.
Without his help I doubt I would have reached half way. I would also like to express my
thanks to Dr William Lau for his assistance at the start of my PhD, and Dr Jerry Trahan for
his assistance towards the end.

This thesis would not have been possible without the support of my girlfriend Elissa,
my parents, my brother Ben, my Granny, and all of my friends. Thank you for everything
you add to my life. I would not be here without you.

Thank you to everyone in the Department of Computing for their support and encour-
agement. In particular, Dr Patrick Peursum, Dr Mike Robey, and Richard Palmer.

Finally, I would like to thank the Australian government for providing me with the
Australian Postgraduate Award (APA) scholarship. I would have been unable to undertake
a PhD without this financial support.

v

Contents

Abstract iii

Acknowledgements v

Published Work xiii

Acronyms and Notation xv

1 Introduction 1
1.1 Aims and Approach . 4
1.2 Contributions . 5
1.3 Thesis Organisation . 6

2 Background and Literature Review 8
2.1 Network Game Properties . 8

2.1.1 Network Game Genres . 8
2.1.2 Scalability . 9
2.1.3 Responsiveness and Fairness . 11
2.1.4 Consistency . 12
2.1.5 Persistence and Reliability . 13

2.2 Game Cheating . 13
2.2.1 Cheat Model . 13
2.2.2 Cheating Techniques . 14
2.2.3 Cheat Classifications . 19

2.3 Network Game Architectures . 21
2.3.1 Client/Server (C/S) Architecture 21
2.3.2 Mirrored Server (MS) Architecture 22

2.3.2.1 Architecture . 22
2.3.2.2 Synchronisation . 23
2.3.2.3 Security . 23
2.3.2.4 Client-to-Mirror Assignment (CMA) 24

2.3.3 Peer-to-Peer (P2P) Architectures 27

vi

2.3.3.1 Architectures Without Cheat Detection/Prevention 28
2.3.3.2 Architectures With Cheat Detection/Prevention 29

2.4 Summary . 33

3 The Referee Anti-Cheat Scheme (RACS) 34
3.1 Cheat Classification . 35
3.2 Referee Anti-Cheat Scheme . 36

3.2.1 RACS Concept and Protocol . 36
3.2.2 RACS Communication Modes . 38

3.3 Round Length Adjustment . 40
3.3.1 Delay Model and Problem Statement 42
3.3.2 Round Length Adjustment Algorithms 43

3.3.2.1 Brute Force . 43
3.3.2.2 Voting . 43

3.4 RACS Evaluation . 44
3.4.1 Cheat Prevention . 45
3.4.2 Bandwidth Analytical Analysis 48
3.4.3 RACS Bandwidth and Delay Simulations 50

3.4.3.1 Generating Realistic Inputs 50
3.4.3.2 Simulation 3.1: RACS vs C/S in a Cheat-Free Environment 51
3.4.3.3 Simulation 3.2: RACS Bandwidth and Delay with Cheaters 54
3.4.3.4 Simulation 3.3: The Effects of w, s, and p, with Packet

Loss and Cheating . 54
3.4.4 Round Length Adjustment Simulation 56

3.5 Summary . 58

4 The Mirrored Referee Anti-Cheat Scheme (MRACS) 59
4.1 Mirrored Referee Anti-Cheat Scheme . 60

4.1.1 MRACS Concept and Protocol . 60
4.1.2 MRACS Communication Modes 62
4.1.3 MRACS Synchronisation . 63
4.1.4 MRACS Security . 63

4.2 Client to Mirror Assignment (CMA) . 65
4.2.1 CMA Problem Statement . 66
4.2.2 CMA Algorithms . 68

4.2.2.1 CMA-J Algorithms . 68
4.2.2.2 CMA-L Algorithms . 73

4.3 Performance Analysis . 76
4.3.1 Bandwidth and Processing - Analytical Evaluation 76
4.3.2 Bandwidth, Processing, and Delay - Simulation Results 78

4.3.3 CMA Simulation Results . 81
4.3.3.1 Simple Scenario . 81
4.3.3.2 Realistic Scenario . 83
4.3.3.3 Speed Comparisons . 84

4.4 Summary . 85

5 The Distributed Referee Anti-Cheat Scheme (DRACS) 86
5.1 Distributed Referee Anti-Cheat Scheme 87
5.2 System Model . 88
5.3 Referee Selection Problem . 89
5.4 Secure Referee Selection Algorithms . 91

5.4.1 Estimating Delay between Peers 91
5.4.2 Size of the Candidate Referee Set 91
5.4.3 SRS-1 . 92
5.4.4 SRS-2 . 93

5.5 Simulation and Discussion . 94
5.5.1 Simulation 5.1 . 95
5.5.2 Simulation 5.2 . 96
5.5.3 Simulation 5.3 . 97

5.6 Summary . 98

6 Conclusion 100
6.1 Summary . 100
6.2 Future Work . 101

A L-SA Optimality Proof 103

B Copyright Permissions 108

Bibliography 110

List of Figures

2.1 Client/Server architecture. 21
2.2 Mirrored Server architecture. 22
2.3 Timestamp cheating in the MS architecture. 24
2.4 Maintaining global connectivity using avatar location. 28
2.5 Rounds pipelined in NEO. 31

3.1 RACS architecture. 37
3.2 RACS communication modes. 38
3.3 Example of mixed PP and PRP communication. 39
3.4 Example topologies. 42
3.5 TSD for Topology 2. 44
3.6 C/S and RACS bandwidth scalability with increasing players. 53
3.7 C/S and RACS game state delay. 54
3.8 RACS bandwidth and delay with increasing cheaters. 55
3.9 RACS with increasing message loss and cheaters. 57
3.10 Total System Delay. 57

4.1 MRACS architecture. 61
4.2 MRACS communication modes. 62
4.3 Example client and mirror configurations for the CMA problem. 67
4.4 Example of CMA-J using J-SA. 71
4.5 Example of CMA-L using L-SA. 74
4.6 BS and TSS processing time. 78
4.7 RACS, MS and MRACS delay and out-bandwidth. 79
4.8 MRACS mirror out-bandwidth. 80
4.9 Delay for MS using TSS and MRACS using BS. 81
4.10 Average delay and standard deviation for the simple case. 82
4.11 Delay difference for simple case. 83
4.12 Average delay and standard deviation for the realistic case. 84

5.1 DRACS architecture. 88
5.2 Peer membership. 89
5.3 Referee selection example. 90

ix

5.4 Colluding peer membership. 91
5.5 Example 2D network coordinates. 92
5.6 Simulation 5.1 results. 96
5.7 Simulation 5.2 results. 97
5.8 Simulation 5.3 average delay. 98
5.9 Simulation 5.3 maximum delay. 99

List of Tables

2.1 Delay requirements for smooth play in various games. 11

3.1 Game cheats and their possible solutions. 36
3.2 Summary of RACS cheat detection / prevention strategies. 45
3.3 Bandwidth comparison of C/S and RACS. 49

4.1 Summary of MRACS cheat detection/prevention strategies. 65
4.2 Bandwidth analysis of various architectures. 77
4.3 Average algorithm running time. 85

5.1 Player distribution for Simulation 5.1 . 95

xi

List of Algorithms

3.1 RACS_player_game_loop() . 40
3.2 RACS_referee_game_loop() . 41
3.3 vote(di, f) . 44
3.4 tally() . 45

4.1 MRACS_referee_game_loop() . 64
4.2 J-SA(Pi, DM[1...n, 1...m]) . 69
4.3 transfer_players(Label[1...m], TH[1...m,1...m], from) 69
4.4 assign(Pi, MX , DM[1...n, 1...m]]) . 70
4.5 remove(Pi, MX) . 70
4.6 construct_labels_join(TH[1...m,1...m]) . 70
4.7 J-Greedy(Pi, DM[1...n, 1...m]) . 72
4.8 L-SA(Pi, MX , DM[1...n, 1...m]) . 73
4.9 construct_labels_leave(TH[1...m,1...m], l) 74
4.10 L-Greedy(Pi, MX , DM[1...n, 1...m]) . 75

5.1 SRS-1(ψ , r, F) . 93

xii

Published Work

This thesis is based upon several works that have been published over the course of the
author’s PhD, listed as follows in chronological order:

• Webb, S. D., W. Lau, and S. Soh (2006). NGS: An application layer network game
simulator. In Proc. Interactive Entertainment (IE), pp. 15-22. Permission was
obtained to reuse this copyrighted work (see Appendix B).

• Webb, S. D., S. Soh, and W. Lau (2007). RACS: a referee anti-cheat scheme for
P2P gaming. In Proc. Network and Operating System Support for Digital Audio and

Video (NOSSDAV), pp. 37-42.

• Webb, S. D., S. Soh, and W. Lau (2007). Enhanced mirrored servers for network
games. In Proc. Network and Systems Support for Games (NetGames), pp. 117-122.

• Webb, S. D. and S. Soh (2007). Cheating in networked computer games - a review.
In Proc. Digital Interactive Media in Entertainment and Arts (DIMEA), pp. 105-112.

• Webb, S. D. and S. Soh (2007). Round length optimisation for P2P network gaming.
In Proc. Postgraduate Electrical Engineering and Computing Symposium (PEECS),
pp. 23-28 (best presentation award).

• Webb, S. D. and S. Soh (2007 (Published 2008)). A survey on network game cheats
and P2P solutions. Australian Journal of Intelligent Information Processing Systems

9(4), 34-43.

• Webb, S. D. and S. Soh (2008). Adaptive client to mirrored-server assignment for
massively multiplayer online games. In Proc. Multimedia Computing and Network-

ing (MMCN), pp. 6818-17.

• Webb, S. D., S. Soh, and J. L. Trahan (2008). Secure referee selection for fair and
responsive peer-to-peer gaming. In Proc. Principles of Advanced and Distributed

Simulation (PADS), pp. 63-71 (best paper nomination).

• Webb, S. D. and S. Soh (2009). Application performance metrics for evaluating delay
estimation schemes. In Proc. Asia-Pacific Conference on Communications (APCC),
pp. 717-721.

xiii

• Webb, S. D., S. Soh, and J. L. Trahan (2009). Secure referee selection for fair and
responsive peer-to-peer gaming. SIMULATION: Transactions of The Society for

Modelling and Simulation International 85(9), 608-618. Permission was obtained
to reuse this copyrighted work (see Appendix B).

Acronyms, Abbreviations, and Notation

Common Acronyms and Abbreviations

AoI Area of Interest.
BS Bucket Synchronisation.
C/S Client/Server.
CDS Cheat Detection System.
CMA Client-to-Mirror Assignment.

DRACS Distributed Referee Anti-Cheat Scheme.
E-Mirror Egress Mirror.

FPS First Person Shooters.
I-Mirror Ingress Mirror.
MMOG Massively Multiplayer Online Games.

MPP Peer-to-peer message.
MPR Peer-to-referee message.

MRACS Mirrored Referee Anti-Cheat Scheme.
MRP Referee-to-peer message.
MRR Referee-to-referee message.
MS Mirrored Server.

ODL On Demand Loading.
P2P Peer-to-Peer.
PP Peer-Peer mode for RACS, MRACS, and DRACS.

PRP Peer-Referee-Peer mode for RACS, MRACS, and DRACS.
RACS Referee Anti-Cheat Scheme.
RTT Round Trip Time.
TSS Trailing State Synchronisation.

WoW World of Warcraft.

xv

Common Notation

τ Round length.
r Round number.

di, j Delay from host i to host j.
R The set of referees.
Ri A referee with ID i.
M The set of Mirrors.
Mi A mirror with ID i.
m The number of mirrors, |M|.
P The set of players.
Pi A player with ID i.
n The number of players, |P|.

SA The authentication server.

Chapter 1

Introduction

Computer games have become a mainstream form of entertainment, making gaming a
highly profitable market. A report sponsored by the Entertainment Software Association

estimated the total sales in 2007 for the US computer game industry at $18.85 billion [123].
Network computer games are competitive and/or cooperative games played amongst mul-
tiple players on different hosts across a network, often the Internet. The popularity of net-
work games has increased rapidly, made feasible by the increase in household penetration
of broadband Internet access [14]. Most network games support several dozen simultane-
ous players in each instance of the virtual world. Massively Multiplayer Online Games
(MMOG) differ from traditional network games as they present a single virtual world in
which tens of thousands of players participate simultaneously [27]. Furthermore, these
worlds are persistent; hence, the state of the world evolves even when the player is of-
fline [27]. Therefore, in addition to addressing game responsiveness, fairness, consistency,
and cheat-free requirements, MMOG must address scalability, persistency, and reliability
[6, 43, 71]. Despite the additional complexity, MMOG are popular amongst game develop-
ers and publishers as they can be extremely profitable [137]. This thesis does not attempt to
address all of these issues, focusing on scalability, responsiveness, fairness, and cheating.

In this thesis the scalability of an architecture is defined as its ability to support a large
number of concurrent players, and tolerate a rapid increase in the number of concurrent
players, without dramatically increasing the usage of centralised resources [71]. Scalability
is a critical factor when designing the architecture for MMOG, as it must support tens of
thousands of concurrent players. Further, as it is difficult to predict the popularity of a game
at launch time, the architecture should tolerate an unexpected dramatic increase in players,
without the need to provision significant additional expensive infrastructure.

The most common approach to improve scalability is sharding [24]. A shard is a com-
plete and independent copy of the game world. The developer determines the maximum
number of concurrent players per shard. By adding more shards the developer can ac-
commodate more players; however, players in different shards cannot interact, thus shard-
ing works against the concept of MMOG. Furthermore, it is frustrating and annoying for

1

2

players when shards reach their limits as they must play on different shards with different
people, destroying the social aspect and therefore its appeal.

As games are arguably one of the most delay sensitive Internet applications, maximising
game responsiveness is critical to provide players with a satisfying experience [10, 43, 100].
Further, if a player has higher delay than his1 opponents, he is at a significant disadvantage,
and may become frustrated and quit the game. Finally, even if all players have equal de-
lay, the game must be responsive to maintain player satisfaction. As many MMOG use a
subscription business model (players pay a monthly subscription fee) maintaining respon-
siveness and fairness is critical to the business.

The delay requirement for a game is dependent on its genre. First Person Shooters
(FPS) are the most delay sensitive of games, with users preferring a delay below 180ms

[10], while other genres of games can tolerate higher delays, even exceeding 1000ms [61].
The importance of delay for player satisfaction was emphasised by the developer of EVE
Online, CCP Games, when it changed service providers to reduce the server to player delay
[114]. CCP Games is also considering giving players control about how game updates are
routed from EVE Online’s data centre; thus, increasing both responsiveness and fairness.

To be fair, a game must also prevent players from cheating. While the majority of
players are honest [100], a small population of cheaters can destroy an online community,
as honest players often quit if cheating continues unpunished. This is catastrophic for
games using subscriptions to generate revenue [100]. The importance of cheat prevention
to developers and publishers is evident from the increasing number of commercial anti-
cheat products [7, 46, 50, 104, 134]. Cheat prevention is one of the main benefits of using
a Client/Server (C/S) game architecture.

The vast majority of MMOG use a C/S architecture, in which the server is the game
authority. To support a virtual world with tens of thousands of players, the server is often
comprised of multiple hosts at one location, with the game simulation distributed between
them. With only one centralised trusted server, keeping the game consistent, persistent,
and cheat free in C/S is straightforward [27, 77, 108]. Unfortunately, C/S suffers from the
following limitations:

• bandwidth scalability - the server’s incoming and outgoing bandwidth are bottlenecks
as the publisher must provision sufficient bandwidth at one location, which is an
expensive recurring cost [27, 94, 100];

• processing scalability - the server’s processing power is a bottleneck, as it must simu-
late the entire virtual world and perform Area of Interest (AoI) filtering for all players
in real time[128];

• responsiveness - each player update is sent to the server, which simulates the update,
and broadcasts the new game state to relevant players. Thus, the game delay for C/S

1Note, “he” should be read as “he or she” throughout this thesis.

3

is at least two times the Round Trip Time (RTT) [94];

• fairness - players with low client-to-server delay have an unfair advantage, as they
experience better responsiveness than those situated further away [43]; and

• reliability - the server is a single point of failure for the system [16, 43].

Many network game architectures have been proposed to overcome the weaknesses of C/S.
The Mirrored Server (MS) architecture [41–43], comprising multiple mirrored servers de-
ployed at geographically different locations throughout the network, has better bandwidth
scalability, responsiveness, fairness, and reliability than C/S. MS, however, requires a syn-
chronisation mechanism to maintain consistency across mirrors, incurring additional pro-
cessing overhead. Further, like in C/S, game delay in MS is not optimal as player updates
are routed through the mirrors.

Many Peer-to-Peer (P2P) network game architectures have been proposed to address
the C/S and MS limitations (e.g., references [13, 17, 36, 64, 71, 76, 84]). P2P is scalable as
the bandwidth and processing requirements are entirely handled by the peers; hence, there
is no central bottleneck. Furthermore, P2P systems are resource growing; as the number
of peers/players increases so does the overall bandwidth and processing power of the sys-
tem. Finally, as updates can be sent directly between peers, P2P can potentially maximise
responsiveness and fairness. Unfortunately, keeping the game consistent and cheat-free
in P2P is significantly harder and more costly than in C/S and MS, as P2P does not have
trusted servers/peers to store the authoritative game state and validate player updates [76].
Addressing cheating is a major concern for network games as it degrades the experience
of the majority of players who are honest [100]. This is catastrophic for games using sub-
scription models to generate revenue.

Several P2P protocols have been proposed to address cheating [13, 37, 64]. However,
these protocols are vulnerable to the information exposure and invalid command cheats
which are prevalent in MMOG, while introducing new forms of cheating not possible in
C/S; see Section 2.2. In addition, these solutions require costly distributed validation al-
gorithms that increase game delay and bandwidth. Finally, these protocols prevent players
with high delay from participating.

In this thesis we propose using referees as a trusted third party to build scalable, respon-
sive, fair, and cheat-free network game architectures. Our referee model was inspired by
referees in traditional sporting events, who are responsible for ensuring the rules are fol-
lowed, detecting / preventing cheating, but are not responsible for notifying players about
the current state of play. Equivalently, in our proposed architectures, we have used trusted
hosts running referees that are responsible for validating player updates, but are not required
to notify players about the current game state unless cheating is detected. In contrast, the
server in C/S must constantly notify all players about the current state of play, which con-
sumes significant server bandwidth and processing power. On the other hand, naive P2P

1.1. Aims and Approach 4

architectures do not validate player actions, and thus do not prevent cheating. This the-
sis proposes three network game architectures that apply the referee concept: the Referee
Anti-Cheat Scheme (RACS), the Mirrored Referee Anti-Cheat Scheme (MRACS), and the
Distributed Referee Anti-Cheat Scheme (DRACS). Conceptually, each of these three pro-
posed architectures is a hybrid between C/S and P2P. For honest players, our architectures
use P2P communication with players sending and receiving updates directly between each
other, while the referee independently simulates and validates player updates. For cheaters,
our architectures are equivalent to C/S in which players send updates to the referee, which
simulates each update, and broadcasts the results to relevant players. Each architecture
significantly improves C/S scalability, responsiveness, and fairness, while providing cheat
prevention equal to that in C/S.

1.1 Aims and Approach

Our aim was to design three network game architectures that emphasise game scalability,
responsiveness, and fairness , while providing cheat prevention equal to that in C/S. As
requirements differ between games, a “one size fits all” approach will not be effective.
Therefore, we decided on three specific aims, addressing different needs. In particular:

Aim 1 - To propose a network game architecture using a referee in the server to im-
prove C/S scalability, responsiveness, and fairness: As C/S is the dominant network
game architecture, and ubiquitous for MMOG, any improvement could potentially be used
in many existing and future games. Therefore, Aim 1 was to create a hybrid C/S and P2P
architecture with the security of C/S and the scalability of P2P; we call it the Referee Anti-
Cheat Scheme (RACS). Placing a referee at the server maintains cheat prevention equal to
C/S, but allows peers to exchange updates directly, increasing scalability, responsiveness,
and fairness.

Aim 2 - To propose a network game architecture using multiple referees in mirrored
servers to improve RACS and MS scalability, responsiveness, and fairness: The MS
architecture provides better scalability, responsiveness, and fairness than C/S, provided the
publisher can provision multiple mirrored servers connected via a private network. How-
ever, as updates are routed through the mirrors, like in C/S, the scalability, responsiveness,
and fairness of MS are not optimal. Our Aim 2 was to place a referee at each mirror - mir-
rored referees - to gain the same scalability, responsiveness, and fairness benefits as in Aim
1, while preventing cheating. We call this architecture the Mirrored Referee Anti-Cheat
Scheme (MRACS).

Aim 3 - To propose a network game architecture using referees in peers to improve
P2P cheat detection/prevention: Aims 1 and 2 increase the scalability, responsiveness,

1.2. Contributions 5

and fairness of cheat-proof architectures. Aim 3 is the inverse in that we seek to increase
the cheat-prevention properties of a scalable, responsive, and fair P2P architecture. In
particular, for Aim 3, we propose the Distributed Referee Anti-Cheat Scheme (DRACS).
This architecture probabilistically deploys referees to untrusted peers such that it satisfies
a required degree of cheat detection / prevention, while maximising responsiveness and/or
fairness.

1.2 Contributions

This thesis has the following seven contributions, presented in order of appearance.

1) A new cheat classification scheme. We have proposed a new classification covering
all known cheats. Our classification is a modification and expansion of the scheme pro-
posed by GauthierDickey et al. [64]. In addition, we have provided a review of all known
theoretical and practical cheating techniques. Where applicable, real-world examples of
these cheats are discussed. We use this classification in Chapters 3, 4, and 5 to evaluate the
anti-cheat properties of our proposed architectures. Our classification has proved useful to
other researchers investigating network games (e.g., [66, 67, 96]). Further, by providing
real world examples game developers can clearly link the different cheats to real-world
threats.

2) The Referee Anti-Cheat Scheme (RACS). RACS is a hybrid C/S and P2P architec-
ture that improves the bandwidth and processing scalability of C/S, and increases respon-
siveness and fairness, without increasing the opportunities for cheating. Our analysis and
simulations in Chapter 3 show the reduction in bandwidth and increase in responsiveness
of RACS over C/S. Any existing C/S architecture could potentially be adapted to use the
RACS protocol.

3) The round length adjustment problem definition and its efficient solutions. In
Chapter 3 we propose two efficient and accurate round length adjustment algorithms: brute

force and voting. Both centralised algorithms are preferable for RACS than the distributed
approach in [64]. Our simulations using real-world data traces show our algorithms effec-
tiveness.

4) Constructed realistic inputs for game architecture evaluation. At present there are
no publicly available traces from MMOG, making simulation and evaluation of new net-
work game architectures difficult. Further, as C/S architectures do not measure the delay
between clients, it is difficult to evaluate novel P2P architectures. To overcome these prob-
lems we generate realistic inputs that utilise real-world data traces from a popular Counter-

Strike game server [54], the hostip.info IP address to geographic location mapping service

1.3. Thesis Organisation 6

[68], the Dimes project Internet topology trace [121], the PingER project Internet perfor-
mance measurements [93], and public information about World of Warcraft (WoW) [19].
Using these inputs we construct realistic simulations to evaluate our proposed architectures
and algorithms.

5) The Mirrored Referee Anti-Cheat Scheme (MRACS). MRACS combines the RACS
protocol with the MS architecture to improve the bandwidth scalability, responsiveness, and
fairness of both architectures, and thus C/S. MRACS also improves the reliability of RACS
and C/S by removing the single point of failure. By using the RACS protocol, MRACS
provides security equal to that in C/S. Our theoretical analysis and simulations in Chapter
4 show the reduction in bandwidth, processing, and delay of MRACS over C/S, RACS, and
MS.

6) The Client-to-Mirror Assignment (CMA) problem definition and and its efficient
solutions. Chapter 4 introduces the CMA problem for minimising delay in heterogeneous
mirrored systems with fixed resources. We propose an optimal solution, and a faster heuris-
tic solution. Our discussion focuses on MS and MRACS; however, our solutions are appli-
cable to all applications with mirrored resources and long-term connections (e.g., Content
Distribution Networks (CDN) [78] or video streaming sites such as Hulu [72]). Simulations
using our realistic inputs show our CMA solutions significantly reduce delay.

7) The Distributed Referee Anti-Cheat Scheme (DRACS). DRACS combines the RACS
protocol with the voting mechanism proposed by Kabus and Buchmann [76] to create a
cheat resistant P2P network game architecture. For DRACS, we have defined the Referee
Selection Problem (RSP) and propose two possible solutions - one maximising responsive-
ness and the other fairness. Both solutions maintain a developer defined level of security.
While these algorithms are discussed in the context of RACS they are also applicable to
other P2P network game architectures, e.g., Region Controllers [76], NEO [64], SEA [36],
FreeMMG [27], etc. Our simulations using real-world data traces show the effectiveness
of both algorithms, and thus DRACS.

1.3 Thesis Organisation

The contents of each chapter in this thesis are as follows.

Chapter 2: Background and Literature Review

Chapter 2 includes background information and related work on three important areas of
this research: network game properties, game cheating, and network game architectures
(C/S, MS, and P2P).

1.3. Thesis Organisation 7

Chapter 3: The Referee Anti-Cheat Scheme (RACS)

Chapter 3 proposes a new cheat classification that incorporates all known theoretical and
practical cheats, presents RACS, formally defines the round length adjustment problem,
and proposes two centralised algorithms for round length adjustment. Further, this chap-
ter describes the construction of the artificial and realistic inputs used in all simulations
throughout this thesis. It also includes analytical analysis and simulations to evaluate the
bandwidth and delay improvements of RACS over C/S. Finally, the chapter evaluates our
round length adjustment algorithms using simulation.

Chapter 4: The Mirrored Referee Anti-Cheat Scheme (MRACS)

Chapter 4 proposes MRACS, formally defines the CMA problem, and proposes two solu-
tions for this problem. The chapter includes analytical analysis to compare the required
bandwidth and processing requirements of RACS, MS, and MRACS. Finally, Chapter 4
includes simulations using the artificial and realistic inputs constructed in Chapter 3 to
evaluate RACS, MS, and MRACS; and to evaluate the different CMA algorithms.

Chapter 5: The Distributed Referee Anti-Cheat Scheme (DRACS)

Chapter 5 proposes DRACS, formally defines the RSP, and proposes two solutions for
this problem. Both solutions ensure the probability of colluding referees being below a
developer specified level. We perform simulations using the artificial and realistic inputs
constructed in Chapter 3 to evaluate both solutions.

Chapter 6: Conclusion

Chapter 6 summarises this thesis and discusses possible areas of future research.

Chapter 2

Background and Literature Review

This chapter is divided into three main sections: network game properties, game cheating,
and network game architectures. Section 2.1 describes four common game genres, and re-
views six properties that an MMOG architecture must address: scalability, responsiveness,
fairness, consistency, persistence, and reliability [71]. While all six properties are impor-
tant for MMOG, this thesis focuses on scalability, responsiveness, and fairness; however,
consistency, persistence, and reliability are discussed where relevant. Section 2.2 describes
our cheat model, describes all known theoretical and practical cheating techniques (includ-
ing examples where applicable), and reviews previous classifications of cheating. Section
2.3 reviews previously proposed network game architectures, including C/S, MS, and sev-
eral P2P architectures. Finally, Section 2.4 summarises this chapter. Note, the review of
cheating in Section 2.2 was originally published in [139] and expanded in [141].

2.1 Network Game Properties

2.1.1 Network Game Genres

Due to their different game play, different game genres have different requirements for
responsiveness and fairness. This section describes several popular genres of games.

An avatar is the virtual world representation of a player. Depending on the game genre,
each player is represented by one or more avatars. In First Person Shooters (FPS) each
player controls a single humanoid avatar in a 3D environment. The player’s view is first
person, and the goal is to collect weapons, and use them to shoot and kill other avatars.
The vast majority of FPS are competitive, and success requires accurate aiming and quick
reflexes (FPS are often called twitch games for this reason). Further, avatar movement is ex-
tremely fast and unpredictable [135]. Therefore, FPS generate many small packets at short
intervals [54], and have very strict delay and fairness requirements. Thousands of indepen-
dent copies of the game world, called instances, are hosted on servers all over the world;
with each instance supporting several tens of players. While many servers run continu-

8

2.1. Network Game Properties 9

ously, time is usually divided into independent rounds, with the game map cycled between
each round. Example FPS include Quake [73], Counter-Strike [54], Unreal Tournament

[14], etc.
Real Time Strategy Games (RTS) involve simulated armies battling each other. Each

player is represented by an army, involving many avatars controlled using player guided
Artificial Intelligence (AI). Similar to chess, the winner of an RTS game is the player with
the best strategy. While higher responsiveness is beneficial, it is far less critical for RTS
than FPS games, making fairness easier to achieve. Each instance of an RTS is typically
limited to 10 or 20 players; however, smaller matches are common. While each instance is
independent, RTS games often provide global player rankings according to wins and losses.
Examples include Age of Empires [16] and Warcraft [122].

Role Playing Games (RPG) have a strong story and involve a player controlled avatar
embarking on quests or missions with other players. The objective is for each player to im-
prove his avatar’s skills, abilities, levels, and equipment. Game play is often designed such
that quick reflexes are not a requirement to be successful. Thus, the required responsiveness
is comparable to RTS, and significantly lower than FPS. Further, as RPG are often coop-
erative, fairness is not as critical. Each RPG instance typically supports up to 10 players.
Examples include Diablo [1] and Fallout [2].

Massively Multiplayer Online Games (MMOG) differ from traditional network games
as they present a single universe in which thousands or tens of thousands of players partici-
pate simultaneously [84]. Further, the state of the game world and players’ avatars progress
gradually, lasting months or years. In the last five years the popularity of MMOG has in-
creased dramatically; enabled by the explosive growth of the Internet and the availability of
broadband connections for home users. While massively multiplayer FPS and RTS games
have been created, Massively Multiplayer Role Playing Games (MMORPG) are the dom-
inant form of MMOG. As MMORPG have similar game play to traditional RPG (but in-
volving more players) they have comparable responsiveness requirements. However, while
MMORPG have a strong focus on cooperation, they can also be very competitive, making
fairness a higher priority than in RPG. Examples include World of Warcraft (WoW) [19]
and EverQuest [85].

To ensure compatibility with the widest range of genres this thesis focuses on the scal-
ability requirements of MMOG, and the responsiveness and fairness requirements of FPS.
Thus, our proposed architectures are applicable to all genres of games.

2.1.2 Scalability

We define the scalability of an architecture as its ability to support a large concurrent player
population, and tolerate a rapid increase in the concurrent player population, without dra-
matically increasing the usage of centralised resources. For a C/S architecture the server is
a potential bottleneck, limiting scalability, as each additional client consumes more of the

2.1. Network Game Properties 10

server’s bandwidth and processing power [13, 43, 64, 67, 108]. To prevent a bottleneck oc-
curring publishers must provision large amounts of hardware and bandwidth [13, 84, 101];
as the connected population fluctuates diurnally these resources are frequently underutilised
[55, 83, 110, 130]. Further, as more resources cannot be deployed rapidly, publishers often
over-provision to allow for a rapid increase in players [28]. The cost of provisioning suf-
ficient resources makes MMOG development difficult and risky for small companies, and
even some large developers struggle to provision sufficient resources [85, 132].

For games involving many players it is impractical to update each player about every
change in game state. It is financially impractical as the server’s bandwidth is an expensive
recurring cost [100]; and it is technically impractical as players do not have sufficient band-
width. To reduce the server to client traffic each player is only notified about relevant game
state changes; this is called Interest Management [124]. A player’s Area of Interest (AoI)
is the portion of the game world they can perceive and influence; each player only receives
notifications about state changes that occur within their AoI. By reducing the data sent to
each client the server’s bandwidth scalability is increased, and players with low bandwidth
can participate.

For the server to simulate a virtual world involving thousands of simultaneous partic-
ipants requires distributing the workload across multiple hosts; i.e., the server is a cluster
of cooperating hosts [23, 24, 33, 85]. A common approach to distribute the workload is
to divide the virtual world into zones/regions of fixed [30, 58, 109, 154] or varying [92]
sizes. Each host simulates one or more zones [30, 88, 128], and a load balancing algorithm
distributes the workload amongst the cluster of hosts. However, as the number of player in-
teractions increases the processing requirements increase faster than linearly [8, 109]; thus,
a large congregation of players can potentially overload the server. To prevent this from
occurring the game will often limit the maximum number of players in each region [109].

Load balancing across a cluster allows MMOG to support tens of thousands of players;
however, to support hundreds of thousands or millions of players requires sharding the
virtual world [109]. A shard is a complete and independent copy of the game world. By
provisioning shards at different locations the required bandwidth is distributed throughout
the network, reducing the bandwidth bottleneck and the client-to-server delay. To prevent
a processing bottleneck the maximum number of concurrent players per shard is bounded.
By adding more shards the developer can accommodate more players; however, as players
in different shards cannot interact this works against the concept of MMOG. Further, it is
frustrating and annoying for players when shards reach their limits as they must play on
different shards with different people, destroying the social aspect of MMOG.

A prominent example of a sharded MMOG is World of Warcraft (WoW), which is ar-
guably the most popular MMOG to date, with over 10 million players worldwide [110].
The WoW universe is sharded into many mutually exclusive shards, each limited to ap-
proximately 4000 concurrent players [110]. Despite the massive success of WoW and the
huge revenue it is generating, WoW has at times struggled with scalability issues [132].

2.1. Network Game Properties 11

Genre Game Delay threshold
First Person Shooter (FPS) Counter-Strike 150ms [48]
First Person Shooter (FPS) Unreal Tournament 2003 150ms [14]
First Person Shooter (FPS) Quake 3 180ms [10]

Sport Madden NFL Football 500ms [103]
Real Time Strategy (RTS) Age of Empires 500ms [16]
Real Time Strategy (RTS) Warcraft III 500ms [122]

Massively Multiplayer
Online Role Playing Game

(MMORPG)
Everquest 2 1000+ ms [61]

Table 2.1: Delay requirements for smooth play in various games.

Shards rapidly reached their player limits, resulting in long queues of players waiting to
join the shard. Several quests that result in a large number of players generating a large
number of events have been known to crash the server. Our three proposed architectures,
described in Chapters 3 to 5, each addresses the scalability of network games.

2.1.3 Responsiveness and Fairness

Delay in network games is measured as the Round Trip Time (RTT) from the client to the
server and back (gamers call this ping time). A high network delay significantly degrades
the player’s enjoyment as it reduces the smoothness and responsiveness of the game [14,
105]. This frustrates players and impacts their performance [10, 103, 113, 135]. Further,
beyond a genre specific threshold most games are unplayable. Table 2.1 lists the threshold
at which the RTT delay becomes noticeable for various games.

Even if a player’s delay is below the maximum threshold, if it is higher than his oppo-
nents’ delays he is disadvantaged as his reaction time to game events will be longer [10].
As many multiplayer games are competitive this can be extremely frustrating. Delay fair-
ness can be achieved by artificially inflating all players’ delays to that of the slowest player
[6, 59]. However, this solution is frustrating to the other players as the game’s smoothness
and responsiveness are reduced (consider the impact of a dial-up modem user connecting
to a game involving players using broadband connections). Instead, commercial games use
pipelining, interpolation, extrapolation, and event ordering algorithms to reduce the impact
of network delay [135], increasing both responsiveness and fairness. However, these tech-
niques cannot completely mitigate the disadvantage to a player of having higher delay than
his opponents.

Pipelining updates increases responsiveness by allowing multiple updates to be in-
transit simultaneously. For example, the Source Engine used in Half Life and Counter-

Strike sends 20 updates per second to each client [135] (50ms between updates). When a
client with 160ms delay receives update n, the server will already have transmitted updates
n+ 1, n+ 2 and n+ 3. Pipelining does not improve the timeliness of updates, but does

2.1. Network Game Properties 12

increase their frequency, improving responsiveness.
Avatar movement is typically smooth and continuous; however, in many games the

server only sends updates at fixed intervals [14, 49, 122, 135]. Thus, avatar movement
appears choppy and unrealistic. This problem is magnified when updates are late or lost.
Interpolation and/or extrapolation smooth avatar movements, at the cost of increasing delay
and state inconsistency respectively. Interpolation works by delaying the rendering of re-
ceived updates until future updates have arrived. As the avatars’ future positions are known,
their movement can be rendered smoothly between these points; however, this adds addi-
tional delay between the server’s and client’s game states [135]. Extrapolation, also known
as dead-reckoning, predicts an avatar’s future location based on their direction and velocity.
Avatars are rendered smoothly according to their predicted location until the next update
is received. If the predicted location was incorrect the error is gradually corrected to pro-
vide smooth avatar movement. Extrapolation is very effective when avatar’s movements
are predictable; however, sudden unpredictable changes in direction cause significant in-
consistency between the client’s and server’s game states [135].

If the RTT between a client and the server does not fluctuate wildly the server may
compensate for this delay with an event ordering algorithm such as TimeWarp [42]. Note
that the delay compensation technique used by the Source Engine [135] is a simplified
version of TimeWarp. When an update is received the server rolls back the game state
by half the RTT plus the interpolation delay, executes the update, and then re-executes
all subsequent updates up to the present. TimeWarp is a boon for clients with high delay;
however, as the server must store and re-execute previously received commands it increases
the server’s processing and memory requirements. Further, clients may perceive paradoxes,
such as being shot by an opponent when hidden (shooting around corners), due to the delay
in processing updates.

Our three proposed architectures, described in Chapters 3 to 5, each addresses respon-
siveness and fairness in network gaming. Note that for a game to be fair it must also address
cheating, as discussed in Section 2.2.

2.1.4 Consistency

As communication through the Internet is not instantaneous inconsistencies occur between
the game states of different hosts (clients, servers, and peers). Thus, each network game
architecture requires an appropriate synchronisation mechanism to either prevent or grace-
fully recover from inconsistencies. As the server in C/S is trusted to order all game events
and maintain the authoritative game state each client simply synchronises its state to that of
the server, achieving consistency. However, achieving consistency in P2P is more difficult
as there is no single clock for event ordering. While there are many possible solutions, two
simple solutions are: (i) time is divided into rounds and the game cannot progress until all
players have committed an update for that round [13], or (ii) a super-peer is elected that is

2.2. Game Cheating 13

responsible for ordering messages and storing the authoritative game state [62] (similar to
the server in C/S). Note that solution (i) requires a mechanism for ordering events within a
round (e.g., by ascending player ID). While the focus of this thesis does not include con-
sistency, our MRACS proposed in Chapter 4 addresses consistency between mirrors as it is
highly relevant. Interested readers may refer to references [16, 65, 135] for a discussion of
consistency issues and solutions.

2.1.5 Persistence and Reliability

MMOG are persistent online worlds, meaning the world continues to evolve when the
player is offline. Player actions have an on-going impact on the world state, potentially
impacting the game for months or years. Further, players expect the game to be reliable,
and may wish to connect in at any time of day or night. Frequent downtime or crashes are
frustrating for players, and may drive customers away [100]; therefore, running a reliable
service is critical for maintaining a game’s revenue stream.

Creating a persistent world with C/S is relatively simple as the server maintains the
game state and should always be online. Further, if the server is well provisioned with high
quality hardware, uninterruptible power supply, air conditioning, etc. it can achieve good
reliability. However, as the server is a single point of failure, when it does fail it will take
the entire system offline [36, 43, 52, 79]. As our proposed RACS architecture in Chapter
3 uses a single server, it also suffers from a single point of failure. However, by using
mirrored referees, our MRACS architecture in Chapter 4 overcomes this problem.

As the reliability of individual peers in a P2P architecture is low, it is difficult to achieve
persistence and reliability. However, if all peers are considered in aggregate the system may
be far more reliable than C/S [36]. This would require building redundancy into the archi-
tecture’s design such that the simultaneous failure of multiple peers would not disrupt the
system [36]. Our proposed DRACS architecture in Chapter 5 does not directly address re-
liability or persistency. However, as DRACS distributes the authoritative game state across
multiple referees we believe it can be extended to address these issues.

2.2 Game Cheating

2.2.1 Cheat Model

As opinions vary about what constitutes cheating in networked games there is no widely
excepted definition. In this thesis we define cheating as any user action that gives an

advantage over his/her opponents that is considered unfair by the game developer. We
consider a cheater who can eavesdrop, replay, modify, delay, insert, and destroy messages
sent and received by his host. He may also modify any program or software on his system
including the game application, system functions, device drivers etc. Further, we assume a

2.2. Game Cheating 14

cheater has complete access to any information stored by the game application, including
cryptographic keys and game state. We also assume groups of cheaters may collude to
disrupt the system. We exclude general security issues such as authentication, denial of
service, etc. as they are applicable to all Internet applications, and possible solutions are
already documented in the literature.

2.2.2 Cheating Techniques

This section describes all known theoretical and practical methods players use to cheat.
Where applicable, real-world examples are included.

Bugs: Bug cheats exploit design or implementation errors to gain an unfair advantage.
Bugs do not require an in-depth knowledge/understanding of how/why they work, and do
not require any additional programs or modifications to use. For example, the player rank-
ing system in Warcraft II contained a designed error that gave rise to the win trading cheat;
in which colluding players will repeatedly start matches against each other and then alter-
nately surrender to give each of them the opponent victory points; thus, cheaters can climb
to the top positions of the ranking ladder without playing any valid matches [150]. In War-
craft III win trading is prevented by randomising the participants when creating matches;
however, this only works if the pool of players is large. An alternative solution is to include
losses as well as victories when ranking players. An example of an implementation bug
occurred in Half-Life, where a specific combination of actions allowed cheaters to reload
weapons faster than honest players [111]; a significant advantage in FPS. This cheat was
fixed by a software patch from the developer. For MMOG a database rollback to an earlier
state may be required if the cheat seriously influenced the game world. Bugs are present
in both C/S and P2P architectures and neither is resistant to this form of cheating. The
accepted solution amongst the gaming industry and players for both C/S and P2P architec-
tures is to release game patches to prevent the cheat; however, Delap et al. [47] argue that
run-time verification may also be used to prevent bug cheats.

Real Money Transactions / Power Levelling: A Real Money Transaction (RMT) is
when a player purchases a game item or virtual currency using a real-world currency [87].
Many Asian MMOG use RMT as their revenue model (free to play, but it costs money to
purchase items); however, many western MMOG explicitly forbid RMT in their End User
License Agreement (EULA), and the practise is considered cheating. Gold farming is a
related phenomenon where low paid workers - usually in China - work full time playing
MMOG to earn valuable items which are sold to players [87]. RMT occurs outside of the
game, often on auction sites such as e-bay, or on dedicated message boards [131]. Most
MMOG suffer from RMT; however, WoW is one of the most highly targeted games by gold
farmers due to its massive player base. WoW’s publisher Blizzard regularly bans tens of
thousands of players for gold farming in WoW [26]. While the method used by Blizzard to
detect gold farmers is unknown, it is probable that they use statistical analysis of log files

2.2. Game Cheating 15

generated by the servers to detect RMT. As most P2P architectures distribute the game state
and logic to peers, retrieving the required information to perform statistical analysis is far
more difficult or impossible in P2P than in C/S.

A similar cheat is power levelling [87], where a cheater pays another person to play
his character for her. This cheat is common in MMORPG where the objective is to gain
experience and items. This form of cheating is an alternative business model for gold
farmers; who offer this as a service.

Information Exposure: Also called secret revealing, the information exposure cheat
results in the cheaters gaining access to information that they are not entitled to, such as
their opponent’s health, weapons, resources, troops, etc. [111]. This cheat is possible as
developers often incorrectly assume that the client software can be trusted not to reveal
secrets. Various methods used by cheaters to expose secret information include:

• Modifying the game client to directly expose secrets. For example, map hacks in
RTS games such as Warcraft III [18].

• Using an external program to read data from the game client’s memory. An example
of this attack against Age of Empires was discussed by Pritchard [111].

• Modifying display drivers to render the world differently. For example, the wall-hack

cheat in FPS games allows a cheater to see through walls by modifying the display
drivers [124, 152].

• Sniffing game traffic as it passes across the network. One example of this cheat is
ShowEQ [116], which captures Everquest traffic, interprets the packets, and displays
the results to the cheater.

The most effective solution to prevent this cheat in C/S architectures is using On Demand
Loading (ODL) [89]. Using this technique the server stores all secret information and only
transmits it to the client when they are entitled to it. Therefore, the client does not have any
secret information that may be exposed. P2P architectures can only use ODL if there is a
trusted third party to store secret information; e.g., trusted referees distributed to peers as
proposed in Chapter 5.

Cheat Detection Systems (CDS) such as PunkBuster (PB) [50], GameGuard [104],
HackShield [7], Valve Anti-Cheat [134], and Warden [46] are an alternative to ODL and
prevent the first three forms of attack. The CDS operates similar to Anti-Virus software,
scanning the player host’s memory searching for cheating applications. The CDS matches
check sums of running applications against a database of known cheats. However, as sniff-
ing network traffic is entirely passive and does not take place on the cheater’s computer it
is impossible to detect packet sniffing using CDS or any other approach.

Bots/Aim Proxies/Reflex Enhancers: These cheats use computer generated input to
control the player’s avatar. Depending on the game genre, these cheats have one of two
goals:

2.2. Game Cheating 16

1. Use complex AI to automate repetitive tasks. One example of this is WoW Glider

[95] .

2. Improve player’s aim or reflexes. For example, automatically aiming at an opponent
in an FPS [39].

This cheat is typically implemented by either:

• modifying the game client (e.g., using Ecstatic for Counter-Strike [57]),

• running an external program to generate user input (e.g., WoW Glider [95]), or

• routing player updates through a proxy server which modifies the player’s commands
(e.g., Quake aiming proxies [111]).

Both C/S and P2P architectures are vulnerable to this form of cheating. The first two
techniques can be detected using CDS; however, there is no complete solution to prevent
aim proxies. One possible solution to detect aim proxies is to use statistical analysis [153];
however, by introducing randomness into a bot’s aim a cheater may go undetected [111].

Invalid Commands: Usually implemented by modifying the game client or data files,
the invalid command cheat results in the cheater sending commands that are not possible
with an unmodified game client. Examples include giving the cheater’s avatar great strength
or speed. Many games suffer from this form of cheating, including console games such as
Gears of War [45]. The invalid command cheat is easy to prevent in C/S architectures as
the server simulates and validates all commands, and can be trusted to produce the correct
result. However, preventing invalid commands in pure P2P architectures is difficult as there
is no trusted entity to verify player commands.

Mönch et al. [98] propose using tamper resistant techniques to prevent modifications to
the game client; hence, preventing invalid commands. Their approach uses mobile guards;
small segments of code downloaded from the game server that validate the game client
using check sums and encrypting game data. Mobile guards are short lived; thus, there
is insufficient time for an attacker to reverse engineer a mobile guard before it is expired.
Although this does not prevent cheating, it can make it significantly more difficult. Fur-
thermore, if successful this approach prevents some forms of information exposure and
proxies/reflex enhancers. However, mobile guards require significant additional processing
on the clients, and developing tamper proof software is a non-trivial task for the developer.
We are not aware of any games using this technique; therefore, it is difficult to evaluate.

Suppressed Update: As the Internet is subject to packet loss most network games
use extrapolation (dead-reckoning) to smooth player movements [13]. In the event of a
lost/delayed update the server will extrapolate the player’s movement from their current
position, creating a smooth movement for all other players. Extrapolation usually allows
clients to drop up to n consecutive packets (which are extrapolated) before they are dis-
connected. In the suppressed update cheat, a cheater purposely does not send up to n− 1

2.2. Game Cheating 17

consecutive updates, while still accepting opponent updates. Before the nth update the
cheater calculates the optimal move using the updates from their opponents and transmits it
to the server. Thus, the cheater knows his opponent’s actions before committing to his own,
allowing him to choose the optimal action. Although we are not aware of any real world
occurrences of this cheat, it is potentially possible for most FPS, and any game - either C/S
or P2P - that uses extrapolation.

Architectures with a trusted entity, such as the server in C/S, prevent this cheat by
making the server’s extrapolated state authoritative. Players are forced to follow the ex-
trapolated path in the event of lost/delayed updates. This gives a smooth and cheat free
game for all other players; however, it will disadvantage players with slow or lossy Internet
connections. As a slow or lossy Internet connection is already a major disadvantage [40]
we believe this will not have a significant additional impact.

Cronin et al. [40] propose the Sliding Pipeline (SP) protocol to prevent this cheat in P2P
architectures. In SP players constantly monitor the delay to their opponents and compare it
with the timestamps of updates. Late updates indicate that a player is either suffering delay,
or is cheating. The authors claim that this protocol will detect all cheaters, but acknowledge
that players with poor connectivity may be falsely detected as cheaters (false positive).

Fixed Delay: This problem was discovered in Madden NFL Football by Nichols and
Claypool [103], and was proposed as a method of cheating by GauthierDickey et al. [63,
64]. Fixed delay cheating involves introducing a fixed amount of delay to all outgoing
packets. This results in the local player receiving updates quickly, while delaying informa-
tion to opponents. For fast paced games this additional delay can have a dramatic impact
on the outcome. This cheat is usually used in P2P games when one peer is elevated to act as
the server; thus, it can add delay to all other peers. To prevent this cheat P2P games should
use distributed event ordering and consistency protocols to avoid elevating one peer above
the rest (See Section 2.3.3.2). Note, the fixed delay cheat only delays updates, in contrast
to dropping them in the suppressed update cheat.

Inconsistency: Specific to P2P architectures, a cheater induces inconsistency between
players by sending different game updates to different opponents. An honest player at-
tacked by this cheat may have his game state corrupted, and hence be removed from the
game by a cheater sending a different update to him than was sent to all other players. This
cheat may also be used by a cheater or group of cheaters to gain an unfair advantage, and
later merged with the other player’s game state to make it undetectable [64].

To prevent this cheat updates sent between players must be verified by either a trusted
authority, or a group of peers. In P2P protocols without a trusted third party the group must
form a consensus about which updates are valid. The consensus is achieved by voting on
the hashes of updates of all players; however, group selection is critical as several colluding
cheaters could potentially bias the group vote [36].

Timestamp: This cheat is enabled as many games allow untrusted clients to timestamp
their updates for event ordering. This allows cheaters to timestamp their updates in the

2.2. Game Cheating 18

past, after receiving updates from their opponents; hence, they can perform actions with
additional information honest players do not have. C/S avoids this problem by using the
arrival order of updates to the server for timestamping [64, 134]. Alternatively the proposal
in [29] uses active RTT measurements between the server and peers to detect cheating in
C/S architectures. See Section 2.3.3.2 for known solutions in P2P protocols.

Collusion: Collusion involves two or more cheaters working together (rather than in
competition) to gain an unfair advantage. Colluding players often communicate via an
external channel - over the phone, instant messaging, VoIP, etc. Collusion is extremely
difficult or impossible to detect/prevent and has far reaching ramifications. There are many
examples of collusion in networked computer games; however, one common example is
of players participating in an all-against-all style match, where two cheaters will team up
(collude) against the other players. This occurs in both C/S and P2P architectures, and
is effectively undetectable. Yan [150] proposes several approaches to detect and prevent
collusion including: using a web-cam to monitor opponents, artificial intelligence (AI),
disabling chat features, rank tracking, log auditing, etc.; however, these methods are game
specific, and cannot prevent sufficiently motivated players from colluding.

Spoofing: Spoofing is a traditional network security threat where a cheater sends a
message masquerading as a different player [36]. For example, a cheater may send an
update causing an honest player to drop all of their items. One potential obstacle for the
cheater is to determine the victim’s IP address, which is typically hidden in C/S games (but
cannot be hidden in P2P games by definition). To prevent this cheat in both C/S and P2P,
updates should be either digitally signed or encrypted. With either technique the receiver
can validate the sender’s identity. We are not aware of any real-world games where this has
occurred.

Replay: If a cheater receives digitally signed/encrypted copies of an opponent’s updates
he may be able to disadvantage an opponent by resending them (replay) at a later time [36].
As the updates are correctly signed or encrypted they will be assumed valid by the receiver.
To prevent this in C/S and P2P, updates should include a nonce (unique number), such as
a round number or sequence number. When an update is received the receiver checks to
ensure the nonce is fresh (has not been used before). While many games are vulnerable to
replay attacks, we are not aware of any examples where this cheat has been used.

Blind Opponent: A cheater may purposely drop updates to opponents, blinding them
about the cheater’s actions, while still accepting updates from opponents [145]. This cheat
is only possible in some P2P protocols [108]. A tit-for-tat scheme where players stop
sending updates to cheaters - effectively blinding the cheater as well - is an insufficient
solution for this cheat as there are instances where dropping updates would still give the
cheater an advantage, such as if they need to make a retreat. We are not aware of any real
world instances where this cheat has been used. P2P solutions are discussed in Section
2.3.3.2.

Undo: Some P2P protocols [13, 36, 64] use a commit/reveal scheme to prevent the sup-

2.2. Game Cheating 19

pressed update, fixed delay, timestamp, and blind opponent cheats; however, if the reveal
step is not enforced (as in [36, 64]) it is possible for a cheater to reveal their opponent’s
move and assess it, before deciding if they will reveal their move. If a cheater does not
reveal his move he effectively undo the move. P2P protocols that require all updates to be
revealed (e.g., Lockstep and AS) or do not use the commit/reveal process are immune. This
cheat was first discussed in [145].

This thesis focuses on the information exposure, invalid command, suppressed update,
timestamp, fixed delay, inconsistency, spoofing, replay attack, undo, and blind opponent
cheats. Thus, our cheat prevention/detection is equal to that in C/S. Other cheats are treated
as in C/S, i.e., bug cheats are prevented by patches released by the developer, RMT and
power levelling are detected using statistical analysis of log files, bots/reflex enhancers are
detected using a CDS, and collusion and proxies/reflex enhancers cannot be detected or
prevented.

2.2.3 Cheat Classifications

The first published review of cheating and cheat detection/prevention was done by Matt
Pritchard [111], one of the developers of Age of Empires. It includes his experiences both as
a developer and player of computer games. This industry focused article discusses specific
real-world cheats, and covers practical methods to discourage them. Pritchard acknowl-
edges that many of the solutions presented do not prevent cheating, but make it far more
difficult for players to cheat. He argues that if the difficulty of cheating is greater than the
difficulty involved in playing the game players will not cheat.

Following this industry focused article, Yan [150] provides a theoretical review of
cheats, particularly focused on online Bridge. Of particular interest is his discussion of
preventing collusion between players. While there are several possible counter-measures,
for all practical purposes it is impossible to completely eradicate collusion in online games.

Kabus et al. [77] divide malicious players into cheaters and griefers. A cheater actively
attempts to break the game rules to gain an unfair advantage; whereas, a griefer attempts
to hurt other players’ game experience without gaining any advantage. Griefers can be
extremely difficult to combat as they are not motivated by self interest; for example, a
griefer may attempt to crash the server, even though this means they too will be unable to
play the game. To annoy other players griefers may break game rules (e.g., corrupting the
server’s authoritative game state), or simply abuse game features (e.g.,., using the in-game
chat features to verbally abuse other players). The main focus of this thesis is to detect /
prevent cheating. However, our solutions in Chapters 3 to 5 also prevent griefers damaging
the authoritative game state. As griefing using game features does not break any game rules
it is beyond the scope of this thesis.

Yan and Randell [151, 152] provide an extensive list of cheating techniques, and formed
a taxonomy with regard to the underlying vulnerability (what is exploited?), consequence

2.2. Game Cheating 20

(what type of failure can be achieved?) and the cheating principle (who is cheating?).
The authors find that traditional methods of security in software - confidentiality, integrity,
availability, and authenticity - are necessary but insufficient to defend against cheating. Al-
though large and detailed in its taxonomy, their characterisation of cheating lacks structure,
and it is argued that new forms of cheating cannot be easily integrated [101]. Note, we
do not include several categories of cheating proposed by Yan and Randell (i.e., cheat-
ing by denying service to peer players, cheating by compromising passwords, cheating by
exploiting lack of authentication, cheating by compromising the game server, cheating re-
lated to internal misuse, and cheating by social engineering) in our classification in Section
3.1, as they are relevant to all secure network applications and not directly related to game
mechanics; hence, we believe they are general security issues, not cheating issues.

Neumann et al. [101] distinguish three categories of cheating based on the threatened
game property: confidentiality, integrity, and availability. Confidentiality requires that a
cheater cannot access state information he is not entitled to (i.e., secret information), else
he will have an unfair advantage when selecting what actions to take. Integrity ensures that
a cheater cannot modify the game state unfairly; hence, the integrity of the game state is
maintained. Availability requires that the entire game is available to all players at all times,
and that cheaters cannot prevent the game from progressing fairly. Unfortunately, this paper
only provides a brief coverage of cheating; hence, the authors only briefly discuss possible
cheats and their methods of attack.

GauthierDickey et al. [63] proposed a cheat classification scheme comprising four lev-
els: game, application, protocol, and network. Game cheats do not require any external
programs or modification and occur entirely within the game; application cheats require
using or modifying applications; protocol cheats interfere with the game’s communica-
tion protocol; and network cheats involve network security issues. The authors consider
nine forms of cheating, i.e., denial of service in the network level; fixed delay, times-
tamp, suppressed update, inconsistency and collusion in the protocol level; secret revealing
(also called information exposure) and bots/reflex enhancers in the application level; and
breaking game rules (also called bugs) in game level. Corman et al. [36] extend this
classification with two additional protocol level cheats: spoofing and replay attacks. This
classification forms a strong foundation for organising cheats; however, it is slightly too
narrow to accommodate all forms of cheating. In particular, this classification can only
accommodate information exposure and proxies/reflex enhancers at the application level,
ignoring other attack vectors. Further, their classification does not include the RMT/power
levelling, invalid command, undo, and blind opponent cheats. In Section 3.1 we extend
their classification [64] to address these shortcomings.

2.3. Network Game Architectures 21

Figure 2.1: Client/Server architecture.

2.3 Network Game Architectures

2.3.1 Client/Server (C/S) Architecture

The C/S architecture shown in Figure 2.1 is comprised of many clients communicating
through a single server. The server is the game authority whose tasks include: (i) receiving
player updates, (ii) simulating game play, (iii) validating and resolving conflicts in the
simulation, (iv) disseminating updates to clients, and (v) storing the authoritative game
state. Additional tasks such as storing offline players’ avatar state, downloading joining
players’ avatar state, authenticating joining players, and billing, are typically handled by
auxiliary servers. As these tasks do not influence the game’s scalability, responsiveness,
fairness, etc., they are not addressed in this thesis.

By using a single trusted server addressing cheating, consistency, conflict resolution,
and persistency issues is simplified. The server is trusted to validate player actions, sim-
ulate game play fairly, and keep secret information confidential [70, 77]; thus, preventing
cheating. With one authoritative game state, clients need only synchronise with the server
to maintain consistency [135]. As the server is always online, C/S is inherently persistent
[70]. Finally, as the clients and server do not require complex synchronisation, validation,
and anti-cheat protocols, it is the easiest architecture to implement [70, 149].

However, with only one trusted server, C/S has poor scalability, responsiveness, delay
fairness, and reliability. As the server must receive all client updates, simulate all updates,
and transmit new game state to all clients in real time, it is a bandwidth and processing
bottleneck, limiting scalability [13, 43, 64, 67, 108]. For a C/S MMOG to support thou-
sands of clients the server must be comprised of a cluster of hosts acting as one logical unit.
As mentioned in Section 2.1.2, to support hundreds of thousands or millions of players re-
quires sharding the game’s universe into many independent virtual worlds. Each shard run
by a separate server comprised of many hosts. With the exception of EVE Online [24], all
commercial MMOG require sharding to support their player populations.

As all updates are routed through the server, delay is not optimal [64]; and if interacting
players have high client-to-server delay, but low delay between each other, responsiveness
is far from optimal. Further, players with low client-to-server delay have better responsive-
ness than those with high client-to-server delay [25]. This gives them an unfair advantage.

2.3. Network Game Architectures 22

Figure 2.2: Mirrored Server architecture.

Finally, while a well provisioned server has far better reliability than its clients, the server
is a single point of failure, potentially halting the entire game [43].

Despite its limitations C/S is the dominant network game architecture, and to the best of
our knowledge it is used by all commercial MMOG, including the genre dominating World

of Warcraft (WoW) [19].

2.3.2 Mirrored Server (MS) Architecture

2.3.2.1 Architecture

The MS architecture [41–43] shown in Figure 2.2 comprises multiple trusted servers (mir-
rors) deployed at geographically different locations connected via a private well-provisioned
(low delay, high bandwidth, multicast enabled, lossless) network. Each mirror has its own
Internet connection, and clients connect to their closest mirror. Each client sends every
update to its connected mirror (ingress mirror - I-mirror) which, in turn, broadcasts it to all
other mirrors (egress mirrors - E-mirrors). Then, all mirrors simulate the game world based
on all client updates and, therefore, are able to resolve state inconsistencies. Finally, every
mirror periodically sends updates to its clients.

Moving the server processing into the network - closer to the clients - reduces delay,
distributes the bandwidth cost throughout the network, and removes the single point of
failure. However, player updates in MS, like in C/S, are routed through mirrors; increasing
delay, reducing fairness, and consuming the mirrors’ bandwidth and processing power.
There are several proposals to improve MS [69, 106]; however, they focus on fair and
interactive event delivery.

The federated peer-to-peer architecture [118] is similar to MS as it uses multiple pub-
lisher provisioned hosts (called reflectors) to distribute updates among clients. Clients
connected to different reflectors communicate via messages forwarded between reflectors,

2.3. Network Game Architectures 23

similar to MS. To minimise the reflectors’ processing requirements they do not simulate
the virtual world, unlike the mirrors in MS. Without a trusted authority to validate player
updates, this architecture is vulnerable to cheating.

2.3.2.2 Synchronisation

Updates exchanged between mirrors may be received at different times due to the transmis-
sion delay in the private network, resulting in inconsistencies among mirrors. One solution
is Bucket Synchronisation (BS), in which time is divided into buckets, and all updates in
each bucket occur simultaneously. The execution time for each bucket is delayed by ∆ so
that all updates for each bucket are received, synchronising all mirrors. If a late update
arrives after its bucket has been executed, the update is added to the next bucket. How-
ever, if a bucket contains multiple updates from a player, due to a delayed update from an
earlier bucket, only the newest update is executed. If a bucket does not contain an update
for a player, the player’s state is extrapolated. The advantages of BS are: (i) it is simple
to implement, (ii) it has low memory overhead, and (iii) it has low processing overhead as
each update is only executed once by each mirror. However, as MS requires all updates to
be sent via the mirrors the additional ∆ delay reduces responsiveness, making MS with BS
mirror synchronisation unsuitable for fast paced games

To support fast paced games Cronin et al. [43] proposed Trailing State Synchronisation
(TSS). Each mirror maintains l states of the game world: S0, S1, S2, S3, . . ., Sl−1, where
S0 is the leading state and is immediately sent to the players for fast responsiveness, while
the l− 1 trailing states are used to resolve inconsistencies. Each TSS state has increasing
delay behind the wall clock time. When an E-mirror receives an update from another
mirror the update is simulated in all states newer than the update time. If the simulation
results in two inconsistent states, then a rollback occurs, else the simulation is allowed to
continue. To rollback, the trailing state is copied to the leading state, dynamic memory
structures are repaired, and all elapsed updates are re-executed. TSS is only effective when
simulating updates is inexpensive as each update is executed at least l times by each mirror
for TSS with l states, and more when rollbacks occur. Furthermore, performing a rollback
is expensive, due to memory management costs and the need to re-execute many updates.
Thus, the processing bottleneck in MS is worse than that in C/S. In addition to the extra
processing overhead, TSS requires l times the memory of BS to store each copy of the
game world, and players may perceive strange temporal anomalies when rollbacks occur.
Note that TSS with a delay ∆ in the leading state and no trailing states is in essence BS.

2.3.2.3 Security

As MS utilises trusted mirrors, it is possible to achieve the same level of security as in C/S;
however, the protocol in Cronin et al. [43] is vulnerable to time-stamp cheating because
updates are time-stamped (for event ordering) by the untrusted clients. Consider a mirror

2.3. Network Game Architectures 24

Player PH

t

1000

UH

UC S0'

S0 S0'

1025 1050 1075 1100 1125
Mirror MX

Cheater PC

S0

Figure 2.3: Timestamp cheating in the MS architecture.

MX with two connected players PH and PC (a cheater) with 25ms delay, and two states S0

= 0ms and S1 = 100ms. As shown in Figure 2.3, PH sends a shoot update UH at t = 1000ms

to MX. At t = 1025ms MX receives and simulates UH in S0, calculates a hit against PC,
and sends the new state S0 to PH and PC. Player PC finds he has been shot and cheats by
sending a dodge update UC, with a false timestamp of 975ms at t = 1050ms. Receiving
UC, MX executes it in S0 and S1 at t = 1075ms. At t = 1100ms, MX executes UH in S1 and
detects an inconsistency with S0 (miss vs. hit). Thus, MX performs a rollback and notifies
PH and PC of the result S0’ (a miss). Note, this cheat is prevented in MRACS by requiring
each I-mirror to timestamp updates (Discussed in Section 4.1.4).

2.3.2.4 Client-to-Mirror Assignment (CMA)

In MS [41–43] each joining client is assigned to its closest mirror to minimise game delay.
This greedy approach is possible if each mirror has sufficient capacity for all connecting
clients. However, in reality, mirrors have finite resources that support only a limited number
of players. As players are not uniformly distributed, some mirrors may be overloaded;
thus, for a mirrored system with fixed resources (e.g., MS), a Client-to-Mirror Assignment
(CMA) algorithm is needed to maximise game responsiveness. We formally define our
CMA problem in Section 4.2.

For C/S games, server selection is performed by the client software, which probes a list
of servers and ranks them according to delay and configuration [11, 12] (e.g., number of
players, map, special rules, etc.). The player then selects a favourable server from this list.
This approach is insufficient for CMA as it does not allow reassigning clients due to the
mirrors’ workload changes. Claypool [34] investigated group server selection, in which a
group of players select a server such that the client-to-server delay for all players is below
a threshold. It is obvious that as the number of players increases, the number of potential
servers decreases. The results [34] showed that for FPS it is difficult or impossible to select
a server that will satisfy a group of seven or more players. Using mirrored servers is a
possible solution as each player need only connect to his closest mirror.

The Clients-to-Servers Assignment (CSA) problem for web servers and DNS systems
[53] is similar to CMA. However, CSA does not consider reassigning clients when server
workload changes as it assumes short-lived sessions. Further, solutions using round robin
DNS [53] cannot reassign clients as IP addresses are cached. In contrast, a network game

2.3. Network Game Architectures 25

session may last for several hours; thus, CSA solutions are not applicable for CMA.
Lee et al. [88] and Ta et al. [128] proposed two optimisation problems involving

assigning clients to mirrors/servers, similar to our CMA. Lee et al. [88] assume a large
number of servers, each simulating only a portion of the virtual world. Further, the virtual
world is divided into many zones, and each zone’s current state is mirrored across one or
more servers. Their goal is to maximise the number of clients connected within a delay
bound and to minimise mirror processing by reducing the number of mirrors simulating
each zone. The authors [88] showed that this problem is NP-hard, and proposed a heuristic
greedy algorithm to produce near optimal results.

Ta et al. [128] divided the virtual world into zones containing interacting clients and
considered a set of geographically distributed and well-connected servers. A target server
is assigned to each zone for simulating all events in the zone; i.e., each zone is simulated
by only one server and is not mirrored. Each server may simulate multiple zones but has
limited CPU capacity. The contact server for a client is the server to which it is connected.
If a client’s contact and target servers are different, the contact server is responsible for
forwarding updates between the client and the target server. Their goal was to maximise
the number of clients with client-to-server delay below a threshold subject to CPU capacity
constraints.

The problems addressed by Lee et al. [88] and Ta et al. [128] are related but funda-
mentally different to our CMA problem in Section 4.2 as the goals and assumptions are
different. Further, their solutions do not consider, in real time, new client joins, existing
client leaves, and clients moving between zones. Thus, the average delay of the remaining
players may increase when some players leave. Note that for optimal results the mirror
placement problem must also be addressed [117]. However, as mirror placement is heavily
influenced by business considerations, this problem is beyond the scope of this thesis [100].

Our CMA solution in Section 4.2 is a modification of the Terminal Assignment (TA)
problem in teleprocessing network optimisation, which is equivalent to the transportation

problem in operations research [22, 129]. The following description is a modification of
that in Kershenbaum [81]. The TA problem is modelled as a bipartite graph matching
problem between a set of terminals, T , and concentrators, C. The cost of connecting a
terminal Ti ∈ T to a concentrator C j ∈C is ci j. Each concentrator C j has capacity Wj, and
each terminal Ti requires wi units of capacity at a concentrator. The objective is to minimise
the cost, min z, of connecting all terminals to concentrators, subject to the concentrator’s
capacity constraints. Formally:

minz = ∑
Ti∈T,C j∈C

ci jxi j (2.1)

subject to:

∑
C j∈C

xi j = 1 ∀Ti ∈ T (2.2)

2.3. Network Game Architectures 26

∑
Ti∈T

wixi j ≤Wj ∀C j ∈C (2.3)

xi j ∈ {0,1} (2.4)

where xi j is 1 if Ti is assigned to C j (denoted as Ti→C j). Equation (2.2) guarantees that all
terminals are assigned to a concentrator, and Equation (2.3) ensures that no concentrator
is overloaded. Note, there are several variations of the TA problem such as allowing one
terminal’s resource requirements to be shared by multiple concentrators, or requiring each
terminal to be connected to multiple concentrators for redundancy. The problem as defined
above is NP-complete [81, 82]; however, the special case where all terminals have equal
requirements (w1 = w2 = ...= wn) is solvable in polynomial time using the Sequential As-
signment (SA) [129] or Alternating Chain [81] algorithms. We describe the SA algorithm
as it is used in Chapter 4.

The SA algorithm iteratively assigns one terminal to a concentrator. Thus, at the start
of iteration k, terminals T1, T2, ..., Tk−1 have been optimally assigned. Note, SA requires
that at each iteration the assignment is optimal; else, it may loop infinitely. There are two
possible cases when assigning Tk:

(i) the concentrator closest to Tk, concentrator Cl (ck,l ≤ ck, j, ∀C j ∈C), has spare capac-
ity; or

(ii) concentrator Cl does not have spare capacity.

For case (i), Tk is assigned to Cl as this is the optimal assignment, and SA continues to the
next iteration. For case (ii), a sequence of terminal reassignments (called a chain) may be
required to optimally assign Tk, or Tk may be assigned to a concentrator with spare capacity.
For each concentrator C f at full capacity, the SA algorithm calculates the lowest cost chain
of assigning Tk to C f using the labelling procedure below, and selects the lowest cost chain.
If there exists a concentrator C j with spare capacity and ci j equal to the lowest cost chain,
Tk is assigned to C j; else, the lowest cost chain of reassignments is performed.

Before initiating the labelling procedure the transfer distance, d jl , between all pairs of
concentrators C j and Cl (j 6= l) must be calculated:

d jl =

∞ j is empty

min(cil− ci j), ∀Ti→C j otherwise.

Note that d jl can be negative. The labelling procedure works as follows. The label for
each concentrator C j is comprised of two parts: L j(cost), the cost of the chain at C j; and
L j(next), the next concentrator in the chain. Initially L j(cost) = ∞ and L j(next) =’-’ if
C j is full; else, L j(cost) = 0 and L j(next) =’-’. For every full concentrator C f , if there
exists a lower cost chain L j(cost)+ d f j, update the label to be L f (cost) = L j(cost)+ d f j

and L f (next) =C j. This is repeated until no labels are changed. All chains are completed
by adding the cost of assigning Ti (i.e., ∀C j ∈C, L j(cost) = L j(cost)+ ci j).

2.3. Network Game Architectures 27

2.3.3 Peer-to-Peer (P2P) Architectures

In P2P applications all hosts make requests of each other, and provide services to each
other; thus, all hosts are considered equal (i.e., peers). P2P systems are extremely scalable
as there is no central bottleneck, and the system is resource growing; i.e., as peers join and
make requests the number of peers able to service requests increases. Further, peers can re-
quest services of those with low peer-to-peer delay, maximising responsiveness. However,
as peers have a high probability of failure (compared to the server in C/S), join and leave
without warning, and may act maliciously, ensuring the correct data is received requires
protocols far more complex than those in C/S. The most common use of P2P is in file shar-
ing applications, of which BitTorrent is the most common [35, 112]. BitTorrent works by
dividing large files into small pieces which peers exchange between each other. Peers both
request pieces from other peers, and service requests made by other peers.

The IP protocol used in the Internet provides only the most basic routing and reliability
services for network applications. To simplify the development of complex P2P applica-
tions such as games, network overlays involve peers connecting in either a structured or
unstructured manner to provide high level services for applications such as searching/data
location, multicasting, reliable data storage, trust/authentication, etc. [90].

Distributed Hash Tables (DHT) are network overlays that provide {key, value} lookups
within a bounded number of hops (often O(log(n)), where n is the number of peers in the
DHT). Many DHT also provide auxiliary functionality such as reliability guarantees and
application layer multicasting. The services are provided using a single pre-defined key
space. Each peer selects or is assigned an ID (NodeID) from within the key space which
determines its location in the DHT, and its neighbouring peers (peers it connects with to
maintain the DHT). The values (the data to be stored) are deterministically assigned a key

from within the key space. The value is stored by the peer whose ID is closest to the key.
Each DHT provides a routing mechanism such that the key can be used to locate the storing
peer and the value retrieved. Many different DHT have been proposed such as Chord [125],
Pastry [119], Can [115], Tapestry [156], etc. See reference [90] for a review of P2P network
overlays.

In addition to the high level features offered by network overlays, delay sensitive P2P
applications require the ability to locate peers with low delay in a timely manner. As
P2P systems often include millions of peers (e.g., [51, 126]) it is infeasible in terms of
time, bandwidth, and storage to measure the n2 delays between all pairs of peers. Delay
estimation schemes such as IDMaps [60], GNP [102], and Vivaldi [44] have been proposed
to estimate the n2 delays using only O(n) measurements and storage. While these schemes
are not as accurate as direct measurement, they do allow peers with low delay to be located
efficiently.

2.3. Network Game Architectures 28

(a) Each peer in VON generates a Voronoi
diagram and connects to all of its enclos-
ing neighbours (solid black circles) [71].

(b) Each peer in Solipsis must
maintain connectivity with sev-
eral neighbours such that the an-
gle θ between all pairs of adja-
cent avatars is below π radians
[80].

Figure 2.4: Maintaining global connectivity using avatar location.

2.3.3.1 Architectures Without Cheat Detection/Prevention

There have been a great number of proposals for P2P network game architectures using a
wide range of techniques. Unfortunately, the vast majority do not directly address cheating,
tacking on anti-cheat measures or ignoring cheating entirely. As cheat prevention is critical
for MMOG, these proposals are not suitable for real-world deployments.

Knutsson et al. [84] proposed SimMud, a P2P network game architecture for MMOG.
The virtual world is divided into zones, and the state of each zone is controlled by a coor-
dinator peer. The coordinator resolves inconsistencies among players, and acts as the root
of the multicast tree to disseminate game state. SimMud makes heavy use of the Pastry

DHT to provide coordinator look-up and application layer multicasting. The use of a DHT
greatly simplifies SimMud’s design and implementation; however, it also adds significant
delay, making SimMud inappropriate for many genres of games. Zoned Federation [74],
MOPAR [154], and Colysius [120] use a DHT for global connectivity similar to SimMud;
however, the DHT is only used to locate peers. All other communication is unicast between
nodes, significantly reducing delay. Note that these schemes [74, 84, 120, 154] do not ad-
dress cheating, and the use of a DHT to provide global connectivity provides a new attack
vector for malicious users.

An alternative approach to maintain global connectivity is to establish P2P connections
corresponding to the location of players’ avatars in the virtual world. The VON [71] ar-
chitecture uses Voronoi diagrams generated from avatar locations, and requires every peer
to connect to its enclosing neighbours as shown in Figure 2.4a. Solipsis uses a similar ap-
proach, but requires the angle θ between avatars to be below π radians, as shown in Figure
2.4b. In both VON and Solipsis neighbour discovery is achieved by communication with
connected peers.

2.3. Network Game Architectures 29

For a peer with low bandwidth, such as a player using a dial-up modem, it may be
unable to communicate its updates to other peers in a timely manner. This is especially
true if the peer is acting as a region controller, and must forward updates from all peers.
A proposed solution is to use End-System-Multicast (ESM) to overcome this problem,
by having high-bandwidth peers forward updates for low-bandwidth peers. The DHT in
SimMud provides ESM capability, but is not optimised to minimise delay; therefore, it
is not suitable for games with tight delay bounds. Further, as SimMud does not restrict
the task of multicasting updates to high bandwidth peers, a low-bandwidth peer may be
overburdened. The ESM scheme proposed in Donnybrook addresses these issues, as only
peers with good connectivity (high bandwidth, low delay) may act as multicasters [17].
Further, the multicast tree is restricted to a height of 2 to reduce the delay introduced and
minimise the cost of tree maintenance.

The N-tree protocol [62] provides reliable event ordering while using ESM. The virtual
world is divided into regions, and each region is a node in the multicast tree. Each region
may be further subdivided into a sub-tree, with the existing node acting as the parent. The
root of the tree encompasses the entire virtual world. Peers subscribe to leaf nodes accord-
ing to their AoI. Within each leaf node peers use a total event ordering protocol requiring
Ω(m2) messages, where m is the number of players in the leaf, to maintain consistency.
When an event occurs within a leaf that exceeds the leaf’s region, the event is propagated
to the node’s parent recursively, until a node which entirely encompasses the event is found.
The encompassing node uses the event’s timestamp to maintain event ordering, and uses the
tree to multicast the event to all descendants. The N-tree protocol is successful in correctly
ordering events and minimising the number of superfluous messages that are exchanged.
However, the additional delay introduced by the protocol may make it unsuitable for many
genres of games.

The Peer-to-Peer with Central Arbitrator (PP-CA) architecture is a hybrid between C/S
and P2P. Peers exchange updates directly to minimise delay and reduce the server’s band-
width (the central arbitrator). Peers send a copy of each update to the server; which is used
to maintain the authoritative game state. Inconsistencies between peers are resolved using
the authoritative state. While PP-CA does increase game responsiveness and reduce the
server’s bandwidth, allowing peers to exchange updates enables the inconsistency, fixed
delay, and blind opponent cheats, which are not addressed by the proposal. As discussed in
Section 3.4.1, our RACS protocol prevents or detects these cheats.

2.3.3.2 Architectures With Cheat Detection/Prevention

There have been many proposals to address cheating in P2P architectures; however, most
address only a subset of cheats, making them inadequate for real-world use. In particular,
many proposals do not address the information exposure or invalid command cheats, which
are regularly used in the real world.

2.3. Network Game Architectures 30

Kabus et al. [77] discuss three different techniques that may be used in P2P archi-
tectures to prevent/detect cheating: mutual checking, log auditing, and trusted computing.
The principle of mutual checking is that “you may not trust a single client, but you trust

the consensus of multiple unaffiliated clients”; therefore, multiple randomly selected clients
can be trusted to validate player actions before the game state is modified, preventing cheat-
ing. The second approach, log auditing, does not prevent cheating, but allows the game to
detect cheating when it has occurred - albeit much later in some games. When cheating
is detected the game performs a rollback to undo the effects of the cheat. Log auditing is
not appropriate for all forms of games, particularly MMOG that do not have an end state
(game completion). The final solution, trusted computing, involves using special hardware
that prevents cheaters from modifying the game or running cheating programs. This solu-
tion is currently inappropriate for PC users; however, it is being actively used in console
games. Unfortunately, several trusted computing solutions have been shown to contain
weaknesses allowing players to run untrusted programs, enabling cheating [77].

The Lockstep protocol prevents the fixed delay and timestamp cheats [13]. Game time
is divided into rounds, and each round consists of a commit phase and a reveal phase. In
the commit phase every player calculates their update and sends a cryptographically secure
one-way hash of the update to all other players. Once all players have exchanged hashes
the commit phase ends and the reveal phase begins. Each player transmits his updates to all
other players, and every received update is validated against the corresponding hash. If the
hash does not match, the update is discarded. As players do not receive updates from their
opponents until after they have committed to their update (sending the hash) the fixed delay
and timestamp cheats are prevented. However, assuming d is the delay between the two
slowest players, the minimum round length is 3d as each player must: (i) commit his hash
to all peers; (ii) wait for acknowledgement from all peers; and (iii) receive all peer updates.
Therefore, Lockstep has poor responsiveness, making it inappropriate for fast paced games.

Asynchronous Synchronisation (AS) was proposed by Baughman et al. [13] to increase
the responsiveness of Lockstep. In AS players progress rounds at their own rate, and only
enter Lockstep communication with players they are interacting with (players with over-
lapping AoI). Therefore, the game progresses as fast as the slowest player among a group
of interacting players. Further, the round length is bounded, and any opponent that cannot
send messages within the round is removed from the game. While AS is considerably faster
than Lockstep, it is still too slow for many genres of games as the minimum round length
is still 3d.

The New Event Ordering (NEO) protocol [64] is an evolution of AS, designed to in-
crease responsiveness and prevent cheating. Similar to Lockstep, NEO divides time into
rounds of length d. Each player sends an encrypted update to all other players in each round
(players commit to an update), and sends the decryption key in the following round. Thus,
the playout latency of NEO is 2d. An update in NEO is only considered valid if the ma-
jority of peers receive the update on time (within the same round). When peers reveal their

2.3. Network Game Architectures 31

r = 1

d

p
ip

e
lin

e
 d

e
p
th

d

r = 2

r = 3

r = 4

r = 5

Figure 2.5: Rounds pipelined in NEO.

encryption keys in the following round they also exchange votes to establish which updates
should be considered valid. Updates that are not received on-time by the majority of peers
are discarded. Using a majority vote rather than a consensus allows the game to continue in
the event of packet loss, unlike Lockstep and AS. However, if a player cannot communicate
with the majority of his peers within d, he is removed from the game. As NEO is tolerant
of packet loss it uses unreliable communication; this increases responsiveness as the de-
cryption keys are transmitted without waiting for the corresponding committed updates to
be acknowledged.

To increase responsiveness the players in NEO vote to increase/decrease d. The maxi-
mum value for d is specified by the developer, and is the maximum round length such that
the game remains playable. Periodically players vote to either increase, stay the same, or
decrease the round length. If the majority vote is to increase, d is doubled (up to the maxi-
mum value); if the majority vote is to decrease, d is reduced by 20ms. This Multiplicative

Increase/Additive Decrease (MIAD) scheme is similar to that used in TCP/IP congestion
avoidance. The advantage of this scheme is that it is fully distributed; however, it requires
more bandwidth, is slower, and less accurate than our centralised approach discussed in
Section 3.3. Without a trusted authority to tally the votes, all votes must be sent to all other
players requiring O(n2) messages, where n is the number of players in the group. Further,
as it requires several rounds of adjustment before the round length converges, this approach
is slow. Finally, as the round length adjustment is very coarse (either double or reduce by
20ms), the result will only approximate the optimal value.

To further improve the responsiveness, NEO allows rounds to be pipelined as shown in
Figure 2.5. Note, message EKr(U

r
i) is the update U r

i by player Pi for round r, encrypted
using key Kr. As in the basic NEO protocol, the key for a message is only sent after the
round is complete, preventing cheating. Pipelining simply allows the process to occur in
parallel.

The authors argue that NEO is secure against the fixed delay, timestamp, suppressed up-
date, and inconsistency cheats; however, Corman et al. [36] showed that the cryptographic
techniques were used incorrectly, allowing three different cheats:

(i) An attacker can replay updates for another player,

2.3. Network Game Architectures 32

(ii) An attacker can construct messages with any previously seen votes attached. Since
the votes are signed the messages will appear to come from another player,

(iii) An attacker can send different updates to different opponents.

The authors propose the Secure Event Agreement (SEA) protocol [36] to address these
problems. This protocol is identical to NEO, but applies cryptographic techniques differ-
ently to prevent cheating. The techniques also provide security against replay and spoofing
attacks, and have lower processing overhead than those used in NEO.

As previously mentioned, the sender of each message includes votes for the updates
it received in the previous round. To prevent the inconsistency cheat the vote is the hash
of the received update. The majority of peers must have the same hash for an update to
be accepted as valid. By including the hashes of all received updates each message grows
in size by O(n), and must be sent to all n− 1 peers. Thus, NEO and SEA require O(n2)

bandwidth per player, severely limiting the maximum size of n, and NEO/SEA’s bandwidth
scalability.

To reduce the required bandwidth peers are divided into groups of interacting players,
and use NEO/SEA independently for each group. However, as the majority vote determines
the validity of updates, the majority of players in a group must be honest; else, a group of
colluding players could cheat [36, 37, 64].

To prevent collusion a secure verification group can be elected to control the game state
for each group of interacting players [37]. Players send their updates to all members of
the verification group, which use SEA to vote on the valid game state. The Secure Group
Agreement (SGA) protocol [37] is a distributed approach to securely select the verification
group. From the set of players in a game, SGA randomly selects the verification group,
such that the probability of the majority of peers colluding is below a predefined limit.
Combining SGA with SEA prevents collusion; however, as SGA ignores the network lo-
cation of peers the verification group will be distributed randomly throughout the Internet,
removing the delay benefit of P2P over C/S. From the paper [37] it is unclear whether play-
ers will receive the game state from the verification group, or if peers will also exchange
updates.

Kabus and Buchmann [76] propose a scheme similar to using a verification group, but
its design minimises delay at the expense of bandwidth. We refer to this scheme as P2P-RC.
The virtual world is divided into zones and player actions are confined to one zone. Each
zone has several Region Controllers (RC), which act as the verification group. Each update
generated by a peer is sent to all RC, which simulate the update and return the resulting
game state (a vote). The peer tallies the votes and the majority dictates the current game
state. This solution minimises delay at the cost of extra bandwidth for both peers and RC.
This system also prevents a single RC from attacking peers by sending incorrect results,
as they will be discarded in favour of the majority. As with SEA, the RC must be selected
securely to prevent collusion. SGA is a possible candidate; however, as with SEA it will

2.4. Summary 33

add significant delay, undermining the delay benefits of P2P architectures.

2.4 Summary

This chapter covered related work for this thesis. Section 2.1 covered network game prop-
erties, including descriptions of four common game genres (FPS, RTS, RPG, and MMOG).
Section 2.2 described our cheat model, described all known theoretical and practical cheats,
and reviewed previous cheat classifications. Finally, Section 2.3 describes the C/S, MS, and
multiple P2P network game architectures; with reference to the properties in Section 2.1. In
the following three chapters we propose three different network game architectures using
referees to increase their scalability, responsiveness, and fairness.

Chapter 3

The Referee Anti-Cheat Scheme (RACS)

In this chapter we investigate using a referee to increase the scalability, responsiveness,
and fairness of the C/S architecture, without increasing the possibilities for cheating. We
name the resulting architecture the Referee Anti-Cheat Scheme (RACS). When designing
RACS we observed that in traditional sporting events the referee must continuously observe
the game, but is only required to intervene when the rules are broken. To mimic this in
a network game architecture requires allowing peers to exchange updates directly (P2P),
while sending a copy to the referee for validation. Thus, RACS is a hybrid C/S and P2P
architecture combining their strengths and overcoming their weaknesses. RACS has the
following benefits:

(i) It minimises delay as updates are sent directly between peers.

(ii) It increases fairness, as the peer-to-referee delay is less critical than the client-to-
server delay in C/S.

(iii) It provides cheat detection / prevention equal to that in C/S, while reducing delay and
the server / referee’s outgoing bandwidth and processing requirements.

(iv) It is more effective and efficient than existing P2P cheat solutions [13, 36, 40, 64],
as it is also secure against the invalid command, information exposure, and blind
opponent cheats with lower cost.

(v) It allows peers with poor connections to continue playing - albeit with higher delay -
unlike the protocols in [36, 64].

(vi) Its centralised algorithms calculate the round length more accurately, faster, and with
lower bandwidth than the distributed algorithm in [64].

Note that for optimal delay and fairness in both C/S and RACS, the server placement prob-
lem must be addressed. However, as this problem is heavily influenced by business consid-
erations [100] it is beyond the scope of this thesis.

34

3.1. Cheat Classification 35

This chapter also presents an extended cheat classification that includes all known
cheats. Further, it defines the round length adjustment problem, and proposes two solu-
tions. Finally, this chapter describes the method used to construct the realistic simulation
inputs used throughout this thesis.

The layout of this chapter is as follows. Section 3.1 presents our cheat classification.
Section 3.2 discusses the RACS concept and protocol, including message formats, commu-
nication modes, and the message validation procedure. Section 3.3 proposes two possible
algorithms for adjusting the round length in RACS. Section 3.4 describes RACS’s cheat de-
tection / prevention; presents an analytical analysis of RACS’s bandwidth scalability; and
uses simulation to evaluate RACS’s bandwidth scalability, responsiveness, and the round
length adjustment algorithms. Finally, Section 3.5 summarises this chapter. An early ver-
sion of our cheat classification was published in [139], and revised in [141]. Our original
RACS proposal was published in [145], with the round length adjustment published in
[140].

3.1 Cheat Classification

We propose classifying cheats into four levels: game, application, protocol, and infrastruc-
ture. Game level cheats occur completely within the game program, without any modifi-
cation or external influence. Application level cheats require either modifying the game
executable or data files, or running programs that read from / write to the game’s memory
while it is running. Developing application level cheats requires knowledge about reverse
engineering software; however, using them is trivial. Feng et al. [57] provide a detailed
list of the techniques used to create application level cheats. Protocol level cheats involve
interfering with packets sent and received by the game. Packets may be inserted, destroyed,
duplicated, or modified by an attacker. Many of these cheats are dependent on the architec-
ture used by the game (C/S or P2P). Note that the definition of these three levels of cheats
are identical to those in [63]. We have renamed network level cheats in reference [63] to
infrastructure level cheats, which require modifying or interfering with the software (e.g.,
display drivers) or hardware (e.g., the network infrastructure) that the game is using. Note
that our infrastructure level classification is a super-set of the network level cheats in ref-
erence [63] to accommodate recently known cheats (i.e.., infrastructure level Information
Exposure and Proxies / Reflex Enhancers).

Table 3.1 classifies all known cheats, described in Section 2.2.2, into our four levels.
We have added the RMT / Power Levelling, Invalid Command, Undo, and Blind Opponent
cheats in the table, and included the Information Exposure and Proxies / Reflex Enhancer
cheats in the infrastructure level. Note that the Information Exposure and Proxies/Reflex
Enhancers cheats are included in both the Game and Infrastructure levels, depending on
how the cheat is accomplished. As shown in Table 3.1, AS [13] and NEO/SEA [36, 64]

3.2. Referee Anti-Cheat Scheme 36

Cheat C
/S

C
D

S

A
S

N
E

O
/S

E
A

P2
P-

R
C

R
A

C
S

Game Level
Bugs X 7 X X X X

RMT / Power Levelling X 7 7 7 X X
Application Level
Information Exposure,

Invalid Command X 7 7 7 X X

Bots / Reflex
Enhancers 7 X 7 7 7 7

Protocol Level
Suppressed Update,

Timestamp, Fixed
Delay, Inconsistency

X 7 X X X X

Collusion 4 4 4 4 4 4
Spoofing, Replay X 7 7 X X X

Undo – 7 X 7 – –
Blind Opponent – 7 – 7 – X

Infrastructure Level
Information Exposure X X 7 7 X X

Proxies / Reflex
Enhancers 4 4 4 4 4 4

X solvable 7 not yet solved 4 not solvable – not applicable

Table 3.1: Game cheats and their possible solutions.

have lower cheat detection / prevention than C/S. Note, CDS are combined with a network
game architecture (e.g., C/S or RACS) to detect / prevent cheating. As described in Section
3.4.1, RACS has cheat detection / prevention equal to that in C/S.

3.2 Referee Anti-Cheat Scheme

3.2.1 RACS Concept and Protocol

As shown in Figure 3.1, RACS comprises three entities: an authentication server (SA), a set
of n players P = {Pi | Pi is a player with unique ID i}, and a trusted referee R. A joining
player Pi first contacts SA, which validates Pi (e.g., identity, subscription, banning, etc.),
and downloads his avatar state to both his host and R. The SA is also used to store offline
players’ avatar state, and assigns the unique ID to each player. For these joining steps, we
assume the use of existing player-authentication and start-up protocols [4]. A leaving Pi

notifies R to upload its avatar state to SA, which in turn, sends an acknowledgement (ACK)
to both Pi and R. Receiving the ACK, Pi disconnects from R.

3.2. Referee Anti-Cheat Scheme 37

Figure 3.1: RACS architecture.

The referee, R, is a process running on a trusted host, e.g., the server, that has authority
over the game state. The referee stores the authoritative game state and simulates / validates
player updates to maintain consistency and prevent cheating. For these tasks, it must receive
and simulate all player updates. The referee sends updates to peers only if they are unable
to communicate directly (in the event of message loss or cheating).

The referee divides game time into rounds of length τ ≤ τmax; the developer sets τmax

such that the game is playable. Section 3.3 describes how the referee can reduce τ to
increase responsiveness (provided players have good connectivity) or increase τ if players
have poor connectivity.

For each round r, every Pi generates a pair Ui = (r, I), to be included in his messages
transmitted to R and other peers. Here, I is the information containing Pi’s actions (e.g.,
move, attack, etc.) and information about connections with his peers (e.g., informing R

about disconnecting from an opponent). The referee initialises the round number r = 1.
Each copy of r (kept in R and each Pi) is independently incremented for every elapsed time
τ . One can use NTP [97] for synchronising rounds between hosts.

As shown in Figure 3.2, RACS considers three different message formats:

(i) peer to peer message - MPPi(Ui), signed by the sender Pi;

(ii) peer to referee message - MPRi(Ui, Si,Vi, Hi, Ti), signed by the sender Pi;

(iii) referee to peer message - MRPR(i,U ′i ,Ci), signed by the sender R;

where Si is secret information (e.g., health and items); Vi is a bit vector of the MPPj updates
Pi received on-time in the previous round; Hi is the hash H(U j) for each on-time MPPj that
Pi received in the previous round, combined using exclusive or (XOR); for each late MPPj

received in the previous round, Ti = {(j, r j, H(U j))}; U ′i = (r′, I), where r′ is the round
number of the referee when Ui was received; and Ci is player Pi’s digital certificate. As Si is
only included in MPR messages, and not MPP, Si is only transmitted to the referee, which is
conceptually equivalent to On-Demand Loading [89]. Message components Vi, Hi, and Ti

are used to detect the inconsistency cheat (See Section 3.4.1). Player Pi’s digital certificate,
Ci, is optional and instructs the receiver to begin peer-to-peer communication, discussed in

3.2. Referee Anti-Cheat Scheme 38

(a) PRP Mode. (b) PP Mode.

Figure 3.2: RACS communication modes.

Section 3.2.2, with Pi. We assume the referee’s digital certificate, CR, is distributed to all
players with the client software. Note that Vi and Hi were added to our earlier description
of RACS [145] to reduce the size of Ti.

3.2.2 RACS Communication Modes

As shown in Figure 3.2, the communication between any Pi and Pj that are mutually
aware - within each others’ Area of Interest (AoI) - can be through the referee R (Peer-
Referee-Peer: PRP mode), or direct (Peer-Peer: PP mode). In PRP mode each player sends
MPR and receives MRP messages to / from R. This mode provides security equal to that in
C/S. In contrast, peers in PP mode exchange MPP messages directly, which reduces delay
and R’s outgoing bandwidth, while maintaining security. Thus, PP is the preferable mode.
Note, in PP mode R sends an MRP (dashed lines in Figure 3.2(b)) only in the event of state
inconsistencies due to network delay or cheating.

The referee converts mutually aware PRP peers (e.g., Pi and Pj) into PP mode by send-
ing MRP to Pi and Pj including C j and Ci respectively. Figure 3.3 shows four interacting
peers using a combination of PP and PRP modes. Peer Pi is in PP mode with Pj and Pk,
and PRP mode with Pl; Pj is in PP mode with Pi, and PRP mode with Pk and Pl; etc. Note
that Pi experiences better responsiveness than Pl , with an average delays of 11

3 and 2 hops
respectively. The lower delay is the incentive to peers to use PP mode, despite the increase
in bandwidth.

A peer Pi will revert to PRP mode with another peer Pj if:

(i) Pi’s avatar is no longer in Pj’s AoI, or vice-versa,

(ii) Pi receives less than p percent of Pj’s last s≥ 1 messages, or

(iii) Pi does not receive Pj’s update for more than w≥ 0 consecutive rounds.

Reversion requirement (i) provides AoI filtering to reduce bandwidth; only players that
include Pi in their AoI will be updated. Requirement (ii) prevents a cheater repeatedly

3.2. Referee Anti-Cheat Scheme 39

Figure 3.3: Example of mixed PP and PRP communication.

sending one message and then dropping w consecutive messages, while requirement (iii)
ensures that losses are not clustered, which would have a large impact on Pi’s game-play
experience. For either case, Pi sends an MPP to Pj and an MPR to R, that includes I notify-
ing them of the reversion. Then, R only forwards Pi’s moves to Pj if Pi is within Pj’s AoI,
and vice-versa. Requirements (ii) and (iii) form the QoS requirements for PP communica-
tion. Honest players with long delays that are unable to meet the PP QoS requirements will
be forced to revert to PRP mode. This will disadvantage these players; however, RACS
is more tolerant than NEO/SEA which completely remove players unable to communicate
within the round. Note that RACS is cheat-proof when w = 0 or p = 100%. The optimal
values for w, p, and s should minimise PP to PRP reversions, and minimise the number of
messages that may be dropped.

In PP mode a player Pi sends his MPP to all PP peers and MPR to R for each elapsed
round length τ . Thus, for every round each peer expects a message from all PP peers, and R

expects a message from every player. However, due to communication failures or cheating,
a message may not arrive. Assume Pj and R are expecting a message from Pi. We consider
three cases for lost messages:

(i) Neither receives.

(ii) Only R receives.

(iii) Only Pj receives a message.

In RACS, Pj and R extrapolate (dead-reckon) the avatar of each Pi whose message is not
received. The referee’s state is authoritative, and it notifies affected players about state
inconsistencies caused by extrapolation. In case (i), only Pi may be disadvantaged, as Pj

and R have matching state. However, in case (ii), Pj might be slightly disadvantaged if
his game state is incorrect. Finally, case (iii) disadvantages both Pi and Pj since R’s dead-
reckoning may make their states incorrect. Note that for cases (i) and (ii), if the missing
message violates reversion requirements (ii) or (iii), Pj will revert to PRP.

In PRP mode Pi sends MPRi to R for each elapsed τ . In the following round, the
referee sends MRPR including Ci to all Pj that should enter PP communication with Pi, and

3.3. Round Length Adjustment 40

MRPR including the corresponding C j’s to Pi. As in PP mode, the referee and each peer
extrapolate Pi’s avatar for each missing MPR and MRP, respectively; any inconsistency is
resolved using R’s authoritative state.

Algorithm 3.1 and Algorithm 3.2 summarise the sequences of steps described in this
section for every player and the referee in each round respectively.

Algorithm 3.1: RACS_player_game_loop()
/* The game loop run by each player, Pi, in every round. */;

1 begin
2 Read the player input
3 Construct MPRi and send it to the referee.
4 Construct MPPi and send it to all PP peers.
5 for every MPPj received within the round do
6 Use C j to validate MPPj’s digital signature.
7 Discard MPPj if validation fails.
8 Use the r in MPPj to ensure it is newer than all previously received updates.

Discard all MPPj except for the most recent.
end

9 for every MRPR received within the round do
10 Use CR to validate MRPR’s digital signature.
11 Use the r in MRPR to ensure it is newer than all previously received updates.

Discard all MRPR except for the most recent.
end

12 Simulate all U j in MRP and MPP messages.
13 Use interpolation/extrapolation for missing updates.
14 Display the results to the player.

end

3.3 Round Length Adjustment

MMOG typically divide the virtual world into discrete regions called zones, and players
in different zones cannot interact. Thus, each zone is independent and has its own round
length τ. For simplicity, in this section we consider a world consisting of a single zone;
however, our results are easily extensible to games comprised of multiple zones.

As each player generates one update per round, reducing τ increases responsiveness.
However, reducing τ increases the likelihood of peers failing the QoS requirements and
reverting to PRP mode, increasing delay and the referee’s bandwidth. The optimal value
for τ must balance these constraints.

Figure 3.4 shows two example topologies and their corresponding delay matrices. Topol-
ogy 1 assumes a tight cluster of players with high peer-to-referee delays, such as a group
of friends located in one city playing on a server located in a different country. Topol-
ogy 2 is comprised of several players with low peer-to-peer and peer-to-referee delays, and

3.3. Round Length Adjustment 41

Algorithm 3.2: RACS_referee_game_loop()
/* The game loop run by the referee, R, in every round. */;

1 begin
2 for every player Pi do
3 if Pi attempted an invalid action (due to inconsistent state) then
4 Send an MRPR to Pi with the current game state.

end
5 for every Pj in PRP communication with Pi do
6 if Pi and Pj should enter PP mode. then
7 Send MRPR(j,U ′j,C j) to Pi.

else
8 Send MRPR(j,U ′j) to Pi.

end
end

end
9 for every MPRi received within the round do

10 Use Ci to validate MPRi’s digital signature.
11 Discard MPRi if validation fails.
12 Compute H ′i by XORing all H(U j) for every MPPj Pi received on-time in the

previous round (indicated by Vi).
13 Compute H(U j)

′ for every MPPj received late in the previous round
(indicated by Ti).

14 if H ′i 6= Hi then
15 Request Pi to forward all MPPj messages used to calculate Hi

end
16 for every H(U j)

′ 6= H(U j) do
17 Request Pi to forward MPPj

end
18 for every MPPj forwarded by Pi do
19 Use C j to validate MPPj’s digital signature.
20 if MPPj’s signature is invalid then
21 Pi is attempting to frame Pj.
22 else if MPPj’s U j does not match that in MPR j then
23 Pj is attempting the inconsistency cheat.

end
end

24 Use the r in MPRi to discard old updates from each player.
end

25 Simulate all MPRi.
26 Use interpolation/extrapolation for missing updates.

end

3.3. Round Length Adjustment 42

P4

P3

P1

P2

165

136

197

17655

64

34
60

53

31

R

(a) Topology 1.

P4

P3

P1 P2
151

157

101

130

30 75
68

60
34

55

R

(b) Topology 2.

P1 P2 P3 P4 R
P1 0 34 60 53 165
P2 34 0 55 64 136
P3 60 55 0 31 176
P4 53 64 31 0 197

(c) Topology 1 delay matrix.

P1 P2 P3 P4 R
P1 0 151 75 30 68
P2 151 0 130 157 101
P3 75 130 0 55 34
P4 30 157 55 0 60

(d) Topology 2 delay matrix.

Figure 3.4: Example topologies.

a single player (i.e., P2) with high delays. This scenario occurs, for example, when the
majority of players have DSL/Cable Internet access, but one player is connecting using a
dial-up modem. For Topology 1 we believe τ = 64ms will be optimal, as it will maximise
responsiveness for PP updates. Due to the high peer-to-referee delay inconsistencies may
occur; however, we believe the increased responsiveness will maximise player enjoyment.
For Topology 2, setting τ = 157ms would frustrate players P1, P3, and P4; instead, setting
τ = 75ms would maximise responsiveness for the majority of players. Player P2 can still
participate, but only in PRP mode. If P2 wishes to use PP mode he must purchase faster
Internet access.

Note, as each game has different delay requirements, the best algorithm for adjusting τ

is game specific. In this section we investigate two possible techniques: a brute force ap-
proach that minimises the total system delay, and a voting approach with lower processing
overhead.

3.3.1 Delay Model and Problem Statement

Let d be a 2-dimensional delay matrix of size |P| × |P|+ 1, where di,R denotes the delay
between a player Pi and the referee R, and di, j denotes the delay between two players Pi

and Pj. Note, in this thesis we assume delays are synchronous (i.e., di, j = d j,i) as they are
measured using ICMP echo messages (pings), which cannot detect asynchronous delays.
Further, let di, j = ∞ if the delay has not been measured between peers Pi and Pj, which may
occur if they have not interacted, or are unable to exchange MPP messages.

Since updates are processed at the end of each round, and assuming rounds are pipelined
and begin every f ms, the Peer-to-Referee Delay for a player Pi, denoted PRD(i, τ, f), is τ

if di,R ≤ τ , or di,R plus the time until the next round ends. Formally:

3.3. Round Length Adjustment 43

PRD(i, τ, f) =

τ di,R ≤ τ

f ×
⌈

di,R−τ

f

⌉
+ τ di,R > τ

(3.1)

At any point in time each Pi is interacting with a subset of P, denoted PI(i) ⊆ P. This
subset is further divided into PP peers (PP(i) ⊆ PI(i)) and PRP peers (PRP(i) ⊆ PI(i)).
Note that PP(i)∪PRP(i) = PI(i), and that PI(i) is typically much smaller than P due to
AoI filtering. The Total-Player-Delay for Pi, T PD(i, τ, f), is the sum of the time taken for
an update generated by Pi to reach all Pj, where Pj ∈ PI(i). Formally:

T PD(i, τ, f) = τ×|PP(i)|+ ∑
j∈PRP(i)

[PRD(i, τ, f)+PRD(j, τ, f)] (3.2)

The Total-System-Delay T SD(τ, f), is the sum of all total-player-delays and player-
referee-delays. Formally:

T SD(τ, f) = ∑
Pi∈P

[T PD(i, τ, f)+PRD(i, τ, f)] (3.3)

The round length adjustment problem is to select τ such that Equation (3.3) is min-
imised. Note that f is typically set by the developer [135].

3.3.2 Round Length Adjustment Algorithms

Unlike NEO [64], which requires a fully distributed round length adjustment algorithm, the
referee in RACS is trusted to adjust τ . Using a centralised approach is simpler, faster, and
uses less bandwidth, but requires a trusted third party.

3.3.2.1 Brute Force

A simple brute force approach to calculate the optimal τ is to compute T SD(τ, f) (Equa-
tion (3.3)) for τ = [1, τmax] and select the minimum. The referee’s run-time complexity
for the worst case of the brute force approach is O(τmax|P|2); therefore, this approach is
infeasible if the round length is adjusted frequently and P grows large. The T SD(τ, f) for
τ = [0, 200] on Topology 2 is shown in Figure 3.5. Note that due to the presence of many
local minimums, optimisation techniques such as gradient descent cannot be used.

3.3.2.2 Voting

The brute-force algorithm calculates the minimum total-system-delay; however, it has very
high processing overhead and fails to maximise the benefits of the distributed nature of
RACS. To reduce the processing requirements we propose a voting approach where each
player Pi votes for the τi that minimises T PD(i, τi, f) (Equation (3.2)). The referee tallies
the votes to construct a Cumulative Density Function (CDF), and selects the minimum τ

3.4. RACS Evaluation 44

1800

2000

2200

2400

2600

2800

3000

3200

0 50 100 150 200

T
SD

(m
s)

τ (ms)

Figure 3.5: TSD for Topology 2.

such that 50% of votes are less than or equal to τ . The peer vote() algorithm is shown in
Algorithm 3.3, and the referee tally() algorithm is shown in Algorithm 3.4. As the referee
must tally all |P| votes, the worst-case complexity for tally() is O(|P|), far lower than that
of the brute force approach. The worst case complexity of vote() is O(a), assuming each
player has at most a avatars within his AoI.

Algorithm 3.3: vote(di, f)
/* di - a 1D array of delays between a peer Pi and all Pj ∈ PI(i) peers and R */
/* f - Round frequency. */
/* Export τi - Pi’s vote. */
begin

min← ∞

τi← 0
for j = 1 to |di| do

if T PD(di, di, j, f)< min then
min← T PD(di, di, j, f)
τi← di, j

end
end

end

3.4 RACS Evaluation

Our evaluation of RACS is divided into four parts: a discussion of how RACS provides
cheat prevention equal to that in C/S (Section 3.4.1); an analytical evaluation of the band-

3.4. RACS Evaluation 45

Algorithm 3.4: tally()
begin

Instruct all peers to vote
Receive τi from all peers
Construct CDF
Select the minimum τ such that 50% of τi ≤ τ

Notify all peers of τ

end

Cheats Prevented RACS Strategy
Information Exposure On-demand Loading

Invalid Command Referee simulation and validation
Suppressed Update Referee authoritative state

Replay Round number r
Spoofing Signed messages

Undo No commit / reveal steps
Timestamp Timestamps not used for event ordering

Cheats Detected RACS Strategy
Bugs Software patches

RMT / Power Levelling Statistical analysis of log files
Bots / Reflex Enhancers Combine RACS with a CDS

Fixed Delay QoS requirements and reversion to PRP
Inconsistency Signed messages and comparing hashes

Blind Opponent Reversion to PRP mode
Undetectable Cheats RACS Strategy

Collusion None
Proxies / Reflex Enhancers None

Table 3.2: Summary of RACS cheat detection / prevention strategies.

width requirements of RACS (Section 3.4.2); three simulations evaluating the delay and
bandwidth of RACS (Section 3.4.3); and one simulation evaluating the round length ad-
justment algorithms (Section 3.4.4).

3.4.1 Cheat Prevention

RACS in PRP mode provides security equivalent to that in C/S as it uses a trusted entity
to simulate the game and forward updates. Obviously cheat solutions in PRP are similar to
those in C/S and, thus, are not discussed. In the following, we explain how RACS in PP
mode addresses various cheats. Table 3.2 summarises the methods used by RACS to detect
and prevent cheating. Throughout this discussion, we assume a referee R, a cheating PC,
and PC’s opponent PH.

Bugs: RACS assumes that bugs will be fixed by software patches (released by the pub-
lisher), as does C/S.

3.4. RACS Evaluation 46

RMT / Power Levelling: As the referee receives a copy of all updates it can perform
statistical analysis of its log files to detect RMT / Power Levelling, identical to C/S.

Information Exposure: As PC does not receive PH’s secret information (SH), informa-
tion exposure is impossible. SH is sent only in MPR; see Section 3.2.1. This is equivalent
to On-Demand Loading [89].

Invalid Command: The referee simulates / validates all player updates to prevent invalid
commands. Further, the authentication server (SA) stores all offline players’ avatar state to
prevent tampering.

Bots / Reflex Enhancers: As in C/S [47], one may combine RACS with a Cheat Detec-
tion Scheme (CDS) such as PunkBuster or VAC to detect bots / reflex enhancers.

Suppressed Update: In RACS a cheater PC may suppress updates to the referee and/or
peers. As the referee’s state is authoritative, and as it extrapolates avatar movement when
updates do not arrive, suppressing updates to the referee will only disadvantage the cheater.
The QoS requirements between peers for PP communication, discussed in Section 4.1.2,
ensure that a cheater cannot suppress a significant number of updates; else, the victim will
revert to PRP communication, preventing this cheat. See Section 4.1.2 for more details.

Timestamp: The round numbers in MPR / MPP messages are not used for event ordering.
Only round numbers in MRP messages are used for event ordering. Hence, this cheat is
prevented.

Fixed Delay: Applying fixed delay may make PC violate reversion requirements (ii) or
(iii) (see Section 3.2.2) causing PH to revert to PRP mode with PC. This will punish PC

because his delay (with respect to PH) will be two hops, while that of PH (with respect to the
other PP peers) will be one hop (See Figure 3.3). If PC’s message arrives within the round
(not late), RACS does not consider it cheating. Since late updates are indistinguishable
from cheating, this solution may penalise honest but slow players; nevertheless, it is better
than [36, 64] which prohibit slow peers from playing.

If the total delay from PH to PC and PC to R is below τ it is possible for PC to delay send-
ing his MPR until after he has received PH’s MPP. However, as PC’s update must be received
within the same round to gain an advantage, and assuming SA adjusts τ corresponding to
the player delays, this is unlikely to occur and would provide almost no advantage.

Inconsistency: The Vi, Hi, and Ti, components of MPR messages are used to detect the in-
consistency cheat following Algorithms 3.1 and 3.2. When an inconsistent hash is detected
the referee must determine if it is the inconsistency cheat, or if a cheater is attempting

3.4. RACS Evaluation 47

to frame another peer. The following two cases describe the sequence of steps for either
eventuality; see Section 3.2.1 for the message formats.

Case 1: PC sends a different UC to PH and R (inconsistency cheat):

1. When PH receives MPPC it validates the digital signature against CC to ensure the
message is not spoofed or corrupt (Algorithm 3.1 lines 6 and 7).

2. Assuming MPPC arrived on-time the hash H(UC) is XOR’ed into HH and sent to R

in the following round (Algorithm 3.1 line 3).

3. Referee R validates the digital signature of MPRH to ensure it is not spoofed or
corrupt (Algorithm 3.2 lines 10 and 11).

4. The referee calculates H ′H from the Ui in each MPRi in VH , including the conflicting
UC (Algorithm 3.2 line 12).

5. As HH 6= H ′H the referee requests PH to forward all MPPi used to construct HH (Al-
gorithm 3.2 lines 14 and 15).

6. After receiving the reply from PH and validating its digital signature, the referee
calculates H(Ui) for each received MPPi to determine that MPPC is the conflicting
update.

7. The referee validates the digital signature of MPPC against CC to verify the cheat.

If MPPC arrives late in Step 2, H(UC) is included in TH rather than HH . Further, steps 4-6
are simplified as the referee validates each hash individually; thus, it will request PH to
forward MPPC only.

Case 2: PC attempts to frame PH:

1. PC constructs MPRC with an invalid HC and sends it to R (Algorithm 3.1 line 3).

2. Referee R validates the digital signature of MPRC to ensure it is not spoofed or cor-
rupt (Algorithm 3.2 lines 10 and 11).

3. The referee calculates H ′C from the Ui in each MPRi in VC (Algorithm 3.2 line 12).

4. As HC 6= H ′C the referee requests PC to forward all MPPi messages used to create HC

(Algorithm 3.2 lines 14 and 15).

5. Cheater PC sends the required MPPi messages to R, including an invalid MPPH .

6. After receiving the reply from PC and validating its digital signature, the referee cal-
culates H(Ui) for each received MPPi to determine that MPP′H is the conflicting
update.

3.4. RACS Evaluation 48

7. The referee attempts to validate the digital signature of MPPH, but determines that it
is invalid. As PC would not accept an MPP with an invalid digital signature, and as
all messages from PC to R were digitally signed to prevent spoofing and corruption,
PC must be attempting to frame PH .

In Step 1, if PC attempts to frame PH with an invalid hash in TC, steps 3, 4, and 6 are
simplified as the referee validates each hash individually; thus, it will request PC to forward
MPPH only.

Note that each peer must store received MPP messages so that they can be forwarded
to R in the event of an inconsistency. The messages are retained for a publisher defined
number of rounds before being discarded. The retention length must be long enough for
the referee to detect and request inconsistent messages; however, increasing the retention
length increases the memory required by peers to store received MPP messages.

Collusion: RACS does not address the collusion cheat, nor do existing P2P and C/S
solutions [150].

Spoofing: RACS prevents spoofing by authenticating the signature of every message re-
ceived. As digital signatures cannot be forged it is impossible for a player to send an update
masquerading as another player.

Replay: A message is invalid and is discarded if another message with equal or greater
round r has been received (see Section 4.1.2); hence, r is a nonce to detect the replay of old
messages.

Undo: RACS does not use the commit / reveal steps as in [36, 64], and thus the undo
cheat is impossible.

Blind Opponent: As dropping updates causes PC to violate the QoS requirements, PH

and PC will revert to PRP communication, preventing this cheat.

Proxies / Reflex Enhancers: As with existing P2P and C/S solutions [111], RACS cannot
prevent proxies / reflex enhancers.

3.4.2 Bandwidth Analytical Analysis

To analyse the bandwidth requirements of RACS requires knowing the sizes of MPP, MRP,
and MPR messages. Let |x| denote the size of a message/component x, and let o be the
overhead for each message (digital signature, packet header, etc.) Note, that |o| is equal
for all message types. Several studies [31, 55, 83, 127] have shown the mean and standard
deviation of |Ui| is small; thus, overhead o will account for a significant portion of the MPP

3.4. RACS Evaluation 49

C/S & RACS RACS (PP Mode)(PRP Mode)

Client/Peer In o+a×|MRP| a× (o+ |MPP|)
Out o+ |MPR| o+ |MPR|+a× (o+ |MPP|)

Server/Referee In n× (o+ |MPR|) n× (o+ |MPR|)
Out n× (o+a×|MRP|) negligible

Table 3.3: Bandwidth comparison of C/S and RACS.

message size, |MPP|. For each round player Pi requires U j about each avatar within his AoI.
To reduce the bandwidth consumed by message overheads, we assume each MRP sent to
peer Pi aggregates all relevant U j. Thus, the MRP message size, |MRP|, grows linearly
with the number of PRP peers. However, MRP does not increase in size if peers use PP
communication as U j is exchanged using MPP messages. Unlike |MRP|, the size of MPR
messages, |MPR|, increases in PP mode. When all peers use PRP mode - equivalent to
C/S - |MPR| has low mean and standard deviation [31, 55, 83, 127]. As more peers use
PP mode Vi and Ti expand, increasing |MPR|. However, provided the majority of updates
arrive on-time, Ti remains small and each additional PP peer requires only 1 bit in Vi. As the
PP mode QoS requirements prevent many late updates, Ti does not significantly increase
|MPR|. Note, the size of Hi is fixed regardless of the number of PP peers. Combining
all components, while |MPR| for peers using PP mode will be larger than client-to-server
messages in C/S, we anticipate their sizes will be similar.

Table 3.3 shows the bandwidth requirements for C/S and RACS assuming there are a

avatars within each player’s AoI. Note that RACS with all peers using PRP mode (worst
case) is equal to C/S. It is obvious that the peers’ incoming and outgoing bandwidth in-
crease in PP mode (best case), as they assume responsibility for broadcasting their state
updates to other players. Likewise, when all peers use PP mode the referee’s outgoing
bandwidth is negligible. Further, as peer updates are not aggregated into one message,
message overheads consume additional peer bandwidth. Despite the increase in bandwidth
PP mode has lower game delay, which is important for network games (see Section 2.1.3),
providing incentive for peers to use PP mode. While the server’s outgoing bandwidth in
PP mode is negligible, it must still receive all MPR messages. As |MPR| grows accord-
ing to the number of PP peers (albeit very slowly) the referee’s incoming bandwidth will
increase slightly faster than linearly, possibly causing a bottleneck. Using multiple refer-
ees (Chapters 4 and 5) is one possible solution for this problem. Note that the referee’s
outgoing bandwidth in Table 3.3 does not include the cost for initiating PP communica-
tion (two MRP messages). As network games generate hundreds of updates per minute
[31, 55, 83, 127], and as commercial MMOG require players to undertake long quests to-
gether (minimising PRP/PP transitions), this will not significantly increase the referee’s
bandwidth requirements.

Note, NEO/SEA [36, 64], an example of anti-cheat P2P game architecture, requires

3.4. RACS Evaluation 50

more bandwidth than RACS. Without a trusted third party to compare hashes, messages
sent between peers in NEO/SEA must include the hash of all received updates. Thus,
peers’ incoming and outgoing bandwidth are O(a2); much larger than the |MPP| in RACS,
significantly limiting the maximum group size.

3.4.3 RACS Bandwidth and Delay Simulations

To evaluate RACS we developed the Network Game Simulator (NGS) [138], and used it
to run three simulations evaluating the different aspects of RACS. Simulation 3.1 evaluates
the bandwidth scalability and responsiveness of RACS against C/S in a cheat-free environ-
ment. Simulation 3.2 measures the impact of cheating on responsiveness and the referee’s
bandwidth. Finally, Simulation 3.3 demonstrates the effect of selecting w, s, and p values
with packet loss and cheating.

To generate meaningful simulation results requires using appropriate inputs, e.g., the
network topology, player distributions, player session lengths, etc. To achieve this we con-
structed two classes of simulation inputs, artificial and realistic, for the three simulations.
The artificial inputs are basic models designed to produce simple results that are easy to un-
derstand and clearly demonstrate system behaviour. The artificial topologies often, but not
always, demonstrate the best case scenario, and avoid the server placement problem which
is not addressed in this thesis (See the introduction to Chapter 3). Note, the artificial inputs
are specific for each simulation, and are described in each corresponding section. To gener-
ate realistic simulation results requires realistic inputs. Unfortunately, there are currently no
publicly available traces of MMOG, and very little publicly available information. Further,
to model a P2P or hybrid architecture requires knowing the peer-to-peer delays, which are
not measured by C/S games, increasing the difficulty of generating a realistic topology. To
solve this problem we combined real-world data sets from a popular Counter-Strike server
[55] (mshmro.com), the hostip.info service [68], the Dimes project [121], and the PingER

Project [93] to generate realistic inputs. The following section describes how we generated
the realistic inputs. We have used these inputs for our simulations in this chapter and also
in chapters 4, and 5.

3.4.3.1 Generating Realistic Inputs

Mshmro.com runs a Counter-Strike server located in Beaverton, Oregon, allowing up to 22
players to participate simultaneously in this popular FPS [56]. We used the March 2007
server log file which includes the IP addresses of all 11525 players. Using the hostip.info

service [68] we successfully resolved the cities of 7217 out of 11525 players (the 4308
unresolved addresses were discarded).

As the delay between hosts is not measured by Counter-Strike, we utilised the March
2007 CityEdges Internet trace to calculate the player to player delays; Shavitt and Shir
[121] described how the trace was generated. The CityEdges file contains the longitude

3.4. RACS Evaluation 51

and latitude of 17294 cities (including the 7217 player’s cities) and the links between them.
We calculated the delay of each link by estimating its length (in km) using the Haversine
formulae and dividing it by the speed of light in optic fibre. Note that 55 of the 17294 cities
were unreachable and were removed. Dijkstra’s single source shortest path algorithm was
used to construct a city delay matrix, in which each matrix element stores the delay between
two cities. To construct our realistic topology the mshmro.com players were combined with
the city delay matrix and given a 20ms last hop delay, corresponding to the delay suffered
by broadband hosts [86]. By using Dijkstra’s algorithm, the resulting matrix does not model
the routing policies used; hence, there are no Triangle Inequality Violations (TIV) which
are present and persistent in the Internet [157], and delays are synchronous. To simulate
non-optimal routing policies we randomly selected 2.0× 106 matrix elements and tripled
their delay to introduce 1.07× 106 TIV (17.12%), which is comparable to measurements
made of the Internet [157]. Further, our model assumes the delay between two hosts is the
maximum in either direction.

In addition to the artificial and realistic topology, it is useful to model groups of inter-
acting players. In particular, previous studies have shown that:

• Interacting players are often located in the same area of the network [33].

• Player sessions are diurnal [10, 55, 110].

• Players prefer servers with low delay [10, 55].

We address these behaviours in our simulation inputs as follows. As the maximum capacity
of the mshmro.com server is 22 players; and, as the virtual world in Counter-Strike is small
compared to MMOG, we assumed all participating players are interacting. We generated
100 sets of interacting players from the mshmro.com server log by extracting the IP address
of players that kill an opponent or are killed in a random 10 minute interval.

3.4.3.2 Simulation 3.1: RACS vs C/S in a Cheat-Free Environment

To increase scalability most MMOG divide the virtual world into regions, each with a
fixed maximum capacity. Players cannot enter a region at full capacity, and players in
different regions cannot interact. Therefore, the bandwidth and processing requirements
grow linearly with the number of regions. We simulate a world comprising a single region
with size 1000× 1000 units. All players were honest, and we varied the population from
100 to 500 concurrent players, each generating 20 updates per second (a new update every
50ms). Note that WoW regions support up to 300 players [110]. As the world size is fixed
the number of player interactions increases faster than linearly relative to the population
size. Each avatar has an AoI radius of 100 units, and its movement is controlled using the
Random-Way-Point (RWP) mobility model [75], with a velocity of two units/s and a wait
time of zero.

3.4. RACS Evaluation 52

For an even comparison of RACS and C/S bandwidth requirements, the C/S architec-
ture used the MPR and MRP message formats, and the server and referee both aggregate
updates. For RACS, τ = 150ms and w = 0 (thus, p and s were irrelevant). Note that RWP is
the worst-case scenario for RACS as players frequently moved in-and-out of PP communi-
cation, requiring the referee to send updates. In practise the referee’s outgoing bandwidth
will be lower as commercial MMOG require groups of players to undertake long quests
together, minimising the PRP/PP transitions.

We ran the simulation using an artificial topology and the realistic topology. For the ar-
tificial topology we measure all communications in hops; thus, the server/referee is placed
optimally (i.e., 1 hop from all players). Note that non-optimal placement would signifi-
cantly impact C/S as all updates must be routed through the distant server, dramatically
increasing delay. The impact would be lower on RACS peers using PP mode; however,
a low peer-to-referee delay is still desirable as the referee’s state is authoritative. For the
realistic topology we selected a host in Beaverton, Oregon - the Counter-Strike server’s
location [56] - to act as the server/referee, and the players were randomly selected from
the remaining hosts. We removed the 20ms last hop delay from the server/referee as we
assume it is well provisioned with a low-latency link.

The incoming and outgoing bandwidth for C/S and RACS using the realistic topol-
ogy are shown in Figure 3.6. The artificial topology results are comparable. As shown in
Figure 3.6(a), the server’s outgoing bandwidth in C/S increases faster than linearly, creat-
ing a bottleneck. Figure 3.6(b) shows the referee’s outgoing bandwidth growing slightly
faster than linearly; however, even with 500 players it is only marginally greater than the
incoming bandwidth. The faster than linear increase is due to the large number of PRP to
PP transitions caused by the mobility model. In practise we expect the referee’s outgoing
bandwidth to be lower than its incoming. It is obvious from the figures that RACS uses far
less bandwidth than C/S.

Figures 3.6(c) and 3.6(d) show that clients’ and peers’ incoming bandwidth scale lin-
early. However, as each peer must broadcast updates to its PP peers, their outgoing band-
width also scales linearly, unlike the fixed outgoing bandwidth of C/S clients. Due to the
massive success of P2P networks [126], we believe the increase in peer bandwidth will not
cause a bottleneck. Further, the lower delay of PP mode will motivate players to use direct
communication.

Figure 3.7 shows the average delay of game state updates for clients/peers in Simula-
tion 3.1; i.e., the time between a player generating a game state update and it being received
by another player. As the majority of updates in RACS are sent directly, the average de-
lay for the artificial topology (Figure 3.7(a)) is approximately 1.1 hops, compared to 2
hops for C/S. For the realistic topology (Figure 3.7(b)) the RACS delay is only 9ms (12%)
faster on average. As the player trace is extracted from a single Counter-Strike server, and
as Counter-Strike players gravitate to servers with low delay [55], it is expected that this
simulation shows only a 12% improvement over C/S. In practise, we expect the delay dif-

3.4. RACS Evaluation 53

0

1000

2000

3000

4000

100 200 300 400 500

B
an

dw
id

th
(k

b/
s)

Players

(a) C/S Server.

0
100
200
300
400
500
600
700

100 200 300 400 500

B
an

dw
id

th
(k

b/
s)

Players

(b) RACS Referee.

0

2

4

6

8

100 200 300 400 500

B
an

dw
id

th
(k

b/
s)

Players

(c) C/S Client.

0

5

10

15

20

100 200 300 400 500

B
an

dw
id

th
(k

b/
s)

Players

(d) RACS Peer.

Key
Outgoing bandwidth
Incoming bandwidth

C/S
RACS

Figure 3.6: C/S and RACS bandwidth scalability with increasing players.

3.4. RACS Evaluation 54

ference between RACS and C/S to be considerably larger, as RACS will allow players in
distant parts of the network to participate. Note, the RACS results only represent the com-
munication delay and do not incorporate the round length. Therefore, these results assume
the round length is optimal, as updates are only processed at the end of the round.

1

1.2

1.4

1.6

1.8

2

100 200 300 400 500

Pl
ay

er
ga

m
e

st
at

e
de

la
y

(h
op

s)

Players

(a) Artificial topology.

66
68
70
72
74
76
78
80

100 200 300 400 500Pl
ay

er
ga

m
e

st
at

e
de

la
y

(m
s)

Players

(b) Realistic topology.

Key
C/S RACS

Figure 3.7: C/S and RACS game state delay.

3.4.3.3 Simulation 3.2: RACS Bandwidth and Delay with Cheaters

Simulation 3.2 evaluates the impact of cheaters on the referee’s bandwidth and the peers’
game state update delay. The player population is fixed at 300 - the maximum region
population in WoW [110] - and we vary the percentage of cheating peers, c, between 0%
and 100%. A cheating peer does not send MPP messages, as in the blind opponent and
suppressed update cheats. Suppressing MPP messages will result in a QoS violation and
the peers revert to PRP mode. Two peers do not attempt to re-establish PP communication
for at least 60 seconds. All other parameters are identical to Simulation 3.1.

Figure 3.8 shows the referee’s outgoing bandwidth, and the delay in updating peers’
game state, for the artificial and realistic topologies. As expected, the figure shows that the
best case occurs when c=0% as all updates are exchanged directly using PP mode; and the
worst case occurs when c=100% as all updates are routed through the referee using PRP
mode. The figure shows that RACS scales well, even in the presence of cheaters, as honest
players continue to exchange updates. Further, the increasing delay will be a deterrent to
cheating.

3.4.3.4 Simulation 3.3: The Effects of w, s, and p, with Packet Loss and Cheating

We consider the Source Engine used in Counter-Strike [135] to demonstrate how w, s,
and p, are determined. As Counter-Strike is an FPS, it requires low delay [40]; hence,

3.4. RACS Evaluation 55

0

500

1000

1500

2000

0 20 40 60 80 100O
ut

go
in

g
B

an
dw

id
th

(k
b/

s)

% Cheaters
(a) Artificial topology bandwidth.

0

500

1000

1500

2000

0 20 40 60 80 100O
ut

go
in

g
B

an
dw

id
th

(k
b/

s)

% Cheaters
(b) Realistic topology bandwidth.

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

D
el

ay
(h

op
s)

% Cheaters
(c) Artificial topology delay.

68

72

76

80

0 20 40 60 80 100

D
el

ay
(m

s)

% Cheaters
(d) Realistic topology delay.

Figure 3.8: RACS bandwidth and delay with increasing cheaters.

3.4. RACS Evaluation 56

this illustration is applicable to all genres of games, including MMOG. The Source Engine

generates one update every 50 milliseconds (20 updates per second). As most clients’ delay
exceeds this, messages are pipelined. The client postpones rendering received updates by
100ms, and uses interpolation to smooth player transitions (see Section 2.1.3). In the event
of two consecutive lost messages, the Source Engine client software extrapolates avatars for
up to 250ms; therefore, the client stops rendering the game after seven consecutive losses.
Note that Dick et al. [48] found that 150ms delay did not significantly affect Counter-Strike

players.
From the described specifications τ = 150ms, and a new round begins every 50ms. As

the engine stops rendering after 7 consecutive lost updates we set w = 6. We estimate that
losing 2×w = 12 messages per 10 seconds will give a cheater an insignificant advantage.
Thus, s= 200 (i.,e., 10 seconds / 50ms = 200), and p= 94% (i.e., (1− 12

200)×100%= 94%).
As communication between peers and the referee does not influence PP communication the
simulation does not include MRP or MPR losses. The simulation varies MPP loss rates
from 0% to 50%. Also, all messages arrive either on-time or not at all (no late messages).
Since the effects of modifying w and p can only be observed when players have repeated
interactions, we simulated 40 players - the maximum group size in WoW [148] - each with
an AoI radius of 200, in a world of size 100× 100 units; hence, all players are constantly
mutually aware. We simulated the Source Engine with 0 (c = 0%), 10 (c = 25%), and 20
(c = 50%) cheaters. All other parameters are identical to Simulation 3.1.

Figure 3.9 shows the referee’s bandwidth and the delay in updating peers’ game state
for the artificial and realistic topologies. The figure also includes a worst-case base line, i.e.,
w = 0, p = 100%, c = 0%. With no cheaters, it is obvious that increasing w and reducing
p greatly reduce the referee’s outgoing bandwidth and the players’ game delay (highest vs.
lowest plots in the figure).

The figure also shows that with w = 6 and p = 94% RACS is highly tolerant to loss.
Irrespective of the number of cheaters, loss rates below 15% do not impact the outgo-
ing bandwidth and the average delay; beyond 15%, RACS performance degrades rapidly.
However, the results show that increasing numbers of cheaters has a greater impact on per-
formance than loss rate; as more peers revert to PRP mode. Nevertheless, the upper bound
of RACS delay is two hops (as in C/S), below NEO/SEA’s three-hop bound [36, 64]. In
addition, as discussed in Section 3.4.2, its overall bandwidth never exceeds that in C/S and
NEO/SEA.

3.4.4 Round Length Adjustment Simulation

To evaluate the performances of the brute force and voting algorithms in Section 3.3.2,
we applied both to the 100 sets of interacting players on the realistic topology (see Section

3.4. RACS Evaluation 57

0

200

400

600

800

0 10 20 30 40 50O
ut

go
in

g
B

an
dw

id
th

(k
b/

s)

MPP Loss Rate (%)

c = 0%

c = 50%

c = 25%
c = 0%

(a) Artificial topology bandwidth.

0

200

400

600

800

0 10 20 30 40 50O
ut

go
in

g
B

an
dw

id
th

(k
b/

s)

MPP Loss Rate (%)

c = 0%

c = 50%

c = 25%
c = 0%

(b) Realistic topology bandwidth.

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

D
el

ay
(h

op
s)

MPP Loss Rate (%)

c = 0%

c = 50%

c = 25%
c = 0%

(c) Artificial topology delay.

64

68

72

76

80

0 10 20 30 40 50

D
el

ay
(m

s)

MPP Loss Rate (%)

c = 0%
c = 50%

c = 25%
c = 0%

(d) Realistic topology delay.

Key
w=0, p=100% w=6, p=94%

Figure 3.9: RACS with increasing message loss and cheaters.

0

1

2

3

4

5

6

7

8

T
SD

(×
10

4 m
s)

Player sets
Brute force Voting difference

Figure 3.10: Total System Delay.

3.5. Summary 58

3.4.3.1). Figure 3.10 shows the Total-System-Delay (TSD) for both algorithms. The results
show that, for the majority of player sets, the voting algorithm is close to optimal (Figure
3.10 shows the difference in black). Further, the range and standard deviation of τ for
the voting algorithm is lower than those of the brute force algorithm (41ms vs 71ms and
7.18ms vs 8.98ms respectively). As players can modify their playing style to compensate
for high delay, but struggle when it fluctuates [14, 15], this suggests players will perform
better when using the voting algorithm, even though the TSD is not optimal.

3.5 Summary

In this chapter, we modified and expanded the cheat classification in [64] to incorporate
all known theoretical and practical cheats. We proposed the Referee Anti-Cheat Scheme
(RACS) - a hybrid C/S and P2P architecture - and showed that by using a referee as a trusted
3rd party RACS provides cheat protection equal to that in C/S. In addition, by allowing
direct communication between players RACS has better scalability, responsiveness, and
fairness than C/S. Further, we propose two centralised round length adjustment algorithms
- an optimal brute force approach, and a faster heuristic approach - that are both faster,
more accurate, and require less bandwidth than the distributed algorithm proposed in [64].
We used analytical analysis to show that RACS has better bandwidth scalability than C/S,
and used simulations to confirm this. The simulations also show that direct communication
between players gives RACS lower delay than C/S; 1.1 hops vs 2 hops for the artificial
topology, and a 12% improvement for the realistic topology. Further, Simulation 3.3 shows
the impact of the PP mode QoS parameters (w, s, and p) when packet loss and cheating
occur. Finally, the analytical analysis of our round length adjustment algorithms showed
that our voting algorithm is significantly faster than our brute force approach, and using
simulation we showed it produces nearly optimal results. In Chapters 4 and 5 we investigate
using multiple referees to further increase RACS scalability and responsiveness.

Chapter 4

The Mirrored Referee Anti-Cheat
Scheme (MRACS)

In Chapter 3 we proposed RACS, which uses a referee in the server to improve the scala-
bility, responsiveness, and fairness of C/S, without enabling cheating. As with current C/S
MMOG [23, 85], to support thousands of players the referee in RACS must consist of many
hosts, co-located in a data centre. Using multiple hosts improves the processing scalability
of the referee. However, with all hosts located in one data centre, several problems still
exist:

1. The referee’s incoming bandwidth may create a bottleneck as it is provisioned at a
single location.

2. By allowing PP communication, the player-to-referee delay is less critical in RACS
than C/S; however, players with low delay still have an unfair advantage as the ref-
eree’s game state is authoritative.

3. The referee is a single point of failure.

Note that these problems are also applicable to the C/S architecture, and that problems 1
and 2 are far more severe in C/S than in RACS. The Mirrored Server (MS) architecture, dis-
cussed in Section 2.3.2, improves C/S to address these problems. However, player updates
in MS, like in C/S, are still routed through mirrors; increasing delay, reducing fairness, and
consuming the mirrors’ bandwidth and processing power. This chapter investigates com-
bining the RACS protocol with mirrored referees to improve both RACS and MS. We call
the resulting architecture the Mirrored Referee Anti-Cheat Scheme (MRACS).

The benefits of MRACS over RACS are:

1. The referee bandwidth bottleneck is reduced as it can be provisioned at multiple
locations throughout the network.

2. The player-to-referee delay is reduced - increasing responsiveness and fairness - as
each player connects to a close mirror.

59

4.1. Mirrored Referee Anti-Cheat Scheme 60

3. The single point of failure is removed. While mirror crashes will still occur, only the
players connected to the crashed mirror will be affected, and they can re-connect to
a different mirror to continue playing.

The benefits of MRACS over MS are:

1. It reduces the mirrors’ outgoing bandwidth and processing requirements, without
increasing the risk of cheating.

2. It minimises delay as updates are sent directly between players.

3. It increases fairness, as the player-to-mirror delay is less critical than in MS.

To maximise game responsiveness in MS, players connect to their closest mirror, reducing
the delay compared to C/S. For this scheme, the publisher must provision every mirror to
support its maximum resource usage. As player sessions are diurnal [55, 110], in both
MS and MRACS each mirrors’ resource usage will vary significantly throughout the day,
and thus each mirror will be underutilised most of the time. To reduce the required ca-
pacity at each mirror, we propose using a Client-to-Mirror Assignment (CMA) algorithm
that assigns players to mirrors such that the total delay of all players is minimised. This
maximises responsiveness while preventing saturated or underutilised mirrors. We propose
two pairs of algorithms, the optimal J-SA/L-SA and the faster heuristic J-Greedy/L-Greedy.
Our solutions are also applicable to other applications with mirrored resources and long-
term connections (e.g., Content Distribution Networks [78] or video streaming sites such
as Hulu [72]). Note that for optimal results the mirror placement problem must also be
addressed [117]. However, as mirror placement is heavily influenced by business consider-
ations [100], this problem is beyond the scope of our work.

The layout of this chapter is as follows. Section 4.1 proposes MRACS, including its
protocols, communication modes, mirror synchronisation, and security. Section 4.2 inves-
tigates the CMA problem and proposes two possible solutions. Section 4.3 uses analytical
analysis and simulation to evaluate MRACS and our proposed CMA algorithms. Finally,
Section 4.4 summarises the chapter. The MRACS concept and CMA algorithms were pre-
viously published in [144] and [142] respectively.

4.1 Mirrored Referee Anti-Cheat Scheme

4.1.1 MRACS Concept and Protocol

Figure 4.1 shows the MRACS architecture. Each mirror hosts a RACS-like referee, and
players interact in the PP or PRP modes of RACS (See Section 3.2.2). Since each trusted
/ authoritative mirror simulates the game and stores the current state, MRACS maintains
game consistency and counters cheating.

4.1. Mirrored Referee Anti-Cheat Scheme 61

Mirrored Referee

Player

Key

SA

Figure 4.1: MRACS architecture.

Formally, MRACS comprises three entities: a set of m mirrors M = {M f | M f is a mirror
with a unique ID f }, where each mirror M f runs a referee; a set of n players P = {Pi | Pi is
a player with a unique ID i}; and an authentication server SA.

As in MS [41], MRACS requires mirrors to be connected via a private, low-delay,
low-loss rate, and multicast enabled network. Due to the cost overhead of provisioning
a mirror [85, 100] (security, cooling, power, etc.), we assume the publisher provisions a
small number of mirrors, each comprised of a cluster of hosts capable of simulating the
entire virtual world. Similar to RACS, each player sends updates to his Ingress-mirror
(I-mirror) and every player with whom he is interacting in PP mode (connected lines).
Updates are sent through mirrors using PRP mode if players are not in each others’ AoI,
direct communication is not possible, or cheating is suspected. To maintain consistency
among the mirrors, every mirror forwards all updates received from clients to all other
mirrors, Egress-mirrors (E-mirrors), through the private network, and all mirrors simulate
the update. Like MS, MRACS assumes well-provisioned mirrors with a low probability of
failure. If a mirror crashes, then the remaining mirrors will continue the game, and players
disconnected from the failed mirror must re-connect to a functioning mirror.

Server SA authenticates joining players, assigns each player a unique ID and an I-mirror
(client-to-mirror assignment - see Section 4.2), and adjusts the round length τ . Server SA

divides game time into rounds of length τ within which every player generates an update
and sends it to his I-Mirror and players (described in Section 4.1.2). A late message (not
received within its round) is considered for a future round if no newer messages have been
received; otherwise it is discarded. Game time is synchronised among all mirrors and
clients using NTP [97], and rounds may be pipelined [64] to improve responsiveness. To
adjust the round length τ , mirrors periodically request information from players about the
peer-to-peer delays and forward it to SA, which calculates the new round length as in Sec-
tion 3.3. As interacting players may be connected to different mirrors the round length
must be set globally for all mirrors and players.

4.1. Mirrored Referee Anti-Cheat Scheme 62

(a) PRP Mode. (b) PP Mode.

Figure 4.2: MRACS communication modes.

4.1.2 MRACS Communication Modes

MRACS communication modes are similar to those of RACS, described in Section 3.2.2.
As shown in Figure 4.2, the communication between each pair of mutually aware players,
Pi assigned to MX and Pj assigned to MY , can be direct (Peer-Peer: PP mode) or routed
through their I-Mirrors (Peer-Referee-Peer: PRP mode). Note, Pi and Pj may have the
same or different I-Mirrors (i.e., X = Y or X 6= Y).

MRACS considers four different message formats:

1. peer to peer message - MPPi(Ui), signed by the sender Pi,

2. peer to referee message - MPRi(Ui, Si,Vi, Hi, Ti), signed by the sender Pi,

3. referee to peer message - MRPf (i,U ′i ,Ci), signed by the sender M f , and

4. referee to referee message - MRR(i,U ′i , Si).

The MPP, MPR, and MRP messages are identical to those in RACS; see Section 3.2.1 for
the details. Note, after an MPR message is received and validated - correct digital signature
and a fresh round number - Ui is timestamped with the I-mirror’s current round number,
r′, to produce U ′i . This is used for event ordering between mirrors to maintain consistency,
as the player’s round number cannot be trusted. As in MS, we assume the private network
is secure, loss-less, and multicast enabled; hence, MRR is not signed. Mirrors exchange
MRR messages to maintain consistent state and validate the simulation. For each received
MPR the receiving mirror multicasts an MRR message containing the player’s identity, up-
date, and secret information to all other mirrors. The I-mirror is responsible for validating
the MPP’s digital signature and ensuring that the round number is greater than all previ-
ously received MPP messages. If either check fails the MPP is discarded. These checks are
performed by the I-mirror so that they are only performed once (reducing processing over-
head) and to reduce the size of MRR messages (reducing the Mirror-to-Mirror bandwidth
requirements).

The PP and PRP modes in MRACS are similar to those in RACS as they utilise the
same QoS requirements between players. However, as there are many small changes to
support multiple referees, we include a complete description of the MRACS protocol for

4.1. Mirrored Referee Anti-Cheat Scheme 63

clarity. When two mutually aware PRP players, Pi assigned to MX and Pj assigned to MY

(X = Y or X 6= Y), are within each others’ AoI, MX sends an MRP containing C j to Pi, and
MY sends an MRP containing Ci to Pj, transitioning Pi and Pj to PP mode. On the other
hand, Pi reverts to PRP (with respect to Pj) if: (i) Pj is no longer in Pi’s AoI or vice-versa;
(ii) Pi receives less than p percent of Pj’s last s ≥ 1 messages, or (iii) Pi does not receive
Pj’s update for more than w≥ 0 consecutive rounds. Requirement (i) provides AoI filtering
to reduce bandwidth; requirement (ii) ensures that a minimum percentage of updates are
received, preventing a cheater repeatedly sending one message and then dropping w− 1
consecutive messages; while requirement (iii) ensures that losses are not clustered, which
would have a large impact on the game-play experience. For either case (ii) or (iii), Pi sends
an MPPi to Pj and an MPRi to MX notifying them of the reversion. Mirror MX forwards this
to MY , which only forwards Pi’s moves to Pj if Pi is within Pj’s AoI. As in RACS (Chapter
3), MRACS is cheat-proof when w = 0 or p = 100%. For optimal game play the values for
w, p, and s should balance cheat prevention with minimising PP to PRP reversions.

The steps performed by each peer in every round are identical to those in RACS, and
are summarised in Algorithm 3.1. Algorithm 4.1 shows the corresponding steps for each
mirror; they are similar to the referee’s steps in Algorithm 3.2, except for lines 2 and 25 to
29.

Note, to prevent the time-stamp cheat, the round number in MPR and MPP messages
must not be used for event ordering. This may result in players perceiving game anoma-
lies, caused by packets arriving late or out of order; however, this approach maximises
responsiveness while preventing cheating [5, 43].

4.1.3 MRACS Synchronisation

As in MS, MRACS requires a synchronisation mechanism (e.g., TSS or BS - see Section
2.3.2.2) between mirrors. However, unlike in MS, we expect most players will use PP mode
in which they exchange updates directly, and thus the synchronisation delay in the mirrors
is less critical in MRACS than in MS. Due to its lower processing and memory overhead,
we recommend BS for synchronising mirrors in MRACS. Further, unlike TSS, BS avoids
rollbacks, which are process intensive and cause temporal anomalies. The additional ∆

delay in mirrors will only influence PRP players; hence, providing additional motivation
for players to use PP mode.

4.1.4 MRACS Security

Table 4.1 summarises the strategies that MRACS uses to solve each cheat. As MRACS
includes all security measures used by RACS, it prevents or detects all known protocol-
level cheats, information exposure, and the invalid command cheat. However, the steps
required to prevent the inconsistency (checking the hashes of MPP messages), spoofing

4.1. Mirrored Referee Anti-Cheat Scheme 64

Algorithm 4.1: MRACS_referee_game_loop()
/* The game loop run by each mirrored referee, M f , in every round. */;

1 begin
2 for every player Pi whose I-mirror is M f do
3 if Pi attempted an invalid action (due to inconsistent state) then
4 Send an MRPf to Pi with the current game state.

end
5 for every Pj in PRP communication with Pi do
6 if Pi and Pj should enter PP mode. then
7 Send MRPf (j,U ′j,C j) to Pi.

else
8 Send MRPf (j,U ′j) to Pi.

end
end

end
9 for every MPRi received within the round do

10 Use Ci to validate MPRi’s digital signature.
11 Discard MPRi if validation fails.
12 Compute H ′i by XORing all H(U j) for every MPPj Pi received on-time in the

previous round (indicated by Vi).
13 Compute H(U j)

′ for every MPPj Pi received late in the previous round
(indicated by Ti).

14 if H ′i 6= Hi then
15 Request Pi to forward all MPPj messages used to calculate Hi.

end
16 for every H(U j)

′ 6= H(U j) do
17 Request Pi to forward MPPj.

end
18 for every MPPj forwarded by Pi do
19 Use C j to validate MPPj’s digital signature.
20 if MPPj’s signature is invalid then
21 Pi is attempting to frame Pj.
22 else if MPPj’s U j does not match that in MPR j then
23 Pj is attempting the inconsistency cheat.

end
end

24 Use the r in MPRi to discard old updates from each player.
25 Timestamp the Ui in MPRi with r′ to create U ′i .
26 Multicast MRR(i,U ′i ,Si) to all E-mirrors.

end
27 for every MRR received within the round do
28 Use the r′ in each U ′i to discard old updates from each player.

end
29 Simulate all U ′i using r′ for event ordering.
30 Use interpolation/extrapolation for missing updates.

end

4.2. Client to Mirror Assignment (CMA) 65

Cheats Prevented MRACS Strategy
Information Exposure On-demand Loading

Invalid Command Referee simulation and validation
Suppressed Update Referee authoritative state

Replay Round number r validated by the I-mirror
Spoofing Signed messages validated by the I-mirror

Undo No commit / reveal steps
Timestamp Updates timestamped by the I-mirror

Cheats Detected MRACS Strategy
Bugs Software patches

RMT / Power Levelling Statistical analysis of log files
Bots / Reflex Enhancers Combine MRACS with a CDS

Fixed Delay QoS requirements and reversion to PRP
Inconsistency I-Mirrors validate message signatures and hashes

Blind Opponent Reversion to PRP mode
Undetectable Cheats MRACS Strategy

Collusion None
Proxies / Reflex Enhancers None

Table 4.1: Summary of MRACS cheat detection/prevention strategies.

(validating the digital signature of received MPP messages), and replay (discard messages
with old round numbers) cheats are performed by the I-mirrors, so that each MPR message
is validated once only.

Unlike RACS, mirrors in MRACS must use round numbers for message ordering. To
prevent the timestamp cheat each I-mirror timestamps received MPR messages with its
current round number, r′, as shown in Algorithm 4.1, line 25. All other cheats are detected
/ prevented as in RACS (Section 3.4.1).

4.2 Client to Mirror Assignment (CMA)

The CMA problem is to assign clients to mirrors such that the client-to-mirror delay is
minimised, and no mirror is overloaded. It assumes each mirror has fixed bandwidth and
processing resources. To accommodate player joins and leaves, we introduce a pair of
optimal algorithms and a pair of faster, but sub-optimal, algorithms.

Let LS denote the processing required to simulate the virtual world for each player, and
LC denote the processing required to send and receive updates and to perform AoI filtering
for each player. Note that communicating updates and AoI filtering are a significant portion
of a server’s workload [5]. We assume each player requires at most A bandwidth and Ls+Lc

processing resources of the mirror. Every mirror M j provides fixed bandwidth α j and
processing power β j. Therefore, M j has capacity to support a fixed number of players C j.
For bandwidth, since every player requires up to A units, M j can support α j

A clients. From
the processing perspective, every mirror requires at most n×Ls units of processing power

4.2. Client to Mirror Assignment (CMA) 66

to simulate the virtual world involving all n players in P; thus, M j can support β j−n×Ls
Lc

players. Therefore, the capacity of M j is calculated as C j = min{α j
A ,

β j−n×Ls
Lc
}.

If players typically use less than A bandwidth and Ls + Lc processing resources, the
mirrors’ resources will be underutilised. To improve resource utilisation, the publisher may
set C j > min{α j

A ,
β j−n×Ls

Lc
}; however, if the processing or bandwidth resources of the mirror

are exceeded the users’ experience rapidly deteriorates. As each mirror supports hundreds
of players [85], we expect variations between players’ resource usages will average out.
Further, it is now considered standard practise to have a long beta test phase (six months
or more) to accurately measure the client workload and modify the system for maximum
scalability [100].

We define the delay di, j as the difference between the time a mirror M j receives an
update and the time it was sent by client Pi; we assume the delay from M j to Pi is also
di, j. The delay experienced by a player has considerable impact on his enjoyment [32, 56];
therefore, it is desirable to minimise delay. Note that the delay between mirrors is not
considered in our model as it is not affected by the player assignment.

4.2.1 CMA Problem Statement

Let DM denote a delay matrix of size n×m for all n clients in P and m mirrors in M. An
element in row i and column j of DM, DM[i, j], represents delay di, j for Pi and M j, for all
i = 1, 2, ..., n and j = 1, 2, ..., m. Let CMAn be a set of all client-to-mirror assignments
for DM. We define CMAn optimal if D = ∑Pi∈P,M j∈M di, j × xi, j is minimised, subject to
constraints:

(i) ∀Pi ∈ P, ∑M j∈M xi, j = 1, and

(ii) ∀M j ∈M, ∑Pi∈P xi, j ≤C j;

where xi, j ∈ {0, 1} is equal to 1 if Pi is assigned to M j, and 0 otherwise. Constraint (i) en-
sures that every player is assigned to a mirror, and constraint (ii) avoids saturating a mirror.
We assume fixed M and dynamic P (due to player joins and leaves). The CMA-J problem
is to construct an optimal CMAn+1 from an optimal CMAn, including the assignment of a
joining Pi. Similarly, the CMA-L problem is to construct an optimal CMAn−1 from an op-
timal CMAn, including the removal of a leaving Pi. Note that as the workload generated by
each player is not necessarily equal, an optimal assignment does not guarantee that a mirror
is not saturated or underutilised. As discussed in Section 4.2, however, we anticipate that
resource usage will be close to optimal.

Both CMA-J and CMA-L may require reassigning players to different mirrors to min-
imise delay. As every mirror stores and simulates the entire virtual world, MRACS is well
suited to transfer players between mirrors, as no game state must be passed. Further, as
most games use the User Datagram Protocol (UDP) for communication, there is little or

4.2. Client to Mirror Assignment (CMA) 67

MG MH MI
Pa 4 5 10
Pb 4 5 10
Pc 1 8 10
Pd 1 8 10
Pe 2 4 10

(a) Delay matrix DM.

Pa

Pb

Pc

Pd

Pe

MG MH MI

(b) Optimal CMA5.

MG MH MI
Pa 4 5 10
Pb 4 5 10
Pc 1 8 10
Pd 1 8 10
Pe 2 4 10
Pf 2 4 10
(c) DM with joining Pf .

Pa

Pb

Pc

Pd

Pe

Pf
MG MH MI

(d) Optimal CMA6.

Figure 4.3: Example client and mirror configurations for the CMA problem.

no overhead to establish a new connection. We believe the benefits of transferring players
to reduce the average game delay far outweigh the costs, as the bandwidth and processing
required to perform a hand off are far below that required to process, simulate, and send
updates about the game. The responsibility of reassigning players to mirrors belongs to the
authentication server SA as it stores DM.

In delay sensitive games such as FPS, players compensate for high delays by modifying
their playing style. However, this is difficult if their delay fluctuates wildly due to mirror
reassignments. As the CMA problem is to minimise D, it is unlikely that the problem’s
solution would reassign a player to a mirror with significantly higher delay. Our simulation
results in Section 4.3.3.2 support this.

Figure 4.3 shows an example of the CMA problem for three mirrors: MG, MH , and MI ,
with capacity CG = CH = CI = 2, and five clients: Pa, Pb, Pc, Pd , and Pe. Each number
in Figure 4.3(a) represents the delay from a client (rows) to a mirror (columns). Figure
4.3(b) shows the optimal CMA5 for DM in Figure 4.3(a); the cost of each client assignment
is underlined in Figure 4.3(a). The total, average, and maximum delays of the solution
are 21, 4.2, and 10, respectively. For the joining player Pf with d f ,G = 2, d f ,H = 4, and
d f ,I = 10, the CMA-J problem is to obtain CMA6 from CMA5 that minimises delay D

subject to constraints (i) and (ii). Figure 4.3(c) shows the updated DM and Figure 4.3(d)
gives the optimal CMA6. The optimal result requires reassigning client Pb from MH to MI

and assigning Pf to MH . Similarly, considering the optimal CMA6 in Figure 4.3(d), and
leaving player Pf , the solution to the CMA-L problem results in the assignment in Figure
4.3(b).

4.2. Client to Mirror Assignment (CMA) 68

4.2.2 CMA Algorithms

When a player joins, the authentication server SA verifies the player for subscription, ban-
ning, etc., and then transmits the list of mirrors to the client. The client uses echo messages
to measure the delay to each mirror and sends the results to SA. The server uses a CMA-J
algorithm to determine a mirror for the client; it notifies the client and may ask other clients
to transfer to different mirrors. As players leave, the average client-to-mirror delay of the
remaining players may no longer be optimal. For each leaving player, SA uses a CMA-L
algorithm to determine the optimal client-to-mirror assignments for the remaining players,
and may instruct multiple remaining clients to transfer to different mirrors.

The following subsections describe two CMA-J algorithms (J-SA and J-Greedy) and
two CMA-L algorithms (L-SA and L-Greedy).

4.2.2.1 CMA-J Algorithms

Our J-SA considers CMA-J as a special case of the Terminal Assignment (TA) problem
[81], described in Section 2.3.2.4. The TA problem is to determine the assignment of each
terminal to a concentrator such that no concentrator exceeds its capacity and the overall
system delay is minimised; this problem is NP-complete [82, 128]. Note that the TA prob-
lem assumes fixed numbers of concentrators and terminals and they are known in advance,
which is different to ours as players join and leave the game without warning. In our model,
every client (terminal in TA) has equal weight since we assume that each player consumes
the same amount of bandwidth and processing power from its I-mirror (concentrator in TA).
This special case can be optimally solved in polynomial time using either the Sequential
Assignment (SA) [129] or the Alternating Chain [81] algorithms. We use SA, described in
Section 2.3.2.4, for our J-SA.

Algorithm 4.2 shows our J-SA, implemented using a transfer heaps array TH[1...m,
1..m] which is updated for each player join. Note that J-SA also uses Algorithms 4.3-4.6.
Each element TH[X, Y] is a min heap that contains tuples (cost, player); cost is the delay
offset (di,Y −di,X) of transferring Pi from MX to MY . The heap in TH[X, Y] contains at most
CX tuples; initially each TH[X, Y] contains a null heap. There are two cases for each joining
player Pi. In case one, the closest mirror MX has spare capacity; thus, the algorithm simply
assigns Pi to MX and updates the heaps in TH for all possible reassignments of Pi. In case
two, MX is full, and the optimal assignment may require a sequence of player reassignments
(called a chain). For this case, the algorithm comprises two main steps, Step 1 and Step 2.

Step 1 computes the cost of assigning Pi to each of the full-capacity mirror MF , and
the cost of reassigning a player from each MF to another mirror MY . Since MY may also
be full, this step also computes the cost of reassigning a player from MY to another mirror,
etc. In essence, this step creates all possible chains of reassignments to make space for Pi;
each chain terminates when a player is reassigned to a mirror with spare capacity. Function
construct_labels_join() in Step 1 builds the chains, and stores them in array Label[1...m].

4.2. Client to Mirror Assignment (CMA) 69

Algorithm 4.2: J-SA(Pi, DM[1...n, 1...m])
/* Pi - The joining player */
/* DM[1...n,1...m] - The delay matrix */
begin

X = index_min(DM[i]) /* index of the mirror with minimum cost */
if MX is not full then

assign(Pi, MX , DM)
else

/* Step 1 */
Label = construct_labels_join(TH) /* Algorithm 4.6 */
for every MY ∈M do

add DM[i,Y] to Label[Y].cost
end
Z = index_min(Label) /* index of the label with minimum cost */
/* Step 2 */
if ∃MY with spare capacity and DM[i,Y] = Label[Z].cost then

assign(Pi, MY , DM) /* Algorithm 4.4 */
else

assign(Pi, MZ , DM) /* Algorithm 4.4 */
transfer_players(Label, TH, Z) /* Algorithm 4.3 */

end
end

end

Algorithm 4.3: transfer_players(Label[1...m], TH[1...m,1...m], from)
/* Label[1...m] - Array of labels*/
/* TH[1...m,1...m] - Transfer Heaps array*/
/* f rom - Mirror at the start of the chain */
begin

repeat
to = Label[f rom].mirror
j = TH[f rom, to].player
remove(Pj) /* Algorithm 4.5 */
assign(Pj, Mto, DM) /* Algorithm 4.4 */
f rom = to

until M f rom does not exceed its capacity
end

4.2. Client to Mirror Assignment (CMA) 70

Algorithm 4.4: assign(Pi, MX , DM[1...n, 1...m]])
/* Pi - Player to assign */
/* MX - I-Mirror to assign Pi too. */
/* DM[1...n,1...m] - The delay matrix */
begin

set MX as Pi’s mirror
reduce MX ’s available capacity by 1
for every MY ∈M where Y 6=X do

insert(TH[X ,Y], DM[i,Y] - DM[i,X], Pi)
end

end

Algorithm 4.5: remove(Pi, MX)
/* Pi - Player to assign */
/* MX - Pi’s assigned I-Mirror */
begin

increase MX ’s available capacity by 1
for every MY ∈M where Y 6=X do

delete(TH[X ,Y], Pi’s tuple)
end

end

Algorithm 4.6: construct_labels_join(TH[1...m,1...m])
/* TH[1...m,1...m] - Transfer Heaps array */
/* Exports Label[1...m] - The array of labels */
begin

for every MY ∈M where MY is full do
Label[Y].cost = ∞

end
for every MY ∈M where MY is not full do

Label[Y].cost = 0
end
while labels were changed do

for every MF ∈M where MF is full do
for every MY ∈M where Y 6= F do

if Label[Y].cost + TH[F,Y].cost < Label[F].cost then
Label[F].cost = Label[Y].cost + TH[F,Y].cost
Label[F].mirror = Y

end
end

end
end

end

4.2. Client to Mirror Assignment (CMA) 71

G H I
G - (7, c) (9, c)
H (-2, e) - (5, b)
I (-6, a) (-5, a) -

(a) TH for Figure 4.3(a).

Label[G] = (∞, -)
Label[H] = (∞, -)
Label[I] = (0, -)

(b) Initial Label.

Label[G] = (9, I)
Label[H] = (5, I)
Label[I] = (0, -)

(c) Final Label.

G H I
G - (7, c) (9, c)
H (-2, e) - (6, e)
I (-6, a) (-5, a) -

(d) TH for Figure 4.4(c).

Figure 4.4: Example of CMA-J using J-SA.

Each Label[Y] is a pair (cost, mirror) representing a chain starting from MY ; cost is the
minimum additional delay (called chain cost) of assigning Pi to MY , and mirror is the
next mirror in the chain after MY . Note that a chain can be a sub-chain of others. Each
Label[Y] is initialised to (∞, -) if MY is full and to (0, -) if it has spare capacity. Function
construct_labels_join() builds the chains as follows. For each full mirror MF ∈M, Label[F]
is updated to the minimum cost of transferring a player from MF to each MY ∈M (Y 6= F),
including the chain cost at MY (i.e., Label[F].cost = min{Label[Y].cost +TH[X , Y].cost}).
The algorithm repeatedly updates the chain for each label until no labels are updated. No
cycles occur because a chain must end at a non-full mirror, since full mirrors start with
an initial cost of ∞. After executing construct_labels_join(), Step 1 of J-SA continues by
adding to each Label[Y].cost the delay of assigning Pi to MY (di,Y), completing the delay of
each chain. The minimum delay chain is the Label[Z] with the smallest cost.

In Step 2 of J-SA, the algorithm assigns Pi to MY if there exists a non-full mirror MY

with di,Y equal to the delay of the minimum chain, Label[Z].cost. Otherwise, player re-
assignments are performed by tracing the minimum delay chain from MZ using the trans-
fer_players() function. In either case, TH is updated. The array Label is used to trace the
mirrors in the chain, and array TH is used to find the corresponding players to reassign.

The time complexity of J-SA is calculated as follows. Function construct_labels_ join()
takes O(m3) time. The insert() and delete() heap operations use O(log(x)) time, where x

is the size of the heap. As x ≤ n, assign() and remove() take O(m× log(n)) time; hence,
transfer_players() runs in O(m2× log(n)) time since the longest possible chain is of length
m. Therefore, the time complexity of J-SA is O(m2× log(n)+m3).

We demonstrate J-SA using the example in Figure 4.3 with joining Pf . Since MG (the
closest mirror to Pf) is full, a chain of reassignments may be required. Figure 4.4(a) shows
the root tuple of each heap in array TH for the optimal CMA in Figure 4.3(b), while Figure
4.4(b) shows the initialised contents of Label. Since MI is not full, the algorithm considers
moving players only from MG and MH . In the first iteration, there is only one possible chain
from MG, i.e., transferring Pc to MI at a cost of Label[I].cost +TH[G, I].cost = 0+ 9 = 9

4.2. Client to Mirror Assignment (CMA) 72

(Label[G].cost = 9 and Label[G].mirror = I). For MH , transferring Pb to MI (with cost
0+5 = 5) is better than Pe to MG (with cost 9−2 = 7), and thus the chain to MI is selected
(Label[H].cost = 5 and Label[H].mirror = I). In the second iteration, the chain from MG to
MH (i.e., Pc to MH) with cost 5+7 = 12 is considered but discarded as it is greater than the
existing chain to MI with cost 9. Similarly, for MH , the existing chain is optimal, and thus
the algorithm exits the while loop as no labels were updated. From the computed labels,
and DM in Figure 4.3(c), the algorithm computes the cost of the chains at MG, MH , and
MI as: Label[G].cost + d f ,G = 9+ 2 = 11, 5+ 4 = 9, and 0+ 10 = 10, respectively. The
algorithm finds the min cost of 9 for MH . Since there is no mirror with spare capacity and
delay 9 from Pf , the algorithm follows the minimum cost chain of player reassignments.
First, Pf is assigned to MH , and Label[H].mirror = I gives the next mirror in the chain.
Tuple TH[H, I].player gives Pb, the player to reassign from MH to MI . As MI has spare
capacity the chain ends. Figure 4.3(d) shows the resulting optimal assignment, and Figure
4.4(d) shows the corresponding TH.

Algorithm 4.7 is J-Greedy, which is faster than J-SA and is able to produce nearly
optimal client assignments. Note that J-Greedy uses Algorithm 4.4 to assign players to
mirrors. The greedy algorithm is an extension to Cronin et al. [43] that considers mirror
capacity. J-Greedy sorts all mirrors in increasing delay from the joining player and selects
the closest mirror with spare capacity. Conceptually, J-Greedy is J-SA but considering only
chains of length 0. If all mirrors have spare capacity, then J-Greedy will produce optimal
results; however, as observed by Kershenbaum [81], if the system is close to full capacity,
then this algorithm produces poor results, as later joining players are assigned to mirrors
with high delays. The complexity of J-Greedy is as follows. Sorting the mirrors requires
O(m× log(m)) time. Note that L-Greedy (Section 4.2.2.2) that is used with J-Greedy
requires the TH array. Therefore, J-Greedy must maintain array TH. As in J-SA, updating
TH requires O(m× log(n)) time; thus, the time complexity of J-Greedy is O(m× log(n)).

Algorithm 4.7: J-Greedy(Pi, DM[1...n, 1...m])
/* Pi - The leaving player */
/* DM[1...n,1...m] - The delay matrix */
begin

sort DM[i] by delay in ascending order
for each Y ∈ DM[i] do

if MY has spare capacity then
assign(Pi, MY , DM) /* Algorithm 4.4 */
break

end
end

end

4.2. Client to Mirror Assignment (CMA) 73

4.2.2.2 CMA-L Algorithms

To obtain optimal delays for CMA-L, one may use a brute-force approach that runs J-SA
on each of the remaining players. In contrast, the solution in Cronin et al. [43] (we call
it L-Ignore) keeps the client-to-mirror assignment of the remaining clients, and hence is
not optimal. The SA algorithm in reference [129] cannot be directly used to solve CMA-
L. Therefore, we propose two novel algorithms, the optimal L-SA and the faster heuristic
L-Greedy.

L-SA in Algorithm 4.8 is similar to J-SA, and uses Algorithms 4.3-4.5 and 4.9. When
a player Pi leaves, L-SA maintains array TH and increments the available capacity of Pi’s
mirror MX by 1. If the resulting capacity is greater than 1 (i.e., MX was not full), no
player reassignments are required since the CMA remains optimal. Else, L-SA performs
two steps, which are similar to those in J-SA. The construct_labels_leave() function in
L-SA builds the chains starting from each mirror MO (O 6= X and MO is occupied; i.e.,
not empty) and ending at MX ; in contrast, J-SA builds chains starting at a full mirror and
ending at a non-full mirror. In L-SA, the function does not transfer players to non-full
mirrors (except for MX) as this would not decrease the system delay. As in J-SA, Step 2 of
L-SA uses transfer_players() to perform the chain of reassignments; however, the chain is
only performed if the total system delay will be reduced; i.e., the minimum chain cost is
below zero. Similar to those for J-SA, construct_labels_leave() and transfer_players() have
time complexities of O(m3) and O(m2× log(n)), respectively. Thus, the time complexity
of L-SA is O(m2× log(n)+m3), equal to that of J-SA. The proof that L-SA is optimal is
included in Appendix A.

Algorithm 4.8: L-SA(Pi, MX , DM[1...n, 1...m])
/* Pi - The leaving player */
/* MX - Pi’s assigned I-Mirror */
/* DM[1...n,1...m] - The delay matrix */
begin

remove(Pi)
if MX ’s available capacity is 1 then

/* Step 1 */
Label = construct_labels_leave(TH, MX) /* Algorithm 4.9 */
Z = index_min(Label) /* index of the label with minimum cost */
/* Step 2 */
if Label[Z].cost < 0 then

transfer_players(Label, TH, Z) /* Algorithm 4.3 */
end

end
end

We demonstrate L-SA with an example. Assume that player Pc from Figure 4.3(d)
leaves; the resulting DM is shown in Figure 4.5(a); the player assignments are under-

4.2. Client to Mirror Assignment (CMA) 74

Algorithm 4.9: construct_labels_leave(TH[1...m,1...m], l)
/* TH[1...m,1...m] - Transfer Heaps array */
/* X - MX is the leaving player’s I-Mirror */
/* Exports Label[1...m] - The array of labels */
begin

for every MY ∈M where Y 6= X do
Label[Y].cost = ∞

end
Label[X].cost = 0
while labels were changed do

for every MO ∈M where MO is not empty and O 6= X do
for every MY ∈M where Y 6= O and (Y = X or MY is full) do

if Label[Y].cost + TH[O,Y].cost < Label[O].cost then
Label[O].cost = Label[Y].cost + TH[O,Y].cost
Label[O].mirror = Y

end
end

end
end

end

lined. Figure 4.5(b) shows the TH corresponding to 4.5(a). Initially Label[G].cost =

0, Label[H].cost = ∞,and Label[I].cost = ∞; the label’s mirrors are uninitialised. For
MH , the chain to MG with cost Label[G].cost +TH[H,G].cost = 0− 2 = −2 is selected
(Label[H].cost = −2, Label[H].mirror = G). For MI , player Pa can be moved to MH with
a delay reduction of Label[H].cost +TH[I,H].cost = −2− 5 = −7 (Label[I].cost = −7,
Label[I].mirror = H). The second iteration does not change any labels and thus the algo-
rithm exits the while loop. As Label[I] has the minimum cost, the chain begins at I, and the
sequence of reassignments is: Pa to MH , Pe to MG.

MG MH MI
Pa 4 5 10
Pb 4 5 10
Pd 1 8 10
Pe 2 4 10
Pf 2 4 10
(a) DM after Pc leaves.

G H I
G - (7, d) (9, d)
H (-2, e) - (6, e)
I (-6, a) (-5, a) -

(b) TH for Figure 4.5(a).

Label[G] = (0, -)
Label[H] = (∞, -)
Label[I] = (∞, -)

(c) Initial Label.

Label[G] = (0, -)
Label[H] = (-2, G)
Label[I] = (-7, H)

(d) Final Label.

Figure 4.5: Example of CMA-L using L-SA.

4.2. Client to Mirror Assignment (CMA) 75

Algorithm 4.10, L-Greedy, is faster than L-SA and produces nearly optimal results.
Note that L-Greedy uses Algorithms 4.4 and 4.5. The L-Greedy heuristic reassigns the
player that will give the maximum benefit. As shown in Algorithm 4.10, assuming a leaving
player Pi assigned to MX , L-Greedy selects the client with the largest delay reduction when
reassigned to MX . This is repeated until a client is reassigned from a non-full mirror or
there is no client that will benefit from being reassigned. Conceptually, L-Greedy is similar
to L-SA, but builds only a single chain of reassignments by greedily selecting the most
beneficial reassignment at each step. The worst case run time is O(m2× log(n)), equal to
L-SA without Step 1. Note that the CMA solution that dynamically allows players joining
and leaving must comprise both a CMA-J and CMA-L. Notice that J-SA requires optimal
CMAn to produce CMAn+1, and that L-SA requires optimal CMAn to produce CMAn−1.
Therefore, J-SA and L-SA cannot be combined with a non-optimal CMA-L or CMA-J
algorithm, respectively.

Algorithm 4.10: L-Greedy(Pi, MX , DM[1...n, 1...m])
/* Pi - The leaving player */
/* MX - Pi’s assigned I-mirror */
/* DM[1...n,1...m] - The delay matrix */
begin

remove(Pi) /* Algorithm 4.5 */
if MX was full then

continue = true
repeat

min = ∞

for every MY ∈M where Y 6= X and MY is not empty do
if TH[Y,X].cost < min then

min = TH[Y,X].cost
F = Y /* MF is the mirror to move from */

end
end
if min ≥ 0 then

continue = false
else

if M f is not full then
continue = false;

end
Pj = TH[F,X].player
remove(Pj) /* Algorithm 4.5 */
assign(Pj, MX , DM) /* Algorithm 4.4 */
X = F

end
until continue = false

end
end

4.3. Performance Analysis 76

4.3 Performance Analysis

4.3.1 Bandwidth and Processing - Analytical Evaluation

We compare the performances of RACS, MS, and MRACS in terms of their clients’ and
mirrors’ in-bandwidth and out-bandwidth requirements for n clients and m mirrors. We use
the notation from Section 3.4.2; i.e., a avatars within each player’s AoI, o overhead per
message, and the |MPR|, |MRP|, and |MPP| message sizes. Several studies [31, 55, 83, 127]
have shown that the mean and standard deviation of player updates is small; thus, the MRR
message size, |MRR|, has small mean and standard deviation. Like in MRP, we assume
each MRR message aggregates multiple player updates to reduce the bandwidth consumed
by packet overheads.

Table 4.2 shows the results, where public (private) denotes communication through the
Internet (private network). Note, if all players in MRACS use PRP mode (worst case), then
MRACS bandwidth equals MS.

When all pairs of players use PP mode (best case), the mirrors’ outgoing bandwidth is
negligible, as they must only notify players to transition to PP mode. However, players’
outgoing bandwidth increases linearly with the number of PP players. Due to the success of
P2P networks, and as game clients have low bandwidth requirements [55], we believe this
increase will not exceed most players’ capacity. Further, lower delay will motivate players
to use PP. Note that a is directly related to n (i.e., an increase in n causes an increase in a);
thus, the outgoing bandwidth in MS grows faster than linearly for n, potentially causing a
bottleneck. MRACS in PP mode solves this bottleneck as its bandwidth grows only linearly
for n. Cronin et al. [41] showed MS superior to C/S with respect to server/mirror bandwidth
requirements, and thus we may conclude that MRACS is also superior to C/S in the same
respect. Finally, as MRACS distributes the bandwidth across m mirrors it is more scalable
than RACS.

We analytically compared the processing requirements of TSS and BS. Note that every
update in TSS with l states is processed l times, and more when rollbacks occur. Consider
an update processing time of u, with a β probability of causing a rollback requiring v

processing time. Thus, the cost of TSS is: (l×u+β × v)×λ ×n, where λ is the number
of updates generated by each player per second. On the other hand, BS processing cost
is only u×λ × n, significantly lower than TSS. Since PP communication allows MRACS
to use BS without significantly impacting player responsiveness, MRACS has far lower
processing compared to MS. For example, Cronin et al. [43] found that every command
and rollback takes 0.144ms and 1.41ms, respectively; and the probability of a rollback
occurring is 0.056. Assuming every player generates 20 updates per second, Figure 4.6
shows the processing time for 1 seconds worth of updates for MS using TSS with 4 states
[43] and MRACS using BS. The figure shows that MS can only support up to 74 players,
beyond which the mirrors are saturated (players are generating updates faster than they can

4.3. Performance Analysis 77

C
/S

&
R

A
C

S
(P

R
P)

R
A

C
S

(P
P)

M
S

&
M

R
A

C
S

(P
R

P)
M

R
A

C
S

(P
P)

Pl
ay

er
In

o
+

a
×
|M

R
P
|

a
×
(o

+
|M

P
P
|)

o
+

a
×
|M

R
P
|

a
×
(o

+
|M

P
P
|)

O
ut

o
+
|M

P
R
|

o
+
|M

P
R
|+

a
×
(o

+
|M

P
P
|)

o
+
|M

P
R
|

o
+
|M

P
R
|+

a
×
(o

+
|M

P
P
|)

Se
rv

er
/M

ir
ro

r
In

n
×
(o

+
|M

P
R
|)

n
×
(o

+
|M

P
R
|)

n m
×
(o

+
|M

P
R
|)

n m
×
(o

+
|M

P
R
|)

(P
ub

lic
)

O
ut

n
×
(o

+
a
×
|M

R
P
|)

ne
gl

ig
ib

le
n m
×
(o

+
a
×
|M

R
P
|)

ne
gl

ig
ib

le
M

ir
ro

r
In

N
/A

N
/A

m
×
(o

+
n m
×
|M

R
R
|)

m
×
(o

+
n m
×
|M

R
R
|)

(P
ri

va
te

)
O

ut
N

/A
N

/A
o
+

n m
×
|M

R
R
|

o
+

n m
×
|M

R
R
|

Ta
bl

e
4.

2:
B

an
dw

id
th

an
al

ys
is

of
va

ri
ou

s
ar

ch
ite

ct
ur

es
.

4.3. Performance Analysis 78

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

Pr
oc

es
si

ng
tim

e
(s

)

Players
BS Processing TSS Processing

Figure 4.6: BS and TSS processing time.

be processed); whereas MRACS can support up to 333 players. MRACS with PP mode
further reduces the mirrors’ processing requirements as fewer updates are sent.

4.3.2 Bandwidth, Processing, and Delay - Simulation Results

To evaluate MRACS against RACS and MS we simulated all three using the Network Game
Simulator (NGS) [138]. To increase scalability most MMOG divide the virtual world into
zones, each with a fixed maximum capacity. For example, World of Warcraft (WoW) limits
each zone to 300 players [110]. Players cannot enter a zone at full capacity, and players
in different zones cannot interact. Therefore, the bandwidth and processing requirements
grow linearly with the number of zones. Similar to Section 3.4.3.2, we simulate a world
comprising a single zone of size 1000× 1000 units, containing 300 players each control-
ling an avatar with an AoI radius of 100 units. Avatar movement is controlled using the
Random-Way-Point (RWP) mobility model, with a velocity of two units/s and a wait time
of zero. Note that the RWP model represents the best case for MS, RACS, and MRACS,
but the worst case for showing the benefit of MRACS over RACS and MS. Using a more
realistic mobility model would cause a far greater bandwidth increase in MS and RACS
than MRACS. We simulated 1000 seconds with round length τ = 250ms. To maximise
responsiveness rounds begin every 50ms (rounds are pipelined); hence, clients generate 20
updates per second. As this thesis does not address the mirror placement problem we use an
artificial network topology. For MRACS and MS the network topology is similar to that in
Figure 4.1, with fully connected mirrors and the private network delay fixed at 50ms [43].
As communication over the Internet will be considerably slower than the private network,
the player-mirror delay is 200ms, while the player-player delay is 250ms. The player-player

4.3. Performance Analysis 79

200
250
300
350
400
450
500
550
600

0 20 40 60 80 100

D
el

ay
(m

s)

Percentage of MPP messages lost (%)
RACS

MS
MRACS
(a) Game state delay.

0
100
200
300
400
500
600

0 20 40 60 80 100O
ut

go
in

g
B

an
dw

id
th

(K
b/

s)

Percentage of MPP messages lost (%)
RACS

MS
MRACS

(b) Mirror/referee out-bandwidth.

Figure 4.7: RACS, MS and MRACS delay and out-bandwidth.

delay is larger than the player-mirror delay as each player connects to its closest mirror. For
RACS we assume the player-referee delay is 250ms, as there is only one referee serving all
clients.

Simulation 4.1 compares MRACS against RACS and MS in terms of bandwidth and
delay with 10 mirrors for MRACS and MS. Following Cronin et al. [43], we considered
MS using TSS with a leading state of 0ms and trailing states 50ms, 100ms, and 150ms with
a rollback probability of 0.044, 0.006, and 0.006, respectively. We considered MRACS
using BS with ∆ = 150ms, so that MS and MRACS have equal consistency and worst case
delay. For MRACS and RACS, we set w = 6, s = 200, and p = 94%, as these settings
are appropriate for fast paced Internet games (See Section 3.4.3.4. These settings assume
the client software can interpolate/extrapolate up to 6 consecutive lost updates and that
dropping fewer than 12 updates every ten seconds (94% of the previous 200 messages were
received) will give a cheater an insignificant advantage. If a pair of players reverts to PRP
mode, they will not re-attempt PP mode for 60 seconds.

Figures 4.7(a) and 4.7(b) show the players’ average game state delay and mirror/referee
out-bandwidth, respectively, with increasing packet loss between players due to network
loss, cheating, or firewalls. MS has nearly fixed delay and bandwidth; however, the delay
and bandwidth are high as all updates are routed through the mirrors. On the other hand,
with 0% loss (i.e., loss-less network and no cheaters) all players in MRACS are in PP mode
and therefore very few messages are routed through the mirrors; hence, the bandwidth and
delay in MRACS is far lower than MS. The bandwidth used by the single referee in RACS is
far higher than MS and MRACS as it must receive updates from all players. As packet loss
increases, players using MRACS and RACS revert to PRP communication, increasing the
mirrors’/referee’s bandwidth and players’ average delay. As all communication in RACS is
performed by a single referee, the bandwidth cost increases rapidly; hence, RACS has poor

4.3. Performance Analysis 80

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

O
ut

go
in

g
B

an
dw

id
th

(K
b/

s)

Percentage of MPP messages lost (%)
5 peers per referee

10 peers per referee
20 peers per referee

Figure 4.8: MRACS mirror out-bandwidth.

bandwidth scalability when more than 30% packet loss occurs. For MRACS, when packet
loss exceeds 40%, players rapidly revert to PRP communication, dramatically increasing
the impact of BS, increasing client delay. Above 60% packet loss MRACS has higher delay
than MS due to the delay introduced by BS. Further, above 70% packet loss the bandwidth
of MRACS exceeds MS due to the cost of sending digital signatures, hashes etc., which are
required to achieve cheat-proofing equivalent to C/S, exceeding that of MS. As Internet loss
rates are typically less than 1% [38] and assuming less than 60− 1 = 59% of players are
using protocol cheats or are firewalled from peers, both solvable by the players themselves,
MRACS outperforms RACS and MS using this topology.

Simulation 4.2 evaluates the bandwidth scalability of the mirrors in MRACS with 300
players. We repeated Simulation 4.1 using 20, 10, and 5 mirrors, each supporting 15, 30,
and 60 players, respectively. As shown in Figure 4.8, MRACS offers excellent bandwidth
scalability when most players use PP mode (i.e., with global loss rates below 40%); the
mirrors’ bandwidth is minimal, as they do not forward updates. However, the bandwidth
increases as the number of PRP players increases. Figure 4.8 also shows that the bandwidth
requirements of MRACS are proportional to the number of players per mirror; therefore,
more mirrors increases available bandwidth and distributes it throughout the network.

Figure 4.6 shows that BS has far lower processing overhead than TSS, but does not show
its impact on responsiveness. Provided the majority of players use PP mode BS does not
add significant delay. However, a high MPP loss rate due to cheating or poor connectivity
will cause the majority of players to revert to PRP mode, resulting in reduced responsive-
ness caused by BS. For comparison we simulated MRACS using TSS and MRACS using
BS; all other parameters are identical to Simulation 4.1. As shown in Figure 4.9, TSS

4.3. Performance Analysis 81

200

250

300

350

400

450

500

550

600

0 20 40 60 80 100

D
el

ay
(m

s)

Percentage of MPP messages lost (%)
BS Delay TSS Delay

Figure 4.9: Delay for MS using TSS and MRACS using BS.

does provide lower delay, but only when the percentage of lost MPP messages exceeds
30%. When the loss rate is below 30%, BS is superior to TSS for MRACS due to its lower
processing overhead.

4.3.3 CMA Simulation Results

The efficiency and effectiveness of CMA algorithms are influenced by the player and mir-
ror locations and by the player to mirror delays. We used the two realistic simulation inputs
described in Section 3.4.3.1 to simulate two scenarios; one simple and one realistic, de-
scribed in Section 4.3.3.1 and Section 4.3.3.2 respectively. Note that the connected player
population of an MMOG is centred in the time zone experiencing evening [110]. By using
a single Counter-Strike trace, and as players gravitate to servers with low delay [56], our
simulation inputs approximate this phenomenon. For both scenarios, we selected 10 IP
addresses to act as mirrors according to the distribution of Counter-Strike servers [56]: 4
in the United States (San Francisco, Seattle, Dallas, and New York), 4 in Europe (Berlin,
Stuttgart, Paris, and London), 1 in Asia (Singapore), and 1 in Australia (Sydney).

4.3.3.1 Simple Scenario

We compared J-Greedy/L-Ignore, J-Greedy/L-Greedy, and J-SA/L-SA in two phases: join
(players join in random order until the system is full) and leave (players leave in the or-
der they joined until the system is empty). The system was initially empty, and players
join/leave in identical order for each algorithm. This scenario demonstrates the behaviour
of each algorithm clearly. Each mirror M j has approximately the same capacity (C j ≈ 720).

4.3. Performance Analysis 82

14
15
16
17
18
19
20

σ

join leave

54

55

56

57

58

59

60

D
el

ay
(m

s)

54

55

56

57

58

59

60

D
el

ay
(m

s)

Key
J-SA / L-SA

J-Greedy / L-Ignore
J-Greedy / L-Greedy

Figure 4.10: Average delay and standard deviation for the simple case.

After each join/leave the average, min, max, and standard deviation (σ) of players’ delays
were calculated. As shown in Figure 4.10, J-Greedy produces optimal results when no
mirror has reached its capacity. However, with one or more saturated mirrors, J-Greedy
is not optimal; the closer the system is to full capacity the worse the performance of J-
Greedy. This is evident from the sharp increase in average delay and standard deviation
when the system exceeds 95% capacity. The difference in average delay for J-Greedy and
J-SA at 100% capacity is 2.65ms, which seems insignificant because it is averaged across
7207 players. To highlight the impact of each algorithm on individual players, Figure 4.11
plots the difference in delay for each player between J-Greedy and J-SA after all players
have joined; a positive value indicates the player has lower response time with J-SA than J-
Greedy, and vice-versa. Figure 4.11 shows the delay difference between J-SA and J-Greedy
when the system is at 100% capacity. A positive value indicates the player has lower delay
with J-SA than J-Greedy and vice-versa. The figure shows that when the system exceeds
95% capacity joining players receive very poor assignments using J-Greedy, up to 87 ms
slower than J-SA; while the reassigned players using J-SA receive a penalty of at most
24ms; therefore, the benefit outweighs the cost. These results show that J-Greedy produces
good results when the system has spare capacity; however, J-SA is far better when the
system is near full capacity. Note, the longest possible chain of reassignments for J-SA is
m−1; however, the average and maximum chain lengths in the simulation were only 0.55

4.3. Performance Analysis 83

-40

-20

0

20

40

60

80

100

D
el

ay
di

ff
er

en
ce

(m
s)

Players

Figure 4.11: Delay difference for simple case.

and 6 respectively.
For the leave phase, Figure 4.10 shows that L-Greedy rapidly improves the assignments

of players when the system capacity is below 95%. Except when the system is close to full,
J-Greedy is close to the optimal L-SA. However, L-Ignore results in significantly worse
delay as it does not improve the assignment of players. As in J-SA, the longest possible
chain of reassignments for L-SA is m−1; however, the average and maximum chain lengths
in the simulation were only 0.31 and 6 respectively.

Note, the min and max player delays are not shown in Figure 4.10 as they are approx-
imately equal for all algorithms (min ≈ 40ms, max≈130ms). This indicates that for each
algorithm at least one player is assigned to a mirror in his city, and an assignment algorithm
cannot improve the delay of players in distant parts of the network.

4.3.3.2 Realistic Scenario

In reality player joins and leaves are interleaved. Pittman and GauthierDickey [110] found
that the rate of player joins for a WoW realm peaked at 500 players per hour. Further,
most player sessions last less than 200 minutes, with a mean of 80 minutes, and can be
accurately modelled using the Weibull distribution [110]. Using these as inputs, for each of
the 7207 players to join and leave exactly once required simulating 34 hours. The number of
active players approximately stabilised after 4 hours, and the maximum concurrent player
population was 737. After 14.4 hours all players had joined. We used 10 mirrors, each
with capacity for 74 clients. As in the simple simulation, statistics were calculated after
each join/leave. Figure 4.12 shows the average delay and standard deviation when the
system capacity is approximately stable. When the player population is below 95% system

4.3. Performance Analysis 84

14
15
16
17
18
19
20

4 6 8 10 12 14

σ

Time (h)

54
55
56
57
58
59
60

D
el

ay
(m

s)

Key
J-SA / L-SA

J-Greedy / L-Ignore
J-Greedy / L-Greedy

Figure 4.12: Average delay and standard deviation for the realistic case.

capacity (hours 4-10), J-Greedy/L-Greedy is far closer to the optimal delay (J-SA/L-SA)
than that obtained by J-Greedy/L-Ignore. However, when the system capacity exceeds 95%
(hours 10-14) joining players suffer poor assignments, significantly increasing the average
delay and standard deviation for J-Greedy/L-Greedy. As in the simple simulation, the min
and max delays (not shown) are approximately equal for all algorithms. The average and
maximum chain lengths for J-SA/L-SA were only 1.3 and 7 respectively.

To measure the impact on the delay of individual players due to client reassignments
when using J-SA/L-SA, the delay for every assignment of each client was recorded. The
client with the highest delay range, 26ms, had 12 assignments, max delay 98ms, mean delay
74ms, and standard deviation 7.15ms. Due to the low delay range, max delay, and standard
deviation, we believe the player’s performance would not be significantly impacted by
mirror reassignments.

4.3.3.3 Speed Comparisons

Table 4.3 compares the average time of each of the CMA-J and CMA-L algorithms for
the simple and realistic scenarios, averaged across 10 input sets, each averaged across 100
runs. The entries for 10 mirrors correspond to the results in Sections 4.3.3.1 and 4.3.3.2.
Consistent with their time complexities, J-SA is approximately 29% slower than J-Greedy,
and L-SA is approximately 18% slower than L-Greedy. In the realistic scenario, however,
J-SA/L-SA is only 8% slower than J-Greedy/L-Greedy. We repeated the simulations with

4.4. Summary 85

Average join/leave time (ms)
m=5 m=10 m=20 m=40

Simple Scenario
J-Greedy 0.0069 0.0114 0.0246 0.0578

J-SA 0.0075 0.0147 0.0356 0.0966
L-Ignore 0.0033 0.0042 0.0063 0.0082
L-Greedy 0.0047 0.0067 0.0135 0.0171

L-SA 0.0046 0.0079 0.0245 0.0438
Realistic Scenario

J-Greedy/L-Ignore 0.0757 0.0810 0.0937 0.1272
J-Greedy/L-Greedy 0.0776 0.0830 0.0996 0.1374

J-SA/L-SA 0.0806 0.0894 0.1392 0.2713

Table 4.3: Average algorithm running time.

5, 20, and 40 mirrors with 7212, 7197, and 7177 players, respectively. The results show
that J-Greedy and L-Greedy scale better than J-SA and L-SA, being approximately twice as
fast with 40 mirrors. However, even with 40 mirrors, the maximum time for J-SA and L-SA
was only 35ms and 25ms, respectively, which would not be noticed by a player. Therefore,
if the system is expected to be close to capacity, we recommend using J-SA and L-SA.

4.4 Summary

In this chapter, we have proposed the MRACS architecture and showed that it performs
better than the RACS and MS architectures. MRACS uses multiple mirrored referees to
reduce the referee’s bandwidth bottleneck in RACS, reduce the player-to-referee delay (in-
creasing responsiveness and fairness), and remove the single point of failure. In contrast
to MS, MRACS allows players to directly exchange updates (increasing the mirrors’ band-
width scalability, responsiveness, and fairness), uses RACS’s cheat prevention protocols,
and utilises a more efficient synchronisation algorithm (increasing processing scalability).
MRACS considers dynamic player joins and leaves, which necessitates the use of a more
effective CMA algorithm than that in MS, which assigns each client to its closest mir-
ror. We have defined the CMA problem and proposed two pairs of algorithms to solve
it: the optimal J-SA/L-SA, and the faster heuristic J-Greedy/L-Greedy. Our simulations
show that the optimal and heuristic algorithms produce significantly lower client delays
than J-Greedy/L-Ignore. The J-SA/L-SA solution performs better than J-Greedy/L-Greedy
when the system is above 95% capacity; otherwise, the latter scheme, which is significantly
faster, produces near optimal results. In Chapter 5 we investigate distributing referees to
untrusted player hosts to minimise the required publisher/developer infrastructure.

Chapter 5

The Distributed Referee Anti-Cheat
Scheme (DRACS)

The RACS and MRACS architectures have superior scalability, responsiveness, and fair-
ness than C/S and MS respectively. However, the publisher must provision the infrastruc-
ture for running the referee(s). In particular, provisioning servers to host the referee(s)
is expensive, and the bandwidth required for running them is an expensive recurring cost
[100]. Further, although RACS and MRACS have better scalability than C/S and MS, they
must still receive and simulate all player updates. Thus, a rapid influx of new players still
has the potential to overload the system. Finally, while the peer-to-referee delay in RACS
and MRACS is less critical than in C/S or MS, low peer-to-referee delay is still beneficial
as the referee’s game state is authoritative. Therefore, peers in distant parts of the network
are disadvantaged.

To maximise responsiveness, fairness, and scalability, and minimise the publisher pro-
visioned infrastructure, this chapter proposes the Distributed Referee Anti-Cheat Scheme
(DRACS) in which referees are distributed to peers. Note that DRACS is a P2P architec-
ture; thus its scalability is intrinsic to that of the P2P system. Therefore, this chapter does
not address the scalability evaluation of DRACS. While the discussion in this chapter is
focused on RACS, the principles are applicable to other P2P network game architectures,
e.g., [36, 64, 76]. DRACS has the following benefits over RACS and MRACS:

1. The publisher provisioned infrastructure is minimised, reducing costs.

2. The referee can be dynamically located close (in terms of delay) to interacting peers,
maximising responsiveness.

3. The referee can be dynamically located with even delay to interacting peers, max-
imising fairness.

4. DRACS is resource growing, making it highly scalable. Each joining player is a
potential candidate for hosting a referee.

86

5.1. Distributed Referee Anti-Cheat Scheme 87

5. The pool of candidate referees naturally follows the diurnal movement of the player
population; thus, avoiding the server placement problem of C/S, RACS, MS, and
MRACS.

While distributing referees to peers has significant advantages, there are several disadvan-
tages that must be overcome:

1. The publisher loses control of the game state, creating additional opportunities for
cheaters.

2. The peers’ bandwidth and processing requirements increase.

3. As the reliability of individual peers is far below that of a well provisioned server,
the protocol must include a fault tolerant mechanism to recover from multiple simul-
taneous referee failures.

4. As a single peer does not have sufficient resources to maintain the entire game state
it must be divided among multiple peers. Further, a mechanism must exist such
that each peer can access the appropriate portion of the authoritative game state, i.e.,
achieving global connectivity.

This chapter investigates referee selection such that responsiveness and/or fairness are max-
imised (benefits 2 and 3), while addressing the potential for cheating (disadvantage 1). We
assume peers have sufficient capacity to support a referee (i.e., we do not address disad-
vantage 2). However, the massive success of P2P networks [99] shows that most desktop
users will have sufficient capacity; low bandwidth devices such as mobile phones may not.
Protocols to provide reliability, distribute the game state, and maintain global connectivity
(disadvantages 3 and 4) are tangential to these problems; thus, they can be addressed by
future work.

The layout of this chapter is as follows. Section 5.1 describes the DRACS architecture.
Sections 5.2, 5.3, and 5.4 describe our system model, propose the referee selection problem,
and propose two possible solutions, respectively. Section 5.5 uses simulation to evaluate
our proposed selection algorithms. Finally, Section 5.6 summarises the chapter. Note, the
work in this chapter was originally published in [146], and was nominated for the best paper
award; therefore, an extended version was published in SCS Simulation [147]. Related
work on the accuracy of delay estimation schemes was published in [143].

5.1 Distributed Referee Anti-Cheat Scheme

As shown in Figure 5.1, DRACS comprises three entities: an authentication server (SA), a
set of n players P = {Pi | Pi is a player with unique ID i}, and a set of m referees R = {R f

| R f is a referee with unique ID f }⊆ P. DRACS assumes the virtual world is divided into

5.2. System Model 88

Z1

P3P1

P2

Z2

...

Z...

P5P4

SASA

R1 R2

R3 R4

Figure 5.1: DRACS architecture.

discrete regions called zones [30, 58, 92, 110, 154], either dynamically or statically, and
that a mechanism exists to transfer players between zones. Let Zx denote a zone x, ZP

x ⊆ P

be the set of players located within zone Zx, and ZR
x be the set of referees controlling zone

Zx. Each player perceives only a small portion of the virtual world and AoI filtering is used
to reduce the size of updates; zones are considerably larger than a player’s AoI.

DRACS uses the principle of mutual checking “you may not trust a single client, but

you trust the consensus of multiple unaffiliated clients” [77] to prevent a single player cheat-
ing. Further, as mutual checking requires referees to be unaffiliated, it also prevents groups
of colluding players from cheating. Note that this solution also prevents groups of griefers
(described in Section 2.2.3) from damaging the authoritative game state.

Referees form a consensus by voting on the authoritative game state. To minimise
voting delay DRACS uses the method proposed by Kabus et al. [76], in which each peer
sends its updates to every referee, each referee simulates all peers’ updates, and returns
the result to the peers (a vote); the authoritative state is decided by the majority vote. To
minimise network delay requires selecting referees with low peer-to-referee delay, without
selecting multiple affiliated referees.

5.2 System Model

Figure 5.2 illustrates the relationships among players, referees, and colluding cheaters.
As in Corman et al. [37], we distinguish between cheating players from colluding play-
ers (cheaters that work together to disrupt the game). Further, we assume the number of
cheaters far exceeds the number of colluding players. Let C = {Ci | Ci is a set of colluding
players}. We assume there is no method for cheating players to identify each other (unless
they are already colluding) as this same method could be used by the publisher to detect
them [37]. Thus, all sets of colluders are disjoint, i.e., Ci ∩C j = /0 for all i 6= j. The size
of the largest group of colluding peers, max(|Ci|), and the percentage of cheaters, K, is

5.3. Referee Selection Problem 89

Figure 5.2: Peer membership.

unknown; however, we assume that the developer can estimate maxC ≈ max(|Ci|) and the
percentage of cheaters k ≈ K.

The publisher provisioned SA is responsible for authenticating and validating joining
players (subscription, banning, etc.), and selecting peers to act as referees; therefore, the
referee selection process is trusted. Further, the publisher may provision a small number
of dedicated trusted referees that can boot-strap the system when the number of players is
small. Note, acting as a referee requires additional bandwidth and processing requirements;
therefore, only peers with sufficient resources should be considered for referees. The band-
width and processing resources for each peer should be transmitted to the SA as part of the
authentication process to achieve this.

Each peer can play and referee at the same time; therefore, ZR
x ⊆P. A referee should not

control the zone in which his avatar is located. In other words, each R f in ZR
x is not in ZP

x ,
i.e., ZR

x ∩ZP
x = /0. If a referee’s avatar moves into a zone it is controlling, then the SA will

select a new referee as a replacement. The following additional checks may be performed
to improve security: (i) a referee must not share the IP address of a player whose avatar
is located within the zone (multiple players sharing one Internet connection), and/or (ii)
a referee must not control a zone containing players where game mechanics indicate bias
(e.g., if they are both members of the same team/guild/clan).

The number of referees per zone, |ZR|, should be set by the developer. Each player in
ZP

x receives the game state from all R f in ZR
x (three lines joining each Pi to ZR

x in Figure
5.2, |ZR| = 3) and takes the majority result; therefore, it requires at least

⌈
|ZR|

2

⌉
colluding

referees controlling one zone to tamper with the game state.
Finally, we model game fairness as the range of the average delay for each peer in ZP

x

to all referees in ZR
x . If all peers receive updates simultaneously from the referees, then the

game is completely fair (delay range 0), whereas, the higher the range of delays, the greater
the unfairness. Note that a game with very high delay may be fair, but unplayable. To be
fun a game should be both fair and playable.

5.3 Referee Selection Problem

Let di, f be the delay from a player Pi to / from a referee R f ; we assume symmetric delay,
i.e., di, f = d f ,i. Given |ZR| and ZP

x for zone Zx, and the publisher’s pre-defined 0≤ Smax ≤ 1

5.3. Referee Selection Problem 90

Figure 5.3: Referee selection example.

and maxC, the Referee Selection Problem (RSP) is to select a referee set ZR
x such that:

1. the probability Sx that there are
⌈
|ZR|

2

⌉
or more colluding referees in ZR

x is not larger
than Smax;

2. the average peer-to-referee delay, dZP
x ,ZR

x
=

∑Pi∈ZPx ,R f ∈ZRx
di, f

|ZP
x |×|ZR

x |
, is minimised; and

3. the difference, ∆, between the maximum and the minimum of the player-referee de-
lays (averaged across all referees in ZR

x) for all peers in ZP
x is minimised, i.e., min-

imise ∆ = max(di,ZR
x
)−min(d j,ZR

x
), where di,ZR

x
=

∑R f ∈ZRx
di, f

|ZR
x |

is the average delay from
a player Pi in ZP

x to all referees in ZR
x .

The game developer should set the probability Smax based on the security requirements of
the game; lower Smax improves security, as it reduces the chance that the majority of refer-
ees in ZR

x are colluding. Further, recall that colluders in one group cannot locate members
of another group (see Section 5.2); therefore, even if every selected referee is a cheater,
provided the majority of referees are from different groups of colluders, security is main-
tained. Hence, the RSP considers security only against groups of up to maxC colluders, not
the union of all groups of colluders. Note that if max(|Ci|)> maxC, or K > k, then we may
not be able to select ZR

x that meets Sx ≤ Smax.
Criteria 2 and 3 are used to improve the game’s QoS; criterion 2 deals with improving

game responsiveness, while criterion 3 addresses game fairness. Since a valid game state
is decided by the majority of referees (not the consensus of all referees), using the average
value (not the maximum delay) in criterion 3 is sufficient to achieve fairness. To illustrate
the criteria, consider Figure 5.3 that includes ZP

x = {P1,P2,P3,P4} and assume we want to
select one referee from two candidate referees, RA and RB. Consider the following player-
to-referee delays (in ms): d1,A = 10, d1,B = 40, d2,A = 20, d2,B = 60, d3,A = 10, d3,B = 40,
d4,A = 100, d4,B = 60. If RA is selected, di, f = 35 and ∆ = 90. However, selecting RB will
give di, f = 50 and ∆ = 20, which is better in terms of criterion 3 but worse for criterion 2.
Note that selecting the peers closest to the players in ZP

x as referees will obviously optimise
criterion 2, but could compromise criterion 1 as it is probable that colluding peers will be
located within the same part of the network. In general, as all three criteria are conflicting
it is not possible to simultaneously optimise all of them.

5.4. Secure Referee Selection Algorithms 91

Figure 5.4: Colluding peer membership.

5.4 Secure Referee Selection Algorithms

The authentication server, SA, holds responsibility for selecting referees. It will run one of
the referee selection algorithms, described in Section 5.4.3 and 5.4.4, for each zone of the
game world.

5.4.1 Estimating Delay between Peers

To address criteria 2 and 3, a solution to the RSP requires knowing all peer-to-peer delays.
Each di, j can be measured using echo packets between peers i and j. One could keep the
delays in a |P|× |P| delay matrix since any peer may potentially act as a referee. Creating
this matrix requires O(|P|2) measurements and space, which becomes infeasible for large
|P|; the time cost is even worse if we consider maintaining the matrix given the dynamic
nature of players and the Internet.

We propose the use of network coordinates [44] to estimate peer-to-peer delay. Network
coordinates provide a good estimation of the delay between any two peers i and j, even if
no direct measurements between i and j have been made. In contrast to using a delay
matrix, in this approach we estimate delay only when it is needed. Therefore, it is much
more bandwidth and space efficient. Note that one can use other methods (e.g., landmarks
[60, 102] or geographic location [93]) to estimate peer delays. We assume that each peer
calculates its own network coordinate and transmits it to the SA.

5.4.2 Size of the Candidate Referee Set

Let ZRP
x = P−ZP

x be the referee pool from which each R f in ZR
x is selected. As shown in

Figure 5.4, ZRP
x may include players from more than one Ci.

The probability Sx of selecting at least α =
⌈
|ZR|

2

⌉
colluding referees is given by

Sx =
∑
|ZR|
i=α
d kψ

maxCe
(

maxC
i

)(
ψ−maxC
|ZR|−i

)
(

ψ

|ZR|

) (5.1)

where ψ is the size of the candidate referee set, ZCR
x ⊆ ZRP

x . We want to find the minimum
value of ψ such that randomly selecting |ZR| peers from ZCR

x will limit Sx to no more than

5.4. Secure Referee Selection Algorithms 92

Peer Centro Major

Figure 5.5: Example 2D network coordinates.

Smax. A simple brute force approach suffices to find this minimum value, since the values
of all other variables in Equation (5.1) are known.

Randomly selecting ZCR
x from ZRP

x , as in Corman et al. [37], will likely result in ob-
taining ZR

x with large peer-to-referee delays and a large range of delays, which fails to
satisfy criteria 2 and 3. In the following subsections, we propose two algorithms, SRS-1
and SRS-2, that meet criterion 1 and balance criteria 2 and 3.

5.4.3 SRS-1

Algorithm SRS-1 emphasises responsiveness (criterion 2) while satisfying security (crite-
rion 1). Given the pre-computed minimum size ψ = |ZCR| from Equation (5.1), SRS-1
performs three steps:

1. Select the candidate referee set ZCR
x ⊆ ZRP

x , such that selecting any subset ZR
x ⊆ ZCR

x

will give a small value of dZP
x ,ZR

x
.

2. Select |ZR| referees randomly from ZCR
x .

3. Artificially inflate peer delays to dF% (defined later) such that F% of peers have equal
delay.

For Step 1, SRS-1 selects referees close to the majority of players. Let (xi, yi) be the
coordinates of Pi. Informally, we define the major as the point in the coordinate space that
is closest to the majority of players in ZP

x . As an illustration, consider Figure 5.5 that shows
an example ZP

x in 2D coordinate space. The total distance, T D(x,y), from a coordinate
(x,y) to all players is:

T D(x,y) = ∑
Pi∈ZP

x

dist((x,y),(xi,yi)) (5.2)

where dist(A,B) is the distance between points A and B. Formally, the major is the point
that minimises Equation (5.2). SRS-1 will form ZCR

x in Step 1 by selecting the ψ peers not
in ZP

x that are closest to the major coordinate. Thus, selecting referees close to the major

addresses criterion 2. The random referee selection in Step 2 addresses criterion 1.
Since this selection does not consider the range of delays, a large range may result, so

Step 3 addresses criterion 3. The mechanism to decrease the range of delays is that a referee
can send updates late to a peer with low delay so that it receives updates at the same time as
a peer with high delay, artificially giving these peers the same delay. We define the fairness

5.4. Secure Referee Selection Algorithms 93

weight 0≤ F ≤ 100% in Step 3 as the minimum percentage of peers who must have equal
average delay to the referees. Specifically, for each peer we calculate the average delay to
all referees, find dF% (the maximum delay among the fastest F% of players), and inflate the
delay of the fastest F% of peers to dF%. The developer may set the weight of F between
0 and 100% to balance responsiveness and fairness (criteria 2 and 3). If SRS-1 inflated
delay for all peers (F = 100%), as proposed by Aggarwal et al. [6], it would inflate all peer
delays to that of the slowest peer, possibly undermining the purpose of Step 1. Using SRS-
1 with F = 0% is analogous to current commercial games [135] which attempt to provide
the fastest service possible to each individual player, ignoring fairness. As an alternative
to setting a fixed weight for F in Step 3, one may use outlier detection (e.g., the box-plot
method [133]) to ignore peers with very high delay when calculating the inflation value.

The referee selection algorithm SRS-1 is shown in Algorithm 5.1. The ma jor(ZP
x)

function returns the major for the set of peers ZP
x , calculated as the median x and me-

dian y values of all players in ZP
x . The find_CR((x, y), ψ, P−ZP

x) function returns the ψ

peers Pi /∈ ZP
x closest to the major coordinates (x, y). Function slowest_peer(ZP

x , ZR
x , F)

returns the average peer-to-referee delay of the F × |ZP
x |th slowest peer. Finally, function

inflate_peers(ZR
x , ZP

x , dF%) notifies all referees in ZR
x to artificially inflate the delay to peers

in ZP
x to dF%. Note that if ZR

x is already partially populated the algorithm will select only
the number of referees required to fill the zone. For example, the algorithm can select a
replacement referee when one leaves the game.

Algorithm 5.1: SRS-1(ψ , r, F)
/* ψ - |ZCR

x | */
/* r - |ZR| */
/* F - The fairness weight */
begin

(x,y) = major(ZP
x)

ZCR
x = find_CR((x,y), ψ , P−ZP

x)
while |ZR

x |< r do
Ri = random(ZCR

x)
ZR

x = ZR
x ∪Ri

ZCR
x = ZCR

x −Ri

end
dF% = slowest_peer(ZP

x , ZR
x , F)

inflate_peers(ZR
x , ZP

x , dF%)
end

5.4.4 SRS-2

Algorithm SRS-2 emphasises fairness (criterion 3) while satisfying security (criterion 1).
As for SRS-1, SRS-2 comprises three main steps:

5.5. Simulation and Discussion 94

1. Select the candidate referee set ZCR
x ⊆ ZRP

x such that selecting any subset ZR
x ⊆ ZCR

x ,
will incur a small inflation value dF%.

2. Select |ZR| referees randomly from ZCR
x .

3. Artificially inflate peer delays to dF% such that the closest F% of peers have equal
delay.

Note that Steps 2 and 3 of SRS-1 and SRS-2 are identical.
We can directly address criterion 3 by selecting referees that minimise the range of peer

delays. However, this approach would unlikely be able to optimise criterion 2, resulting in
a larger dF%. Therefore, SRS-2 selects referees close to the centre of ZP

x , selecting referees
such that the average delay from all referees to the furthest player is minimised. Let the
centro be the point in the coordinate space such that the maximum distance to all players
in ZP

x is minimised. Let the maximum distance, MD(x,y), from a coordinate (x, y) to all
players be:

MD(x,y) = max(∀Pi ∈ ZP
x ,dist((x,y),(xi,yi)) (5.3)

The centro (illustrated in Figure 5.5) is the point that minimises Equation (5.3). How-
ever, if there are some outlying peers located in distant parts of the network they will have
a significant impact on the centro. To prevent this SRS-2 may use outlier detection to ig-
nore distant peers when calculating the centro. For each peer the delay to all other peers is
calculated, and box-plot outlier detection [133] is used to identify distant peers. Similar to
SRS-1, SRS-2 populates ZCR

x with the closest ψ peers, Pi /∈ ZP
x , to the centro.

As some players may be located very close to the centro, there may still be a significant
delay range. As in SRS-1, to achieve criterion 3, in Step 3 the referees artificially inflate
peer delays to dF%. Note that SRS-2 with outlier detection is not effective when F =

100% as it results in generating a large inflated delay, and hence reduces responsiveness.
Therefore, we suggest using SRS-2 with outlier detection only for F < 100%.

SRS-2 is shown in Figure 5.1 by replacing function major(ZP
x) with centro(ZP

x). In this
thesis, we use gradient descent [9] in function centro() to find the coordinates.

5.5 Simulation and Discussion

We use simulation to compare the effectiveness of SRS-1 and SRS-2 in addressing criteria
2 and 3 against random referee selection, which is equivalent to SGA [37]. The simulations
require knowing the peer-to-peer delays, di, j, and their avatar locations. As no trace data
from a real MMOG is available, we synthesised three representative topologies. Simulation
5.1 uses a topology constructed from public information about World of Warcraft (WoW)
[21] and measured Internet delays [93]. Simulation 5.2 uses an artificial topology to high-

5.5. Simulation and Discussion 95

Region (%) Peers
China: 44 2200
USA: 25

Boston: 25 313
Dallas: 33 413
LA: 28 350
Seattle: 14 175

Europe: 19
UK: 46 437
Germany: 35 333
France: 16 152
Spain: 3 28

Other: 12 599

Table 5.1: Player distribution for Simulation 5.1

light the difference between SRS-1 and SRS-2. Simulation 5.3 uses the realistic topology
from Section 3.4.3.1 to demonstrate SRS-1 and SRS-2 in a realistic simulation.

5.5.1 Simulation 5.1

Table 5.1 shows the percentage of WoW players located in each geographical region [3, 20,
148]; WoW is one of the most popular MMOG to-date, with over 11.5 million subscribers
globally [20]. We assume the Other players are located in Australia as it has significant
delay to other regions [93] and a moderate WoW player base [148].

As shown in the table, for Simulation 5.1, we generated a network game topology with
5000 peers distributed according to the WoW player distribution. We used reference [93]
to approximate the delay between these regions, and as most game players have broadband
access [136], we added a last hop delay of 20ms [86] to all peers. We used the Vivaldi [44]
simulator in matrix mode for 3× 106 rounds to construct 2D network coordinates for all
peers from the topology.

Following WoW that allows groups of up to 40 players [148], our simulation populates
ZP

x with 40 peers and selects |ZR|= 3 referees using random referee selection (SGA), SRS-
1, and SRS-2. To show the impact of the distribution of players in ZP

x on each algorithm,
we generated 41 different player distributions for 0 ≤W ≤ 40, where W is the minimum
number of players located in the US. For each W value, we selected the other 40−W

players randomly from around the world (including the US). We assumed k = 2% [100],
maxC = 10, and Sx = 0.1; therefore, ψ = 50. The experiment was repeated 100 times for
each of the 41 player distributions and the results were averaged, for inflated values d100%,
d80%, and d60%. To evaluate the performance of our solutions when delay is not inflated, the
figure includes the average peer-to-referee delay. Note that the current industry standard
attempts to maximise responsiveness for every player individually, ignoring fairness, and
therefore the average delay measure reflects the current standard.

5.5. Simulation and Discussion 96

60

80

100

120

140

160

180

0510152025303540

D
el

ay
(m

s)

W
Random: Average

SRS-1: Average
Random: d100%

SRS-1: d100%
SRS-1: d80%
SRS-1: d60%

Figure 5.6: Simulation 5.1 results.

As shown in Figure 5.6, the average delay for SRS-1 outperforms random selection,
even when only 25% of players are in the US (W = 10). As interacting players for an
MMOG are often located in the same region of the network [33] (e.g., above 50% in the
US), SRS-1 should be very effective in practise.

The figure also shows the performances of the algorithms when the publisher sets the
weight of F. As shown in the figure, for F = 100%, SRS-1 is better than random selection
only when W ∈ [40,37] (i.e., at least 92.5% of the players are in the US). This result shows
that it is not possible to achieve fairness and responsiveness to all players when even a small
number of peers are located in distant parts of the network. Decreasing F trades fairness
for responsiveness. The figure shows that when F = 80%, the maximum delay remains the
same even when 8

40 = 20% of the players are not in the US. Reducing F to 60% further
reduces the effects of distant players (i.e., tolerating almost 20

40 = 50% of peers outside the
US) on the maximum response time, shifting the curve in the figure to the right. The results
for SRS-2 for this topology are comparable to SRS-1, and therefore are excluded from the
figure.

5.5.2 Simulation 5.2

The difference between SRS-1 and SRS-2 is not apparent from Simulation 5.1 due to the
structure of the topology. For Simulation 5.2 we generated an artificial topology with three
locations, East Coast (East), Central, and West Coast (West) of the US, with delays between
East/West to Central of 50ms, and East to West of 100ms. From Table 5.1, 25% of players
are located in the US, and therefore we generated |P| = 25%× 5000 = 1250 players. We
distributed them evenly among the three locations, and generated network coordinates sim-

5.5. Simulation and Discussion 97

40

60

80

100

120

140

2025303540

D
el

ay
(m

s)

E
Random: Average

SRS-1: Average
SRS-2: Average

Random: d100%
SRS-1: d100%
SRS-2: d100%

Figure 5.7: Simulation 5.2 results.

ilar to Simulation 5.1. We assumed 20≤ E ≤ 40 interacting players are located in the East,
and the remaining 40−E players were located in West; the referees are selected from any
of the three regions.

As shown in Figure 5.7, when 100% fairness is guaranteed, SRS-2 is significantly better
than SRS-1. In contrast, when fairness is not guaranteed, the average delay for SRS-1 is
significantly better than SRS-2. Note that the average and d100% delays are almost identical
for SRS-2. Provided P is distributed across many centres in the network, and not confined to
a small number of locations as in Simulation 5.1, we believe the results will be comparable
to Figure 5.7.

Simulation 5.2 indicates that SRS-1 succeeds in its emphasis on responsiveness and
SRS-2 succeeds in its emphasis on fairness. Consequently, a developer can choose either
algorithm depending on which criterion is more important.

5.5.3 Simulation 5.3

The inputs to Simulations 1 and 2 do not model the complexity of the Internet or player
behaviour. Simulation 5.3 addresses these shortcomings by using the realistic inputs from
Section 3.4.3.1. Sets for ZP

x and P were extracted from the mshmro.com March 2007 server
log. A set ZP

x is populated with all participating players (a player is participating if he kills
an opponent or is killed) in a randomly selected 10 minute interval. One hundred ZP

x sets
were generated for the simulation. To capture the diurnal behaviour of players, we divide
each day of the log into six different 4-hour blocks as in [56] - 12am-4am, 4am-8am, 8am-
12pm,12pm-4pm, 4pm-8pm, 8pm-12am. For each 4 hour time period, all 31 blocks were
merged to produce a month block (6 month blocks in total). We assume a month block

5.6. Summary 98

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

D
el

ay
(m

s)

Iteration number
Random: Average

SRS-1: Average
Optimal: Average

Figure 5.8: Simulation 5.3 average delay.

represents P, the set of players in the MMOG at a given time of day. Finally, we generated
10D [155] network coordinates for all players in the realistic topology by using Vivaldi for
2×106 rounds.

The average delays between each peer in ZP
x and every candidate referee in ZCR

x for
SRS-1, random selection, and optimal selection are shown in Figure 5.8. SRS-1 achieves
excellent results; they are only 10.12ms (18%) slower than optimal on average, whereas
random selection is 21.51ms (37%) slower. Due to the low average delay of peers in the
data set we anticipate even better results in practise. The maximum delays (d100%) between
a peer in ZP

x and a candidate referee in ZCR
x for SRS-2, random selection, and optimal

selection are shown in Figure 5.9. While SRS-2 does improve upon random selection, the
benefit is small, with SRS-2 and random selection being on average 228.12ms (246%) and
284.94ms (307%) slower than optimal. Vivaldi produces accurate delay estimations for the
majority of nodes; however, it can produce wildly inaccurate results for a small percentage
of nodes [91]. We believe this is the reason for the poor results in Figure 5.9, as a single
node in either ZP

x or ZR
x can increase the maximum delay.

5.6 Summary

Distributing referees to peers has the potential to maximise scalability, responsiveness, and
fairness, while minimising the required infrastructure. However, this increases the opportu-
nity for cheating as the publisher loses control of the authoritative game state. This chapter
has proposed the Distributed Referee Anti-Cheat Scheme (DRACS), and investigated the
Referee Selection Problem (RSP). We formally defined the RSP, the solution being critical

5.6. Summary 99

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

D
el

ay
(m

s)

Iteration number
Random: d100%

SRS-2: d100%
Optimal: d100%

Figure 5.9: Simulation 5.3 maximum delay.

to prevent cheating and improve the performance of P2P network games that use referees to
identify cheaters. The RSP raises three criteria in selecting an optimal referee set: security,
responsiveness, and fairness. We have argued that the three requirements are conflicting,
and therefore proposed two heuristic algorithms, SRS-1 and SRS-2, to solve the RSP.

SRS-1 solves the RSP by selecting referees such that the average peer-to-referee de-
lay is minimised (emphasising responsiveness), while SRS-2 selects referees such that the
maximum distance to all players is minimised (emphasising fairness). We have evalu-
ated our algorithms using three simulations and discussed the merits of the solutions. We
suggest game developers, first, use Equation (5.1) to calculate the minimum size of the
candidate referee selection pool to meet their required level of security. Then, use either
SRS-1 or SRS-2 to select referees, depending on the game requirements for responsiveness
and fairness.

Two areas currently not addressed by DRACS are reliability and global connectivity.
As there is a high probability of referee failure (compared to the servers in C/S, etc.),
DRACS requires a secure failure recovery mechanism to be practical. Further, as each ref-
eree handles only a small portion of the virtual world, DRACS needs a global connectivity
mechanism to allow players’ avatars to move throughout the world, transitioning between
peers. These two problems are left as future work.

Chapter 6

Conclusion

6.1 Summary

This thesis has investigated problems and proposed solutions related to network game
cheating, scalability, responsiveness, and fairness. It reviews all known cheats and anti-
cheat solutions, and proposes a new cheat classification. The theme of this thesis is the use
of trusted referees to increase scalability and responsiveness while preventing cheating. As
in traditional sporting events, referees observe the game and only intervene when the rules
are not followed. The referee’s role is passive, in contrast to the active role played by the
server in C/S architectures, and thus it has lower computation and bandwidth requirements
than the server in C/S.

In Chapter 3, we proposed the Referee Anti-Cheat Scheme (RACS). Further, we have
proposed two centralised round length adjustment algorithms, an optimal brute force ap-
proach, and a faster voting algorithm. For architectures with a trusted third party, these
algorithms are preferable to the distributed approach in [64]. We used analytical analysis
to show that RACS has lower delay and bandwidth than C/S, NEO [64], and SEA [36];
and cheat prevention/detection equal to that in C/S (exceeding that in NEO and SEA). Fur-
ther, we used simulation to evaluate RACS and our round length adjustment algorithms.
Since there are currently no publicly available traces of MMOG, Chapter 3 also describes
how we constructed two classes of inputs, artificial and realistic, used in the simulations
throughout this thesis. The artificial inputs are simple and unrealistic, but clearly demon-
strate system behaviour. The realistic inputs are complex, and constructed from real-world
traces of network games and Internet measurements. Using the artificial and realistic inputs
our simulations show that RACS has lower delay and bandwidth than C/S, and that RACS
remains effective when packet loss and cheating occur. Finally, we use simulation to show
the effectiveness of our round length adjustment algorithms. While RACS has far better
scalability than C/S, with only one trusted referee it may still suffer a system bottleneck.

In Chapter 4, we proposed the Mirrored Referee Anti-Cheat Scheme (MRACS) that
combines the favourable features of the RACS and Mirrored Server (MS) [41–43] architec-

100

6.2. Future Work 101

tures. MRACS has better responsiveness, fairness, and bandwidth scalability than RACS
and MS, while removing RACS’s single point of failure, addressing cheating in MS, and re-
ducing processing costs in MS. MRACS, unlike RACS, requires the publisher to provision
multiple servers connected via a private network, each hosting a mirrored referee. Chapter
4 also discusses the Client-to-Mirror Assignment (CMA) problem for mirrors with limited
resources; which is applicable to MRACS, MS, and other applications involving mirrored
resources with long term connections (e.g., video streaming). We have proposed the opti-
mal J-SA/L-SA and the faster heuristic J-Greedy/L-Greedy; all algorithms run in polyno-
mial time. Our analytical and simulation results show that MRACS has better scalability
and responsiveness than RACS and MS, and thus C/S. Further, we have used simulation to
show that J-SA/L-SA and J-Greedy/L-Greedy produce significantly lower client-to-mirror
delays than the existing J-Greedy/L-Ignore.

Finally, in Chapter 5, we proposed the Distributed Referee Anti-Cheat Scheme (DRACS)
that distributes referees to peers to maximise scalability, responsiveness, and fairness;
while minimising the required publisher provisioned infrastructure. Like in references
[30, 58, 109, 154], DRACS assumes the virtual world is partitioned into zones. DRACS se-
lects a set of referees, each running on an untrusted peer, to prevent and/or detect cheating
among the players in the zone. We have formally defined the Referee Selection Problem
(RSP) to securely select referees such that responsiveness and/or fairness are maximised,
while preventing cheating. We have proposed two centralised solutions for RSP, SRS-1
and SRS-2, which maximise responsiveness and fairness respectively. We use simulation
to show that both algorithms are far superior to random selection, which is equivalent to
the distributed approach proposed by Corman et al. [37].

6.2 Future Work

While considerable effort has been made to ensure the simulations and analysis are as
realistic as possible, real implementations and evaluations of RACS, MRACS, and DRACS
on games of different genres would strengthen this work. Note, an early version of the
RACS protocol has been implemented and evaluated by Palmer [107].

RACS provides cheat prevention equal to that in C/S; however, the cost of digitally
signing every message consumes considerable bandwidth and processing power. The costly
digital signatures are used to prevent the inconsistency cheat, which is rare in current com-
mercial games. One may investigate replacing the digital signatures with encryption for
messages sent to and from the referees (MPR and MRP), reducing bandwidth and process-
ing costs while maintaining the protocol’s cheat-free features. Further, in many games it
may be sufficient to detect the occurrence of the inconsistency cheat, without determining
which player is cheating. For this case, we believe one can implement a simplified RACS
protocol without using digital signatures.

6.2. Future Work 102

While several protocols have been proposed which divide time into rounds (e.g., AS,
NEO, RACS, MRACS, etc.), very little work has been done to evaluate how round length
influences player performance and enjoyment in commercial games. It is also worth inves-
tigating improving the performances of RACS, MRACS, and DRACS by allowing different
round lengths for different players, depending on their network capacity.

In Chapter 4 we did not consider the mirror placement problem [81, 117, 129] as it is
heavily influenced by business considerations [100]. However, this is an important problem
for minimising client-to-mirror delay. Thus, investigating strategies to aid publishers and
developers in locating mirrors is a potential area of future research.

Our proposed DRACS architecture in Chapter 5 does not address mechanisms for re-
covering from failures, partitioning the virtual world, and maintaining global connectivity.
We leave these issues for future work.

Appendix A

L-SA Optimality Proof

The following proof was developed by Jerry Trahan1.
The L-SA algorithm updates the Client-to-Mirror Assignment (CMA) when a client

leaves. L-SA is optimal, that is, if the CMA with n clients, CMAn, had minimum to-
tal client-to-mirror delay (minimum delay(CMAn)) among all possible assignments before
client Pi leaves, then the CMA with n− 1 clients, CMAn−1, produced by L-SA after Pi

leaves has minimum delay(CMAn−1). The optimality proof has the following structure.
First, function construct_labels_leave() is optimal in that it constructs, for each occupied
(i.e., non-empty) mirror MO, the least cost chain of player reassignments from MO to MX ,
where MX is the mirror from which Pi left, if a negative cost chain exists. Second, let CMA−n
denote CMAn with Pi removed. For any alternative assignment CMA∗n−1 6= CMAn−1, we
can construct a transformation graph G showing the changes in client assignments between
CMA−n and CMA∗n−1. We will decompose G into cycles and paths, where each path corre-
sponds to a sequence of client moves ending at a mirror that was not full under CMA−n . We
will show that each cycle and each path (except possibly a path ending at MX) must either
not change the overall total client-to-mirror delay or increase the delay.

Notation: This proof uses the same notation as in Chapter 4, but is repeated here for
convenience. Player Pi is the leaving player, and, CMAn assigned Pi to MX . The transfer
heaps array TH[1...m, 1..m] is an array of min heaps. Min heap TH[R, S] contains tuples
(cost, player), where cost is the delay offset of transferring player from MR to MS (i.e.,

d j,S− d j,R for player Pj). Array element Label[Y] is a pair (cost, mirror) representing a
chain starting from MY and ending at MX : mirror is the next mirror in the chain after MY ;
for a pair of mirrors MR and MS in sequence along this chain, the minimum cost tuple of
TH[R, S] identifies the player Pj to move from MR to MS and identifies the change in delay
due to this move; and cost is the additional delay (called chain cost) of reassigning players
along this chain.

Function construct_labels_leave() essentially runs the Bellman-Ford single-source short-

1Jerry L. Trahan, email to the author, June 29th, 2010.

103

104

est paths (SSSP) algorithm. In the SSSP graph, each vertex corresponds to a mirror, and
the weight of edge (u, v) is the minimum cost of transferring a player from Mu to Mv (i.e.,
TH[u, v].cost). Rather than finding the shortest path from a source s to each vertex in a
graph, construct_labels_leave() reverses direction to find the least cost path with negative
cost from each mirror to mirror MX . Also, it omits some edges that have no bearing on the
result.

Lemma 1. Given an optimal CMAn and a player leaving MX , construct_labels_leave()
finds for each occupied mirror MO, the negative cost chain to MX with least cost, if a

negative cost chain exists.

Proof. We argue the optimality of construct_labels_leave() with the optimality of the Bell-
man-Ford SSSP algorithm. Function construct_labels_leave() runs Bellman-Ford on a
graph with a vertex for each mirror and the weight of edge from vertex u to vertex v is
equal to the minimum change in delay from transferring a player from Mu to Mv. Rather
than dealing with the complete graph, it limits its search by omitting edges that cannot be
part of any negative cost path. Consequently, the algorithm will find shortest paths to vertex
X (least cost chains to MX) for the graph it processes, so the rest of the proof establishes
that omitting some edges does not change the result if a negative-cost chain exists.

The initialisation process sets Label[X] to (0, -), and sets Label[Y] to (∞, -) for all other
mirrors MY ∈M. The “graph” on which construct_labels_leave() finds shortest paths has
a vertex for each mirror and edges from vertices corresponding to MO ∈ M, where MO is
occupied (not empty) and O 6= X , to vertices corresponding to MY ∈M, where Y 6= O and
(MY is full or Y = X). This “graph” omits the following edges:

(i) edges originating from empty (unoccupied) mirrors,

(ii) edges originating from MX (i.e., MO = MX),

(iii) self-loops (i.e., MY = MO), and

(iv) edges to non-full mirrors other than MX .

The omitted edges cannot be on any negative cost path (chain) for the following reasons:

(i) If a mirror is empty, then it has no players to transfer to other mirrors. Also, no reason
exists to consider moving a player through an empty mirror ME , since the change in
delay in moving a player from MO to ME to MY is the same as moving the player
directly from MO to MY .

(ii) If MO = MX , then this corresponds to a chain starting from MX , forming a cycle.
Because CMAn was optimal, no negative cost cycle can exist.

(iii) A self loop does not change the assignment or total client-to-mirror delay.

105

(iv) If a chain to a non-full mirror (other than MX) has negative cost, then updating CMAn

by making the transfers along that chain would result in a lower cost assignment,
contradicting the optimality of CMAn.

Theorem 1. Algorithm L-SA is optimal.

Proof. Let CMAn denote the client-to-mirror assignment before player Pi leaves. Assume
that CMAn was optimal, that is, it had minimum total client-to-mirror delay among all pos-
sible client-to-mirror assignments. Let CMA−n denote CMAn with Pi removed. Let CMAn−1

denote the client-to-mirror assignment produced by L-SA after Pi leaves, and CMA∗n−1 be
any alternative assignment. We will prove that CMAn−1 has minimum total client-to-mirror
delay among all possible client-mirror assignments (i.e., delay(CMA∗n−1)≥ delay(CMAn−1)

for all possible CMA∗n−1). For any assignment CMA∗n−1 6=CMAn−1 there are five possible
cases:

1. MX was not full under CMAn, and MX is not full under CMA∗n−1;

2. MX was not full under CMAn, and MX is full under CMA∗n−1;

3. MX was full under CMAn, MX is not full under CMA∗n−1, and Label[Z].cost ≥ 0;

4. MX was full under CMAn, MX is full under CMA∗n−1, and Label[Z].cost ≥ 0; and

5. MX was full under CMAn, and Label[Z].cost < 0.

For case 1, after removing Pi from MX , if MX ’s available capacity is greater than 1, that is,
MX was not full before Pi left, then L-SA simply removes Pi and returns CMA−n as CMAn−1.
If some other assignment CMA∗n−1 had smaller delay than CMAn−1, and non-full MX , then
delay(CMA∗n−1)+ di,X would be smaller than delay(CMAn), contradicting the optimality
of CMAn. Similarly for case 3, if after removing Pi from MX , MX ’s available capacity is
1 but Label[Z].cost ≥ 0 (Z is the label with minimum cost), then L-SA again removes Pi

and returns CMA−n as CMAn−1. By the same argument, CMAn−1 is optimal considering all
assignments CMA∗n−1 with non-full MX . We will examine cases 2 and 4 at the end of the
proof.

The next portion of the proof deals with the case in which MX was full before Pi left
and Label[Z].cost < 0 (case 5). Consider some assignment CMA∗n−1 for the players af-
ter Pi has left. Construct a transformation graph G describing the player movements to
transform CMA−n to CMA∗n−1. We will prove that the weight of edges in G is greater than
or equal to Label[Z].cost, so delay(CMA∗n−1) ≥ delay(CMAn−1). Graph G is a directed,
weighted multigraph with a vertex u for each mirror Mu. If a player Pj connects to Mu un-
der CMA−n and to Mv under CMA∗n−1, then G contains an edge (u, v) with weight d j,v−d j,u.
Observe that if multiple players connect to Mu under CMA−n and to Mv under CMA∗n−1,
then G contains multiple edges from u to v, each with weight corresponding to the delay
difference. For a full mirror MF in CMA−n , indegree(F) ≤ outdegree(F); otherwise, MF

106

would be overloaded in CMA∗n−1. For a non-full mirror MS in CMA−n , indegree(S) can be
less than, equal to, or greater than outdegree(S).

We now remove cycles from G and decompose the remaining graph into paths that end
at vertices corresponding to non-full mirrors in CMA−n . Find a simple cycle c in G, remove
the edges in c, and repeat until no more cycles remain. Let H denote the directed acyclic
graph remaining after removing the cycles. Decompose H into set K of paths as follows.
Topologically sort H, then repeat the following until no more edges remain. Start from the
lowest indexed vertex with an outgoing edge. Select an outgoing edge from this vertex to
extend the path (choose an arbitrary edge if more than one outgoing edge exists), and repeat
from the new endpoint until reaching a vertex with no outgoing edges. Add this path to K

and remove its edges from H.
For a simple cycle c removed from G, suppose that cost(c) < 0. This cycle describes

a reassignment of one player to each mirror and one player from each mirror on the cycle,
so it overloads no mirror. If we make the same sequence of reassignments to CMAn, then
the resulting assignment has a delay less than delay(CMAn), contradicting the optimality
of CMAn, so cost(c)≥ 0.

For each path ke ∈ K, we will prove three properties:

1. ke ends at a vertex corresponding to a non-full mirror in CMA−n ;

2. if ke ends at vertex Y such that MY 6= MX , then cost(ke)≥ 0 (i.e., any path not ending
at MX cannot reduce the total delay); and

3. if ke ends at vertex X corresponding to MX , then cost(ke) ≥ Label[Z].cost in L-SA
(i.e., all paths ending at MX have equal or greater delay than the transfer chain from
MZ to MX in L-SA.

For property 1, let L denote the set of vertices in H with in-degree less than or equal to
out-degree. Set L contains all vertices corresponding to full mirrors in CMA−n , and it
may contain vertices corresponding to non-full mirrors. Consider the first path k0 =<

v0, v1, ..., vq > at the time of its construction. By definition, vq has at least one incoming
edge and no outgoing edge, so vq ∈ V −L and corresponds to a non-full mirror. To show
that the conditions on vertices in L hold as the path construction proceeds, we want to show
that if vt ∈ L before removing the edges in k0, then indegree(vt)≤ outdegree(vt) still holds
after removing the edges in k0. If vt /∈ k0, then its degrees do not change. If vt = v0, then
its in-degree was 0 before constructing k0, so indegree(vt)≤ outdegree(vt) still holds after
removing the edges in k0. If vt ∈ {v1, v2, ..., vq−1}, then removing edges in k0 decreases
both in-degree and out-degree by one. Finally, vt cannot be vq because vq ∈V −L. Because
the conditions on in-degree and out-degree of vertices in L hold before creating k0 and after
removing the edges in k0, then they hold through the construction of all other paths, so, like
vq ∈ k0, each path in K ends at a vertex corresponding to a non-full mirror.

107

For property 2, suppose ke =< v0, v1, ..., vq > ends at vertex Y such that MY 6= MX .
Assume that cost(ke) < 0. Since MY 6= MX and property 1, MY was a non-full mirror in
CMAn. Therefore, the sequence of player transfers described by ke could be made to CMAn,
ending with an overall delay smaller than that of CMAn. This contradicts the optimality of
CMAn, so cost(ke)≥ 0.

For property 3, suppose ke ends at MX . The chain of player reassignments made by L-
SA has cost Label[Z].cost < 0; by Lemma 1, this chain has the least cost among all chains
of reassignments ending at MX . Consequently, cost(ke)≥ Label[Z].cost.

This completes the proof that when MX was full before Pi left and Label[Z].cost < 0
(case 5).

We return now to case 2, where MX was not full before Pi left and consider alterna-
tive assignments CMA∗n−1 with full MX . The transformation graph argument given above
applies up to the three properties. Property 1 and its proof hold in this case. Replace Prop-
erties 2 and 3 with Property 2a: cost(ke)≥ 0. Suppose ke =< v0, v1, ..., vq > ends at vertex
Y. Assume that cost(ke) < 0. If MY 6= MX , then property 1, MY was a non-full mirror in
CMAn. If MY = MX , then for this case MY was a non-full mirror in CMAn. Therefore, the
sequence of player transfers described by ke could be made to CMAn, ending with an overall
delay smaller than that of CMAn. This contradicts the optimality of CMAn, so cost(ke)≥ 0,
and this completes the proof for this case.

Finally, we return to case 4, where MX was full before Pi left, MX is full under CMA∗n−1,
and Label[Z].cost ≥ 0. The transformation graph argument given above applies up to the
three properties. Property 1 and its proof hold again in this case. Replace Properties 2 and
3 with Property 2a: cost(ke) ≥ 0. The proof given above for Property 2 holds here where
MY 6= MX . If MY = MX , then by Lemma 1 since Label[Z].cost ≥ 0, no negative cost chain
to MX exists, so cost(ke)≥ 0, and this completes the proof for this case.

Collecting these facts about cycles and paths in the decomposition, delay(CMA∗n−1)

≥ delay(CMAn−1) for any assignment CMA∗n−1.

Appendix B

Copyright Permissions

This thesis is based upon several works that have been published over the course of the
author’s PhD. Except for two publications, the copyright agreements for my papers allow
the authors to re-use their material in derivative works; thus, copyright permission is not
required. The following permissions were obtained to allow the re-use of material from
these two papers.

•Webb, S. D., W. Lau, and S. Soh (2006). NGS: An application layer network game
simulator. In Proc. Interactive Entertainment (IE), pp. 15-22.

From: K.Wong@murdoch.edu.au
To: steven.webb@postgrad.curtin.edu.au
Date: 4 September 2009
Subject: RE: Copyright permission for CGIE06
Hi Steve,

Just realised that the copyright belongs to me (as one of the editors of the proceedings)
at Murdoch university. In this case, it is ok for you to include in your thesis as long as
you also make reference to the proceedings. The electronic version of the proceedings
are at the following:

http://portal.acm.org/citation.cfm?id=1234341

http://portal.acm.org/citation.cfm?id=1231894

Cheers,

Kevin

108

109

• Webb, S. D., S. Soh, and J. L. Trahan (2009). Secure referee selection for fair and re-
sponsive peer-to-peer gaming. SIMULATION: Transactions of The Society for Modelling

and Simulation International 85(9), 608-618.

From: Marta.Granatowska@sagepub.co.uk
To: steven.webb@postgrad.curtin.edu.au
Date: 3 July 2009
Subject: RE: Permission to reuse work

Dear Steven,
Thank you for your e-mail. Please consider this e-mail to be written permission for the
below request.
Kind regards,
Marta Granatowska
Rights Executive
SAGE Publications Ltd

From: steven.webb@postgrad.curtin.edu.au
To: permissions@sagepub.com
Date: 2 July 2009
Subject: Permission to reuse work

Sage permissions,
I am currently writing my PhD thesis and would like to use large extracts copied
verbatim from an article I had published with SAGE: Webb, S. D., S. Soh, and
J. L. Trahan (2009). Secure referee selection for fair and responsive peer-to-peer
gaming. SIMULATION: Transactions of The Society for Modelling and Simulation

International 85(9), 608-618. This article is currently available though OnlineFirst.

It is a requirement of my degree that my thesis is made publicly available via the Aus-
tralian Digital Thesis Collection (http://adt.caul.edu.au). The material will be provided
strictly for educational purposes and on a non-commercial basis. Full acknowledge-
ment of the ownership of the copyright and the original source of the material will be
provided with the material. I would be willing to use a specific form of acknowledge-
ment that you may require and to communicate any conditions relating to its use.
Kind regards,
Steven Daniel Webb.

Bibliography

[1] Diablo III. http://www.diablo3.com/.

[2] Fallout 3. http://fallout.bethsoft.com/.

[3] WoW Realm Status. web page. http://www.wowrealmstatus.net/.

[4] Abadi, M. and R. Needham (1996). Prudent engineering practice for cryptographic
protocols. IEEE Trans. Software Engineering 22(1), 6–15.

[5] Abdelkhalek, A., A. Bilas, and A. Moshovos (2003). Behavior and performance of
interactive multi-player game servers. Cluster Computing 6, 355–366.

[6] Aggarwal, S., H. Banavar, S. Mukherjee, and S. Rangarajan (2005). Fairness in dead-
reckoning based distributed multi-player games. In Proc. Network and Systems Support

for Games (NetGames), pp. 1–10.

[7] AhnLab. Hackshield. web page. http://www.hackshields.com/.

[8] Alexander, T. (Ed.) (2005). Massively Multiplayer Game Development 2. Hingham,
Massachusetts: Charles River Media, Inc.

[9] Arfken, G. (1985). Mathematical Methods for Physicists (3 ed.). Academic Press.

[10] Armitage, G. (2003). An experimental estimation of latency sensitivity in multiplayer
Quake 3. In Proc. International Conference on Networks (ICON), pp. 137–141.

[11] Armitage, G. (2008a). Client-side adaptive search optimisation for online game server
discovery. In Proc. IFIP/TC6 NETWORKING, pp. 494–505.

[12] Armitage, G. (2008b). Discovering first person shooter game servers online: tech-
niques and challenges. International Journal of Advanced Media and Communica-

tion 2(4), 402–414.

[13] Baughman, N. E., M. Liberatore, and B. N. Levine (2006). Cheat-proof playout for
centralized and peer-to-peer gaming. IEEE/ACM Trans. Networking 15(1), 1–13.

110

Bibliography 111

[14] Beigbeder, T., R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool (2004).
The effects of loss and latency on user performance in unreal tournament 2003. In Proc.

Network and Systems Support for Games (NetGames), pp. 144–151.

[15] Bernier, Y. W. (2001). Latency compensating methods in client/server in-game pro-
tocol design and optimization. In Proc. Game Developers Conference (GDC).

[16] Bettner, P. and M. Terrano (2001). 1500 archers on a 28.8: Network programming in
Age of Empires and beyond. In Proc. Game Developers Conference (GDC).

[17] Bharambe, A., J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan, and
X. Zhuang (2008). Donnybrook: Enabling large-scale, high-speed, peer-to-peer games.
In Proc. SIGCOMM, pp. 389–400.

[18] Blizzard (2002, Aug). Map hack. web page.
http://www.blizzard.com/support/?id=nNews054p.

[19] Blizzard Entertainment (2006). World of Warcraft. web page.
http://www.worldofwarcraft.com/ Last accessed on the 27th June 2006.

[20] Blizzard Entertainment (2008a, Nov). World of warcraft subscriber base
reaches 11.5 million worldwide. Press Release. http://us.blizzard.com/en-

us/company/press/pressreleases.html?081121.

[21] Blizzard Entertainment (2008b, Jan). World of warcraft surpasses 9 million sub-
scribers worldwide. Press Release. http://www.blizzard.com/ press/070724.shtml.

[22] Boorstyn, R. R. and H. Frank (1977). Large-scale network topological optimization.
IEEE Trans. Communications 25(1), 29–47.

[23] Brack, J. A. and F. Pearce (2009, September). GDC Austin: An inside look
at the universe of Warcraft. Conference talk. http://www.gamasutra.com/php-

bin/news_index.php?story=25307.

[24] Brandt, D. (2005). Networking and scalability in EVE Online. Slide Show.
http://www.research.ibm.com/netgames2005/papers/brandt.pdf Last accessed on the
7th March 2006.

[25] Brun, J., F. Safaei, and P. Boustead (2006). Fairness and playability in online
multiplayer games. In Proc. Consumer Communications and Networking Conference

(CCNC), pp. 1199–1203.

[26] Caldwell, P. (2006, July). Blizzarrd bans 59,000 WOW accounts. web page.
http://au.gamespot.com/news/6154708.html.

Bibliography 112

[27] Cecin, F., R. Real, R. de Oliveira Jannone, C. R. Geyer, M. Martins, and J. V. Barbosa
(2004). FreeMMG: A scalable and cheat-resistant distribution model for Internet games.
In Proc. Distributed Simulation and Real Time Applications (DS-RT), pp. 83–90.

[28] Chambers, C., W. C. Feng, S. Sahu, and D. Saha (2005). Measurement-based charac-
terization of a collection of on-line games. In Proc. Internet Measurement Conference

(IMC), pp. 1–14.

[29] Chen, B. D. and M. Maheswaran (2004). A cheat controlled protocol for central-
ized online multiplayer games. In Proc. Network and Systems Support for Games

(NetGames), pp. 139–143.

[30] Chen, J., B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza (2005). Locality aware
dynamic load management for massively multiplayer games. In Proc. Principles and

Practice of Parallel Programming (PPoPP), pp. 289–300.

[31] Chen, K.-T., P. Huang, and C.-L. Lei (2006). Game traffic analysis: an MMORPG
perspective. Computer Networks 50(16), 3002–3023.

[32] Chen, K.-T., P. Huang, and C.-L. Lei (2009). Effect of network quality on player
departure behavior in online games. IEEE Trans. Parallel and Distributed Systems

(TPDS) 20(5), 593–606.

[33] Chen, K. T. and C. L. Lei (2006). Network game design: Hints and implications of
player interaction. In Proc. Network and Systems Support for Games (NetGames), pp.
1–9.

[34] Claypool, M. (2008). Network characteristics for server selection in online games. In
Proc. Multimedia Computing and Networking (MMCN), pp. 6818–07.

[35] Cohen, B. (2003). Incentives build robustness in BitTorrent. In Proc. Economics of

Peer-to-Peer Systems P2PECON.

[36] Corman, A. B., S. Douglas, P. Schachte, and V. Teague (2006). A Secure Event
Agreement (SEA) protocol for peer-to-peer games. In Proc. ARES, pp. 34–41.

[37] Corman, A. B., P. Schachte, and V. Teague (2007). A secure group agreement (sga)
protocol for peer-to-peer applications. In Proc. Advanced Information Networking and

Applications Workshops (AINAW), pp. 24–29.

[38] Cottrell, R. L. and S. Khan (2007). CFA SCIC network monitoring report. web page.
http://www.slac.stanford.edu/xorg/icfa/icfa-net-paper-jan07/.

[39] Counter Hack (2007, Mar). Halflife. web page. http://wiki.counter-hack.net/halflife.

Bibliography 113

[40] Cronin, E., B. Filstrup, and S. Jamin (2003). Cheat-proofing dead reckoned multi-
player games. In Proc. Applicatoin and Development of Computer Games (ADCOG).

[41] Cronin, E., B. Filstrup, and A. Kurc (2001, May). A
distributed multiplayer game server system. Project Report.
http://warriors.eecs.umich.edu/games/papers/quakefinal.pdf.

[42] Cronin, E., B. Filstrup, A. R. Kurc, and S. Jamin (2002). An efficient synchronization
mechanism for mirrored game architectures. In Proc. Network and Systems Support for

Games (NetGames), pp. 67–73.

[43] Cronin, E., A. R. Kurc, B. Filstrup, and S. Jamin (2004). An efficient synchronization
mechanism for mirrored game architectures. Multimedia Tools and Applications 23(1),
7–30.

[44] Dabek, F., R. Cox, F. Kaashoek, and R. Morris (2004). Vivaldi: a decentralized
network coordinate system. In Proc. SIGCOMM, pp. 15–26.

[45] Davis, S. (2007, Feb). Next-gen hacking / last-gen weak-
nesses - part 1 - gears of war for the xbox 360. web page.
http://playnoevil.com/serendipity/index.php?/archives/1123-Next-Gen-Hacking-Last-

Gen-Weaknesses-Part-1-Gears-of-War-for-the-Xbox-360.html.

[46] Davis, S. (2009). Protecting games: a security handbook for game developers and

publishers. Charles River Media.

[47] DeLap, M., B. Knutsson, H. Lu, O. Sokolsky, U. Sammapun, I. Lee, and
C. Tsarouchis (2004). Is runtime verification applicable to cheat detection? In Proc.

Network and Systems Support for Games (NetGames), pp. 134–138.

[48] Dick, M., O. Wellnitz, and L. Wolf (2005). Analysis of factors affecting players’ per-
formance and perception in multiplayer games. In Proc. Network and Systems Support

for Games (NetGames), pp. 1–7.

[49] Dyck, J. (2006, January). A survey of application-layer networking techniques for
real-time distributed groupware. PhD Comprehensive Exam Survey.

[50] Even Balance (2002). PunkBuster online countermeasures. web page.
http://www.evenbalance.com/ Last accessed on the 26th September 2006.

[51] Falkner, J., M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson (2007). Profiling
a million user dht. In Proc. Internet Measurement Conference (IMC), pp. 129–134.

[52] Fan, L., H. Taylor, and P. Trinder (2007). Mediator: a design framework for P2P
MMOGs. In Proc. Network and Systems Support for Games (NetGames), pp. 43–48.

Bibliography 114

[53] Fei, Z., S. Bhattacharjee, E. Zegura, and M. Ammar (1998). A novel server selection
technique for improving the response time of a replicated service. In Proc. INFOCOM,
pp. 783–791.

[54] Feng, W. C., F. Chang, W. C. Feng, and J. Walpole (2002). Provisioning on-line
games: a traffic analysis of a busy counter-strike server. In Proc. ACM SIGCOMM

Workshop on Internet measurment (IMW), pp. 151–156.

[55] Feng, W. C., F. Chang, W. C. Feng, and J. Walpole (2005). A traffic characterization
of popular on-line games. ACM/IEEE Trans. on Networking 13(3), 488–500.

[56] Feng, W. C. and W. C. Feng (2003). On the geographic distribution of on-line game
servers and players. In Proc. Network and Systems Support for Games (NetGames), pp.
173–179.

[57] Feng, W. C., E. Kaiser, and T. Schluessler (2008). Stealth measurements for cheat de-
tection in on-line games. In Proc. Network and Systems Support for Games (NetGames),
pp. 15–20.

[58] Fernandes, S., C. Kamienski, D. Sadok, J. Moreira, and R. Antonello (2007). Traffic
analysis beyond this world: the case of second life. In Proc. Network and Operating

System Support for Digital Audio and Video (NOSSDAV), pp. 43–48.

[59] Ferretii, S., C. Palazzi, M. Roccetti, G. Pau, and M. Gerla (2006). Buscar el levante
port el poniente: in search of fairness through interactivity in massively multiplayer on-
line games. In Proc. Consumer Communications and Networking Conference (CCNC),
pp. 1183–1187.

[60] Francis, P., S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang (2001). Idmaps:
a global internet host distance estimation service. IEEE/ACM Trans. Networking 9(5),
525–540.

[61] Fritsch, T., H. Ritter, and J. Schiller (2005). The effect of latency and network limi-
tations on mmorpgs: a field study of everquest2. In Proc. Network and Systems Support

for Games (NetGames), pp. 1–9.

[62] GauthierDickey, C., V. Lo, and D. Zappala (2005). Using n-trees for scalable event
ordering in peer-to-peer games. In Proc. Network and Operating System Support for

Digital Audio and Video (NOSSDAV), pp. 87–92.

[63] GauthierDickey, C., D. Zappala, and V. Lo (2004). Low latency and cheat-proof event
ordering for distributed games. Technical Report CIS-TR-2004-2, University of Oregon.

Bibliography 115

[64] GauthierDickey, C., D. Zappala, V. Lo, and J. Marr (2004). Low latency and cheat-
proof event ordering for peer-to-peer games. In Proc. Network and Operating System

Support for Digital Audio and Video (NOSSDAV), pp. 134–139.

[65] Gautier, L., C. Diot, and J. Kurose (1999). End-to-end transmission control mecha-
nisms for multiparty interactive applications on the Internet. In Proc. INFOCOM, pp.
1470–1479.

[66] Gianvecchio, S., Z. Wu, M. Xie, and H. Wang (2009). Battle of botcraft: fighting bots
in online games with human observational proofs. In Proc. Computer and Communica-

tions Security (CCS), pp. 256–268.

[67] Goodman, J. and C. Verbrugge (2008). A peer auditing scheme for cheat elimination
in mmogs. In Proc. Network and Systems Support for Games (NetGames), pp. 9–14.

[68] Gornall, S. (2008). Ip address lookup – community geotarget IP project. web page.
http://www.hostip.info.

[69] Guo, K., S. Mukherjee, S. Rangarajan, and S. Paul (2003). A fair message exchange
framework for distributed multi-player games. In Proc. Network and Systems Support

for Games (NetGames), pp. 29–41.

[70] Hsiao, T.-Y. and S.-M. Yuan (2005). Practical middleware for massively multiplayer
online games. IEEE Internet Computing 9(5), 47–54.

[71] Hu, S., J. Chen, and T. Chen (2006). VON: A scalable peer-to-peer network for virtual
environments. IEEE Network 20(4), 22–31.

[72] Hulu. http://www.hulu.com/.

[73] id Software (1998, Dec). Quake World. web page. http://www.quakeworld.net/ Last
accessed on the 27th June 2006.

[74] Iimura, T., H. Hazeyama, and Y. Kadobayashi (2004). Zoned federation of game
servers: a peer-to-peer approach to scalable multi-player online games. In Proc. Network

and Systems Support for Games (NetGames), pp. 116–120.

[75] Johnson, D. B. and D. A. Maltz (1996). Dynamic source routing in ad hoc wireless
networks. Mobile Computing 353, 153–181.

[76] Kabus, P. and A. Buchmann (2007). Design of a cheat-resistant P2P online gaming
system. In Proc. Digital Interactive Media in Entertainment and Arts (DIMEA), pp.
113–120.

Bibliography 116

[77] Kabus, P., W. W. Terpstra, M. Cilia, and A. Buchmann (2005). Addressing cheating
in distributed MMOGs. In Proc. Network and Systems Support for Games (NetGames),
pp. 1–6.

[78] Kangasharju, J., J. Robers, and K. W. Ross (2002). Object replication strategies in
content distribution networks. Computer Communications 25(4), 376–383.

[79] Kawahara, Y., T. Aoyama, and H. Morikawa (2004). A peer-to-peer message ex-
change scheme for large-scale networked virtual environments. Telecommunication Sys-

tems 25(3), 353–370.

[80] Keller, J. and G. Simon (2003). Solipsis: A massively multi-participant virtual world.
In Parallel and Distributed Processing Techniques and Applications, pp. 262–268.

[81] Kershenbaum, A. (1993). Telecommunication Network Design Algorithms. McGraw-
Hill.

[82] Khuri, S. and T. Chiu (1997). Heuristic algorithms for the terminal assignment prob-
lem. In Proc. Symposium on Applied computing (SAC), pp. 247–251.

[83] Kim, J., J. Choi, D. Chang, T. Kwon, Y. Choi, and E. Yuk (2005). Traffic characteris-
tics of a massively multi-player online role playing game. In Proc. Network and Systems

Support for Games (NetGames), pp. 1–8.

[84] Knutsson, B., H. Lu, W. Xu, and B. Hopkins (2004). Peer-to-peer support for mas-
sively multiplayer games. In Proc. INFOCOM, Volume 1, pp. 7–11.

[85] Kushner, D. (2005). Engineering Everquest: Online gaming demands heavyweight
data centers. IEEE Spectrum 42(7), 34–39.

[86] Lakshminarayanan, K. and V. N. Padmanabhan (2003). Some findings on the network
performance of broadband hosts. In Proc. Internet Measurement Conference (IMC), pp.
45–50.

[87] Lee, J. (2005, May). Wage slaves. web page.
http://www.1up.com/do/feature?cId=3141815.

[88] Lee, K. W., B. J. Ko, and S. Calo (2005). Adaptive server selection for large scale
interactive online games. Computer Networks 49(1), 84–102.

[89] Li, K., S. Ding, D. McCreary, and S. Webb (2004). Analysis of state exposure control
to prevent cheating in online games. In Proc. Network and Operating System Support

for Digital Audio and Video (NOSSDAV), pp. 140–145.

Bibliography 117

[90] Lua, E. K., J. Crowcroft, M. Pias, R. Sharma, and S. Lim (2005). A survey and
comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys

& Tutorials, 72–93.

[91] Lua, E. K., T. Griffin, M. Pias, H. Zheng, and J. Crowcroft (2005). On the accuracy of
embeddings for Internet coordinate systems. In Proc. Internet Measurement Conference

(IMC), pp. 125–138.

[92] Lui, J. and M. Chan (2002). An efficient partitioning algorithm for distributed virtual
environment systems. IEEE Trans. on Parallel and Distributed Systems 13(3), 193–211.

[93] Matthews, W. and L. Cottrell (2000). The PingER project: active Internet perfor-
mance monitoring for the HENP community. IEEE Communications Magazine 38(5),
130–136.

[94] McCoy, A., T. Ward, S. Mcloone, and D. Delaney (2007). Multistep-ahead neural-
network predictors for network traffic reduction in distributed interactive applications.
Trans. on Modeling and Computer Simulation (TOMACS) 17(4), 16.

[95] MDY Industries (2007). Glider. web page. http://www.wowglider.com/.

[96] Miller, J. L. and J. Crowcroft (2009). Probabilistic event resolution with the pairwise
random protocol. In Proc. Network and Operating System Support for Digital Audio

and Video (NOSSDAV), pp. 67–72.

[97] Mills, D. (1992, March). Network time protocol. RFC 1305.

[98] Mönch, C., G. Grimen, and R. Midtstraum (2006). Protecting online games against
cheating. In Proc. Network and Systems Support for Games (NetGames). Article number
20.

[99] Montresor, A. (2004). A robust protocol for building superpeer overlay topologies. In
Proc. Peer-to-Peer Computing (P2P), pp. 202–209.

[100] Mulligan, J. and B. Patrovsky (2003, February). Developing Online Games: An

Insider’s Guide. New Riders Publishing.

[101] Neumann, C., N. Prigent, M. Varvello, and K. Suh (2007). Challenges in peer-to-
peer gaming. Proc. SIGCOMM 37(1), 79–82.

[102] Ng, T. S. E. and H. Zhang (2002). Predicting internet network distance with
coordinates-based approaches. In Proc. INFOCOM, pp. 170–179.

[103] Nichols, J. and M. Claypool (2004). The effects of latency on online Madden NFL
football. In Proc. Network and Operating System Support for Digital Audio and Video

(NOSSDAV), pp. 146–151.

Bibliography 118

[104] nProtect. GameGuard. web page. http://global.nprotect.com/product/gg.php.

[105] Oliveira, M. and T. Henderson (2003). What online gamers really think of the Inter-
net? In Proc. Network and Systems Support for Games (NetGames), pp. 185–193.

[106] Palazzi, C. E., S. Ferretti, S. Cacciaguerra, and M. Roccetti (2004). On maintaining
interactivity in event delivery synchronization for mirrored game architectures. In Proc.

Global Communications Conference (GlobeCom), pp. 157–165.

[107] Palmer, R. (2008). Implementation and practical evaluation of an anti-cheat protocol
for peer-to-peer multiplayer online games. Honours thesis. Department of Computing,
Curtin University of Technology.

[108] Pellegrino, J. D. and C. Dovrolis (2003). Bandwidth requirement and state consis-
tency in three multiplayer game architectures. In Proc. Network and Systems Support

for Games (NetGames), pp. 52–59.

[109] Pittman, D. and C. GauthierDickey (2007). A measurement study of virtual popula-
tions in massively multiplayer online games. In Proc. Network and Systems Support for

Games (NetGames), pp. 25–30.

[110] Pittman, D. and C. GauthierDickey (2010). Characterizing virtual populations in
massively multiplayer online role-playing games. Proc. ACM International Multimedia

Modelling Conference, Lecture Notes in Computer Science 5916, 87–97.

[111] Pritchard, M. (2000). How to hurt the hackers: The
scoop on Internet cheating and how you can combat it.
http://www.gamasutra.com/features/20000724/pritchard_pfv.htm.

[112] Qiu, D. and R.Srikant (2004). Modeling and performance analysis of bittorrent-like
peer-to-peer networks. In Proc. SIGCOMM, pp. 367–378.

[113] Quax, P., P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and N. Degrande (2004).
Objective and subjective evaluation of the influence of small amounts of delay and jitter
on a recent first person shooter game. In Proc. Network and Systems Support for Games

(NetGames), pp. 152–156.

[114] Queeg500 (2009, April). Networking changes on TQ. web page.
http://www.eveonline.com/devblog.asp?a=blog&bid=653.

[115] Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker (2001). A scalable
content-addressable network. In Proc. SIGCOMM, pp. 161–172.

[116] Ratt (2001, Dec). Showeq open source project. web page. http://www.showeq.net/.

Bibliography 119

[117] Rodolakis, G., S. Siachalou, and L. Georgiadis (2006). Replicated server placement
with QoS constraints. IEEE Trans. on Parallel and Distributed Systems 17(10), 1151–
1162.

[118] Rooney, S., D. Bauer, and R. Deydier (2004, Jan). A federated peer-to-peer network
game architecture. Research report, IBM Research GmbH, Zurich Research Laboratory
8803 Ruschlikon Switzerland.

[119] Rowstron, A. and P. Druschel (2001, Nov). Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), pp. 329–350.

[120] Seshan, S., J. Pang, and A. Bharambe (2006). Colyseus: A distributed architecture
for online multiplayer games. In Proc. Networked System Design and Implementation

(NSDI), pp. 155–168.

[121] Shavitt, Y. and E. Shir (2005). DIMES: let the Internet measure itself. Computer

Communication Review 35(5), 71–74.

[122] Sheldon, N., E. Girard, S. Borg, M. Claypool, and E. Agu (2003). The effect of
latency on user performance in Warcraft III. In Proc. Network and Systems Support for

Games (NetGames), pp. 3–14.

[123] Siwek, S. E. (2007). Video games in the 21st century: economic contributions of the
US entertainment software industry. Technical report, Entertainment Software Associa-
tion (ESA).

[124] Smed, J., T. Kaukoranta, and H. Hakonen (2002). Aspects of networking in multi-
player computer games. The Electronic Library 20(2), 87–97.

[125] Stoica, I., R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan (2001). Chord:
A scalable peer-to-peer lookup service for internet applications. In Proc. SIGCOMM,
pp. 149–160.

[126] Stutzbach, D., R. Rejaie, and S. Sen (2005). Characterizing unstructured overlay
topologies in modern P2P file-sharing systems. In Proc. Internet Measurement Confer-

ence (IMC), pp. 49–62.

[127] Svoboda, P., W. Karner, and M. Rupp (2007). Traffic analysis and modeling for
World of Warcraft. In Proc. International Conference on Communications(ICC), pp.
1612–1617.

[128] Ta, D. N. B., S. Zhou, and H. Shen (2006). Greedy algorithms for client assignment
in large-scale distributed virtual environments. In Proc. Principles of Advanced and

Distributed Simulation (PADS), pp. 103–110.

Bibliography 120

[129] Tang, D. T., L. S. Woo, and L. R. Bahl (1978). Optimization of teleprocessing
networks with concentrators and multiconnected terminals. IEEE Trans. Computers C-

27(7), 594–604.

[130] Tarng, P.-Y., K.-T. Chen, and P. Huang (2008). An analysis of WoW players’ game
hours. In Proc. Network and Systems Support for Games (NetGames), pp. 47–52.

[131] Terdiman, D. (2005, Sep). Virtual goods, real scams. web page.
http://news.zdnet.com/2100-1040_22-144576.html.

[132] Terdiman, D. (2006, Apr). World of Warcraft battles server problems.
web page. http://news.com.com/World+of+Warcraft+battles+server+problems/2100-

1043_3-6063990.html Last accessed on the 26th June 2006.

[133] Tukey, J. (1977). Exploratory data analysis. Addison-Wesley.

[134] Valve (2005). Valve anti-cheat system (vac). web page.
https://support.steampowered.com/kb_article.php?p_faqid=370.

[135] Valve (2006). Source multiplayer networking. Web page.
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking.

[136] Valve (2008, Jan). Survey summary data. Web page. http://

www.steampowered.com/status/survey.html.

[137] Vivendi (2008). Annual report. http://www.vivendi.com/vivendi/IMG/pdf/
20090408_annual_report_en_080409.pdf.

[138] Webb, S. D., W. Lau, and S. Soh (2006). NGS: An application layer network game
simulator. In Proc. Interactive Entertainment (IE), pp. 15–22.

[139] Webb, S. D. and S. Soh (2007a). Cheating in networked computer games - a review.
In Proc. Digital Interactive Media in Entertainment and Arts (DIMEA), pp. 105–112.

[140] Webb, S. D. and S. Soh (2007b). Round length optimisation for P2P network gam-
ing. In Proc. Postgraduate Electrical Engineering and Computing Symposium (PEECS),
pp. 23–28.

[141] Webb, S. D. and S. Soh (2007c). A survey on network game cheats and P2P solu-
tions. Australian Journal of Intelligent Information Processing Systems 9(4), 34–43.

[142] Webb, S. D. and S. Soh (2008). Adaptive client to mirrored-server assignment for
massively multiplayer online games. In Proc. Multimedia Computing and Networking

(MMCN), pp. 6818–17.

Bibliography 121

[143] Webb, S. D. and S. Soh (2009). Application performance metrics for evaluating de-
lay estimation schemes. In Proc. Asia-Pacific Conference on Communications (APCC),
pp. 717–721).

[144] Webb, S. D., S. Soh, and W. Lau (2007a). Enhanced mirrored servers for network
games. In Proc. Network and Systems Support for Games (NetGames), pp. 117–122.

[145] Webb, S. D., S. Soh, and W. Lau (2007b). RACS: a referee anti-cheat scheme for
P2P gaming. In Proc. Network and Operating System Support for Digital Audio and

Video (NOSSDAV), pp. 37–42.

[146] Webb, S. D., S. Soh, and J. L. Trahan (2008). Secure referee selection for fair
and responsive peer-to-peer gaming. In Proc. Principles of Advanced and Distributed

Simulation (PADS), pp. 63–71.

[147] Webb, S. D., S. Soh, and J. L. Trahan (2009). Secure referee selection for fair
and responsive peer-to-peer gaming. SIMULATION: Transactions of The Society for

Modeling and Simulation International 85(9), 608–618.

[148] WoWWiki (2008, Jan). Web page. http://www.wowwiki.com/.

[149] Yamamoto, S., Y. Murata, K. Yasumoto, and M. Ito (2005). A distributed event
delivery method with load balancing for MMORPG. In Proc. INFOCOM, pp. 1–8.

[150] Yan, J. (2003). Security design in online games. In Proc. Annual Computer Security

Applications Conference (ACSAC), pp. 286–295.

[151] Yan, J. and B. Randell (2005). A systematic classification of cheating in online
games. In Proc. Network and Systems Support for Games (NetGames), pp. 1–9.

[152] Yan, J. and B. Randell (2009). An investigation of cheating in online games. IEEE

Security & Privacy 7(3), 37–44.

[153] Yeung, S., J. Lui, J. Liu, and J. Yan (2006). Detecting cheaters for multiplayer
games: Theory, design and implementation. In Proc. Consumer Communications and

Networking Conference (CCNC), pp. 1178–1182.

[154] Yu, A. P. and S. T. Vuong (2005). MOPAR: a mobile peer-to-peer overlay architec-
ture for interest management of massively multiplayer online games. In Proc. Network

and Operating System Support for Digital Audio and Video (NOSSDAV), pp. 99–104.

[155] Zhang, R., C. Tang, Y. C. Hu, S. Fahmy, and X. Lin (2006). Impact of the inaccuracy
of distance prediction algorithms on Internet applications – an analytical and compara-
tive study. In Proc. INFOCOM, pp. 1–12.

Bibliography 122

[156] Zhao, B. Y., L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz
(2004, Jan). Tapestry: A resilient global-scale overlay for service deployment. IEEE

Journal on Selected Areas in Communications 22(1), 41–53.

[157] Zheng, H., E. K. Lua, M. Pias, and T. G. Griffin (2005). Internet routing policies and
round-trip-times. Proc. Passive and Active network Measurement (PAM), Lecture Notes

in Computer Science 3431, 236–250.

Every reasonable effort has been made to acknowledge the owners of copyright material.
I would be pleased to hear from any copyright owner who has been omitted or incorrectly
acknowledged.

	Abstract
	Acknowledgements
	Published Work
	Acronyms and Notation
	Introduction
	Aims and Approach
	Contributions
	Thesis Organisation

	Background and Literature Review
	Network Game Properties
	Network Game Genres
	Scalability
	Responsiveness and Fairness
	Consistency
	Persistence and Reliability

	Game Cheating
	Cheat Model
	Cheating Techniques
	Cheat Classifications

	Network Game Architectures
	Client/Server (C/S) Architecture
	Mirrored Server (MS) Architecture
	Architecture
	Synchronisation
	Security
	Client-to-Mirror Assignment (CMA)

	Peer-to-Peer (P2P) Architectures
	Architectures Without Cheat Detection/Prevention
	Architectures With Cheat Detection/Prevention

	Summary

	The Referee Anti-Cheat Scheme (RACS)
	Cheat Classification
	Referee Anti-Cheat Scheme
	RACS Concept and Protocol
	RACS Communication Modes

	Round Length Adjustment
	Delay Model and Problem Statement
	Round Length Adjustment Algorithms
	Brute Force
	Voting

	RACS Evaluation
	Cheat Prevention
	Bandwidth Analytical Analysis
	RACS Bandwidth and Delay Simulations
	Generating Realistic Inputs
	Simulation 3.1: RACS vs C/S in a Cheat-Free Environment
	Simulation 3.2: RACS Bandwidth and Delay with Cheaters
	Simulation 3.3: The Effects of w, s, and p, with Packet Loss and Cheating

	Round Length Adjustment Simulation

	Summary

	The Mirrored Referee Anti-Cheat Scheme (MRACS)
	Mirrored Referee Anti-Cheat Scheme
	MRACS Concept and Protocol
	MRACS Communication Modes
	MRACS Synchronisation
	MRACS Security

	Client to Mirror Assignment (CMA)
	CMA Problem Statement
	CMA Algorithms
	CMA-J Algorithms
	CMA-L Algorithms

	Performance Analysis
	Bandwidth and Processing - Analytical Evaluation
	Bandwidth, Processing, and Delay - Simulation Results
	CMA Simulation Results
	Simple Scenario
	Realistic Scenario
	Speed Comparisons

	Summary

	The Distributed Referee Anti-Cheat Scheme (DRACS)
	Distributed Referee Anti-Cheat Scheme
	System Model
	Referee Selection Problem
	Secure Referee Selection Algorithms
	Estimating Delay between Peers
	Size of the Candidate Referee Set
	SRS-1
	SRS-2

	Simulation and Discussion
	Simulation 5.1
	Simulation 5.2
	Simulation 5.3

	Summary

	Conclusion
	Summary
	Future Work

	L-SA Optimality Proof
	Copyright Permissions
	Bibliography

