586 research outputs found

    Predictors of packed red cell transfusion after isolated primary coronary artery bypass grafting – The experience of a single cardiac center: A prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preoperative patients' characteristics can predict the need for perioperative blood component transfusion in cardiac surgical operations. The aim of this prospective observational study is to identify perioperative patient characteristics predicting the need for allogeneic packed red blood cell (PRBC) transfusion in isolated primary coronary artery bypass grafting (CABG) operations.</p> <p>Patients and Methods</p> <p>105 patients undergoing isolated, first-time CABG were reviewed for their preoperative variables and followed for intraoperative and postoperative data. Patients were 97 males and 8 females, with mean age 58.28 ± 10.97 years. Regression logistic analysis was used for identifying the strongest perioperative predictors of PRBC transfusion.</p> <p>Results</p> <p>PRBC transfusion was used in 71 patients (67.6%); 35 patients (33.3%) needed > 2 units and 14 (13.3%) of these needed > 4 units. Univariate analysis identified female gender, age > 65 years, body weight ≤ 70 Kg, BSA ≤ 1.75 m<sup>2</sup>, BMI ≤ 25, preoperative hemoglobin ≤ 13 gm/dL, preoperative hematocrit ≤ 40%, serum creatinine > 100 μmol/L, Euro SCORE (standard/logistic) > 2, use of CPB, radial artery use, higher number of distal anastomoses, and postoperative chest tube drainage > 1000 mL as significant predictors. The strongest predictors using multivariate analysis were CPB use, hematocrit, body weight, and serum creatinine.</p> <p>Conclusion</p> <p>The predictors of PRBC transfusion after primary isolated CABG are use of CPB, hematocrit ≤ 40%, weight ≤ 70 Kg, and serum creatinine > 100 μmol/L. This leads to better utilization of blood bank resources and cost-efficient targeted use of expensive blood conservation modalities.</p

    Washed cell salvage in surgical patients

    Full text link
    Background: Cell salvage is commonly used as part of a blood conservation strategy. However concerns among clinicians exist about the efficacy of transfusion of washed cell salvage. Methods: We performed a meta-analysis of randomized controlled trials in which patients, scheduled for all types of surgery, were randomized to washed cell salvage or to a control group with no cell salvage. Data were independently extracted, risk ratio (RR), and weighted mean differences (WMD) with 95% confidence intervals (CIs) were calculated. Data were pooled using a random effects model. The primary endpoint was the number of patients exposed to allogeneic red blood cell (RBC) transfusion. Results: Out of 1140 search results, a total of 47 trials were included. Overall, the use of washed cell salvage reduced the rate of exposure to allogeneic RBC transfusion by a relative 39% (RR = 0.61; 95% CI 0.57 to 0.65; P < 0.001), resulting in an average saving of 0.20 units of allogeneic RBC per patient (weighted mean differences [WMD] = -0.20; 95% CI -0.22 to -0.18; P < 0.001), reduced risk of infection by 28% (RR = 0.72; 95% CI 0.54 to 0.97; P = 0.03), reduced length of hospital stay by 2.31 days (WMD = -2.31; 95% CI -2.50 to -2.11; P < 0.001), but did not significantly affect risk of mortality (RR = 0.92; 95% CI 0.63 to 1.34; P = 0.66). No statistical difference could be observed in the number of patients exposed to re-operation, plasma, platelets, or rate of myocardial infarction and stroke. Conclusions: Washed cell salvage is efficacious in reducing the need for allogeneic RBC transfusion and risk of infection in surgery

    Cell Salvage at the ICU

    Get PDF
    Patient Blood Management (PBM) is a patient-centered, systemic and evidence-based approach. Its target is to manage and to preserve the patient’s own blood. The aim of PBM is to improve patient safety. As indicated by several meta-analyses in a systematic literature search, the cell salvage technique is an efficient method to reduce the demand for allogeneic banked blood. Therefore, cell salvage is an important tool in PBM. Cell salvage is widely used in orthopedic-, trauma-, cardiac-, vascular and transplant surgery. Especially in cases of severe bleeding cell salvage adds significant value for blood supply. In cardiac and orthopedic surgery, the postoperative use for selected patients at the intensive care unit is feasible and can be implemented well in practice. Since the retransfusion of unwashed shed blood should be avoided due to multiple side effects and low quality, cell salvage can be used to reduce postoperative anemia with autologous blood of high quality. Implementing quality management, compliance with hygienic standards as well as training and education of staff, it is a cost-efficient method to reduce allogeneic blood transfusion. The following article will discuss the possibilities, legal aspects, implementation and costs of using cell salvage devices in an intensive care unit

    Front Lines of Thoracic Surgery

    Get PDF
    Front Lines of Thoracic Surgery collects up-to-date contributions on some of the most debated topics in today's clinical practice of cardiac, aortic, and general thoracic surgery,and anesthesia as viewed by authors personally involved in their evolution. The strong and genuine enthusiasm of the authors was clearly perceptible in all their contributions and I'm sure that will further stimulate the reader to understand their messages. Moreover, the strict adhesion of the authors' original observations and findings to the evidence base proves that facts are the best guarantee of scientific value. This is not a standard textbook where the whole discipline is organically presented, but authors' contributions are simply listed in their pertaining subclasses of Thoracic Surgery. I'm sure that this original and very promising editorial format which has and free availability at its core further increases this book's value and it will be of interest to healthcare professionals and scientists dedicated to this field

    Cell salvage for minimising perioperative allogeneic blood transfusion in adults undergoing elective surgery.

    Get PDF
    BACKGROUND: Concerns regarding the safety and availability of transfused donor blood have prompted research into a range of techniques to minimise allogeneic transfusion requirements. Cell salvage (CS) describes the recovery of blood from the surgical field, either during or after surgery, for reinfusion back to the patient. OBJECTIVES: To examine the effectiveness of CS in minimising perioperative allogeneic red blood cell transfusion and on other clinical outcomes in adults undergoing elective or non-urgent surgery. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, three other databases and two clinical trials registers for randomised controlled trials (RCTs) and systematic reviews from 2009 (date of previous search) to 19 January 2023, without restrictions on language or publication status. SELECTION CRITERIA: We included RCTs assessing the use of CS compared to no CS in adults (participants aged 18 or over, or using the study's definition of adult) undergoing elective (non-urgent) surgery only. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: We included 106 RCTs, incorporating data from 14,528 participants, reported in studies conducted in 24 countries. Results were published between 1978 and 2021. We analysed all data according to a single comparison: CS versus no CS. We separated analyses by type of surgery. The certainty of the evidence varied from very low certainty to high certainty. Reasons for downgrading the certainty included imprecision (small sample sizes below the optimal information size required to detect a difference, and wide confidence intervals), inconsistency (high statistical heterogeneity), and risk of bias (high risk from domains including sequence generation, blinding, and baseline imbalances). Aggregate analysis (all surgeries combined: primary outcome only) Very low-certainty evidence means we are uncertain if there is a reduction in the risk of allogeneic transfusion with CS (risk ratio (RR) 0.65, 95% confidence interval (CI) 0.59 to 0.72; 82 RCTs, 12,520 participants). Cancer: 2 RCTs (79 participants) Very low-certainty evidence means we are uncertain whether there is a difference for mortality, blood loss, infection, or deep vein thrombosis (DVT). There were no analysable data reported for the remaining outcomes. Cardiovascular (vascular): 6 RCTs (384 participants) Very low- to low-certainty evidence means we are uncertain whether there is a difference for most outcomes. No data were reported for major adverse cardiovascular events (MACE). Cardiovascular (no bypass): 6 RCTs (372 participants) Moderate-certainty evidence suggests there is probably a reduction in risk of allogeneic transfusion with CS (RR 0.82, 95% CI 0.69 to 0.97; 3 RCTs, 169 participants). Very low- to low-certainty evidence means we are uncertain whether there is a difference for volume transfused, blood loss, mortality, re-operation for bleeding, infection, wound complication, myocardial infarction (MI), stroke, and hospital length of stay (LOS). There were no analysable data reported for thrombosis, DVT, pulmonary embolism (PE), and MACE. Cardiovascular (with bypass): 29 RCTs (2936 participants) Low-certainty evidence suggests there may be a reduction in the risk of allogeneic transfusion with CS, and suggests there may be no difference in risk of infection and hospital LOS. Very low- to moderate-certainty evidence means we are uncertain whether there is a reduction in volume transfused because of CS, or if there is any difference for mortality, blood loss, re-operation for bleeding, wound complication, thrombosis, DVT, PE, MACE, and MI, and probably no difference in risk of stroke. Obstetrics: 1 RCT (1356 participants) High-certainty evidence shows there is no difference between groups for mean volume of allogeneic blood transfused (mean difference (MD) -0.02 units, 95% CI -0.08 to 0.04; 1 RCT, 1349 participants). Low-certainty evidence suggests there may be no difference for risk of allogeneic transfusion. There were no analysable data reported for the remaining outcomes. Orthopaedic (hip only): 17 RCTs (2055 participants) Very low-certainty evidence means we are uncertain if CS reduces the risk of allogeneic transfusion, and the volume transfused, or if there is any difference between groups for mortality, blood loss, re-operation for bleeding, infection, wound complication, prosthetic joint infection (PJI), thrombosis, DVT, PE, stroke, and hospital LOS. There were no analysable data reported for MACE and MI. Orthopaedic (knee only): 26 RCTs (2568 participants) Very low- to low-certainty evidence means we are uncertain if CS reduces the risk of allogeneic transfusion, and the volume transfused, and whether there is a difference for blood loss, re-operation for bleeding, infection, wound complication, PJI, DVT, PE, MI, MACE, stroke, and hospital LOS. There were no analysable data reported for mortality and thrombosis. Orthopaedic (spine only): 6 RCTs (404 participants) Moderate-certainty evidence suggests there is probably a reduction in the need for allogeneic transfusion with CS (RR 0.44, 95% CI 0.31 to 0.63; 3 RCTs, 194 participants). Very low- to moderate-certainty evidence suggests there may be no difference for volume transfused, blood loss, infection, wound complication, and PE. There were no analysable data reported for mortality, re-operation for bleeding, PJI, thrombosis, DVT, MACE, MI, stroke, and hospital LOS. Orthopaedic (mixed): 14 RCTs (4374 participants) Very low- to low-certainty evidence means we are uncertain if there is a reduction in the need for allogeneic transfusion with CS, or if there is any difference between groups for volume transfused, mortality, blood loss, infection, wound complication, PJI, thrombosis, DVT, MI, and hospital LOS. There were no analysable data reported for re-operation for bleeding, MACE, and stroke. AUTHORS' CONCLUSIONS: In some types of elective surgery, cell salvage may reduce the need for and volume of allogeneic transfusion, alongside evidence of no difference in adverse events, when compared to no cell salvage. Further research is required to establish why other surgeries show no benefit from CS, through further analysis of the current evidence. More large RCTs in under-reported specialities are needed to expand the evidence base for exploring the impact of CS

    Coagulopathy and Haemostasis in Surgery for Abdominal Aortic Aneurysm

    Get PDF

    Microvascular Responsiveness to Cardiopulmonary Bypass

    Get PDF
    Cardiopulmonary bypass can result in multiple organ failure due to mechanisms of ischemia reperfusion injury and the systemic inflammatory response syndrome. The primary objective of this thesis was to investigate and monitor the microvasculature in cardiac surgery patients using multiple methodologies and real-time monitoring techniques. The purpose of our first study was to determine whether pulsatile blood flow during bypass improves microvascular perfusion compared to non-pulsatile flow. We found that changes in sublingual mucosal microcirculation using orthogonal polarization spectral imaging correlate with indices of thenar muscle tissue oxygen saturation and its recovery during a vascular occlusion test using near-infrared spectroscopy in both groups. There were significantly fewer normally perfused vessels, along with impaired microvascular responsiveness and elevated levels of lactate in the non-pulsatile group. Although these technologies help to better understand the pathophysiology of acute circulatory failure, a need exists for improved monitors that can continuously track real-time changes in the microcirculation. Our subsequent studies involved the application of a custom broadband continuous wave near-infrared monitor to determine the feasibility of tracking microvascular hemoglobin content as a surrogate for red blood cell (RBC) flow in skeletal muscle during non-pulsatile bypass. We measure changes in optical density at the isosbestic wavelength as an index of change in hemoglobin over time. The changes in optical density relative to baseline values were continuously monitored throughout the procedure, and showed a positive correlation with various interventions during bypass and with potentially negative outcomes. In our third study we applied continuous wavelet transform analysis to the near-infrared data to reflect the dynamic variability in RBC distribution within the microvasculature as an indicator of autoregulation. We showed signal power composition varied within and between patients at all time points, and shifting of power distribution from high to low frequency ranges, and vice versa, in relation to specific events during the procedure. These studies support the potential for clinical devices that can be easily interpreted by a clinician in real-time to guide therapeutic targets and improve clinical outcomes. Our current research and related future work is an important first step and compelling pre-requisite for such a monitor
    corecore