916 research outputs found

    Driving Information in a Transition to a Connected and Autonomous Vehicle Environment: Impacts on Pollutants, Noise and Safety

    Get PDF
    The main objective of this vision paper is to present the project “DICA-VE: Driving Information in a Connected and Autonomous Vehicle Environment: Impacts on Safety and Emissions”, which aims to develop an integrated methodology to assess driving behavior volatility and develop warnings to reduce road conflicts and pollutants/noise emissions in a vehicle environment. A particular attention will be given to the interaction of motor vehicles with vulnerable road users (pedestrians and cyclists). The essence of assessing driving volatility aims the capture of the existence of strong accelerations and aggressive maneuvers. A fundamental understanding of instantaneous driving decisions (through a deep characterization of individual driver decision mechanisms, distinguishing normal from anomalous) is needed to develop a framework for optimizing these impacts. Thus, the research questions are: 1) Which strategies are adopted by each driver when he/she performs short-term driving decisions and how can these intentions be mapped, in a certain road network?; 2) How is driver’s volatility affected by the proximity of other road users, namely pedestrians or cyclists?; 3) How can driving volatility information be integrated into a platform to alert road users about potential dangers in the road infrastructure and prevent the occurrence of crash situations?; 4) How can anomalous driving variability be reduced in autonomous cars, in order to prevent road crashes and have a performance with a minimum degree of emissions? This paper brings a literature review on this topic and an evaluation of methods that can be used to assess driving behavior patterns and their influence on road safety, pollutant and noise emissions.publishe

    AdvDO: Realistic Adversarial Attacks for Trajectory Prediction

    Full text link
    Trajectory prediction is essential for autonomous vehicles (AVs) to plan correct and safe driving behaviors. While many prior works aim to achieve higher prediction accuracy, few study the adversarial robustness of their methods. To bridge this gap, we propose to study the adversarial robustness of data-driven trajectory prediction systems. We devise an optimization-based adversarial attack framework that leverages a carefully-designed differentiable dynamic model to generate realistic adversarial trajectories. Empirically, we benchmark the adversarial robustness of state-of-the-art prediction models and show that our attack increases the prediction error for both general metrics and planning-aware metrics by more than 50% and 37%. We also show that our attack can lead an AV to drive off road or collide into other vehicles in simulation. Finally, we demonstrate how to mitigate the adversarial attacks using an adversarial training scheme.Comment: To appear in ECCV 202

    Combining Bayesian and AI approaches for Autonomous Driving

    Get PDF
    International audienceInvited Keynote Talk. This talk addresses the exciting new concept of Autonomous Driving, as well as the technical questions and solutions associated with it. Emphasis will be placed on the scientific and technological challenges associated with issues of embedded perception, understanding of complex dynamic scenes and real-time driving decision-making. It will be shown how these problems can be tackled using Bayesian Perception, Artificial Intelligence and Machine Learning approaches. The talk will be illustrated using results obtained by Inria Grenoble RhĂ´ne-Alpes (France) in the scope of several R&D projects conducted in collaboration with IRT Nanoelec (French Technological Research Institute) and with several industrial companies such as Toyota or Renault
    • …
    corecore