1,486 research outputs found

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201

    Immersive Teleoperation of the Eye Gaze of Social Robots Assessing Gaze-Contingent Control of Vergence, Yaw and Pitch of Robotic Eyes

    Get PDF
    International audienceThis paper presents a new teleoperation system – called stereo gaze-contingent steering (SGCS) – able to seamlessly control the vergence, yaw and pitch of the eyes of a humanoid robot – here an iCub robot – from the actual gaze direction of a remote pilot. The video stream captured by the cameras embedded in the mobile eyes of the iCub are fed into an HTC Vive R Head-Mounted Display equipped with an SMI R binocular eye-tracker. The SGCS achieves the effective coupling between the eye-tracked gaze of the pilot and the robot's eye movements. SGCS both ensures a faithful reproduction of the pilot's eye movements – that is perquisite for the readability of the robot's gaze patterns by its interlocutor – and maintains the pilot's oculomotor visual clues – that avoids fatigue and sickness due to sensorimotor conflicts. We here assess the precision of this servo-control by asking several pilots to gaze towards known objects positioned in the remote environment. We demonstrate that we succeed in controlling vergence with similar precision as eyes' azimuth and elevation. This system opens the way for robot-mediated human interactions in the personal space, notably when objects in the shared working space are involved

    Design and evaluation of a natural interface for remote operation of underwater roter

    Get PDF
    Nowadays, an increasing need of intervention robotic systems can be observed in all kind of hazardous environments. In all these intervention systems, the human expert continues playing a central role from the decision making point of view. For instance, in underwater domains, when manipulation capabilities are required, only Remote Operated Vehicles, commercially available, can be used, normally using master-slave architectures and relaying all the responsibility in the pilot. Thus, the role played by human- machine interfaces represents a crucial point in current intervention systems. This paper presents a User Interface Abstraction Layer and introduces a new procedure to control an underwater robot vehicle by using a new intuitive and immersive interface, which will show to the user only the most relevant information about the current mission. Finally, some experiments have been carried out to compare a traditional setup and the new procedure, demonstrating reliability and feasibility of our approach.This research was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project)

    A natural interface for remote operation of underwater robots

    Get PDF
    Nowadays, an increasing need of intervention robotic systems can be observed in all kind of hazardous environments. In all these intervention systems, the human expert continues playing a central role from the decision-making point of view. For instance, in underwater domains, when manipulation capabilities are required, only Remote Operated Vehicles, commercially available, can be used, normally using master-slave architectures and relaying all the responsibility in the pilot. Thus, the role played by human- machine interfaces represents a crucial point in current intervention systems. This paper presents a User Interface Abstraction Layer and introduces a new procedure to control an underwater robot vehicle by using a new intuitive and immersive interface, which will show to the user only the most relevant information about the current mission. We conducted an experiment and found that the highest user preference and performance was in the immersive condition with joystick navigation.This research was partly supported by Spanish Ministry of Research and Innovation DPI2011-27977-C03 (TRITON Project)

    A Classification of Human-to-Human Communication during the Use of Immersive Teleoperation Interfaces

    Get PDF
    • …
    corecore