278 research outputs found

    Empowering One-vs-One Decomposition with Ensemble Learning for Multi-Class Imbalanced Data

    Get PDF
    Zhongliang Zhang was supported by the National Science Foundation of China (NSFC Proj. 61273204) and CSC Scholarship Program (CSC NO. 201406080059). Bartosz Krawczyk was supported by the Polish National Science Center under the grant no. UMO-2015/19/B/ST6/01597. Salvador Garcia and Francisco Herrera were partially supported by the Spanish Ministry of Education and Science under Project TIN2014-57251-P and the Andalusian Research Plan P10-TIC-6858, P11-TIC-7765. Alejandro Rosales-Perez was supported by the CONACyT grant 329013.Multi-class imbalance classification problems occur in many real-world applications, which suffer from the quite different distribution of classes. Decomposition strategies are well-known techniques to address the classification problems involving multiple classes. Among them binary approaches using one-vs-one and one-vs-all has gained a significant attention from the research community. They allow to divide multi-class problems into several easier-to-solve two-class sub-problems. In this study we develop an exhaustive empirical analysis to explore the possibility of empowering the one-vs-one scheme for multi-class imbalance classification problems with applying binary ensemble learning approaches. We examine several state-of-the-art ensemble learning methods proposed for addressing the imbalance problems to solve the pairwise tasks derived from the multi-class data set. Then the aggregation strategy is employed to combine the binary ensemble outputs to reconstruct the original multi-class task. We present a detailed experimental study of the proposed approach, supported by the statistical analysis. The results indicate the high effectiveness of ensemble learning with one-vs-one scheme in dealing with the multi-class imbalance classification problems.National Natural Science Foundation of China (NSFC) 61273204CSC Scholarship Program (CSC) 201406080059Polish National Science Center UMO-2015/19/B/ST6/01597Spanish Government TIN2014-57251-PAndalusian Research Plan P10-TIC-6858 P11-TIC-7765Consejo Nacional de Ciencia y Tecnologia (CONACyT) 32901

    Strengthening intrusion detection system for adversarial attacks:Improved handling of imbalance classification problem

    Get PDF
    Most defence mechanisms such as a network-based intrusion detection system (NIDS) are often sub-optimal for the detection of an unseen malicious pattern. In response, a number of studies attempt to empower a machine-learning-based NIDS to improve the ability to recognize adversarial attacks. Along this line of research, the present work focuses on non-payload connections at the TCP stack level, which is generalized and applicable to different network applications. As a compliment to the recently published investigation that searches for the most informative feature space for classifying obfuscated connections, the problem of class imbalance is examined herein. In particular, a multiple-clustering-based undersampling framework is proposed to determine the set of cluster centroids that best represent the majority class, whose size is reduced to be on par with that of the minority. Initially, a pool of centroids is created using the concept of ensemble clustering that aims to obtain a collection of accurate and diverse clusterings. From that, the final set of representatives is selected from this pool. Three different objective functions are formed for this optimization driven process, thus leading to three variants of FF-Majority, FF-Minority and FF-Overall. Based on the thorough evaluation of a published dataset, four classification models and different settings, these new methods often exhibit better predictive performance than its baseline, the single-clustering undersampling counterpart and state-of-the-art techniques. Parameter analysis and implication for analyzing an extreme case are also provided as a guideline for future applications

    Data-level hybrid strategy selection for disk fault prediction model based on multivariate GAN

    Full text link
    Data class imbalance is a common problem in classification problems, where minority class samples are often more important and more costly to misclassify in a classification task. Therefore, it is very important to solve the data class imbalance classification problem. The SMART dataset exhibits an evident class imbalance, comprising a substantial quantity of healthy samples and a comparatively limited number of defective samples. This dataset serves as a reliable indicator of the disc's health status. In this paper, we obtain the best balanced disk SMART dataset for a specific classification model by mixing and integrating the data synthesised by multivariate generative adversarial networks (GAN) to balance the disk SMART dataset at the data level; and combine it with genetic algorithms to obtain higher disk fault classification prediction accuracy on a specific classification model

    Adaptive Subspace Sampling for Class Imbalance Processing-Some clarifications, algorithm, and further investigation including applications to Brain Computer Interface

    Full text link
    © 2020 IEEE. Kohonen's Adaptive Subspace Self-Organizing Map (ASSOM) learns several subspaces of the data where each subspace represents some invariant characteristics of the data. To deal with the imbalance classification problem, earlier we have proposed a method for oversampling the minority class using Kohonen's ASSOM. This investigation extends that study, clarifies some issues related to our earlier work, provides the algorithm for generation of the oversamples, applies the method on several benchmark data sets, and makes an application to a Brain Computer Interface (BCI) problem. First we compare the performance of our method using some benchmark data sets with several state-of-The-Art methods. Finally, we apply the ASSOM-based technique to analyze a BCI based application using electroencephalogram (EEG) datasets. Our results demonstrate the effectiveness of the ASSOM-based method in dealing with imbalance classification problem

    Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

    Full text link
    Convolutional neural networks (CNNs) show impressive performance for image classification and detection, extending heavily to the medical image domain. Nevertheless, medical experts are sceptical in these predictions as the nonlinear multilayer structure resulting in a classification outcome is not directly graspable. Recently, approaches have been shown which help the user to understand the discriminative regions within an image which are decisive for the CNN to conclude to a certain class. Although these approaches could help to build trust in the CNNs predictions, they are only slightly shown to work with medical image data which often poses a challenge as the decision for a class relies on different lesion areas scattered around the entire image. Using the DiaretDB1 dataset, we show that on retina images different lesion areas fundamental for diabetic retinopathy are detected on an image level with high accuracy, comparable or exceeding supervised methods. On lesion level, we achieve few false positives with high sensitivity, though, the network is solely trained on image-level labels which do not include information about existing lesions. Classifying between diseased and healthy images, we achieve an AUC of 0.954 on the DiaretDB1.Comment: Accepted in Proc. IEEE International Conference on Image Processing (ICIP), 201
    corecore