9,149 research outputs found

    Animal models of ischaemic stroke and characterisation of the ischaemic penumbra

    Get PDF
    Over the past forty years, animal models of focal cerebral ischaemia have allowed us to identify the critical cerebral blood flow thresholds responsible for irreversible cell death, electrical failure, inhibition of protein synthesis, energy depletion and thereby the lifespan of the potentially salvageable penumbra. They have allowed us to understand the intricate biochemical and molecular mechanisms within the ‘ischaemic cascade’ that initiate cell death in the first minutes, hours and days following stroke. Models of permanent, transient middle cerebral artery occlusion and embolic stroke have been developed each with advantages and limitations when trying to model the complex heterogeneous nature of stroke in humans. Yet despite these advances in understanding the pathophysiological mechanisms of stroke-induced cell death with numerous targets identified and drugs tested, a lack of translation to the clinic has hampered pre-clinical stroke research. With recent positive clinical trials of endovascular thrombectomy in acute ischaemic stroke the stroke community has been reinvigorated, opening up the potential for future translation of adjunctive treatments that can be given alongside thrombectomy/thrombolysis. This review discusses the major animal models of focal cerebral ischaemia highlighting their advantages and limitations. Acute imaging is crucial in longitudinal pre-clinical stroke studies in order to identify the influence of acute therapies on tissue salvage over time. Therefore, the methods of identifying potentially salvageable ischaemic penumbra are discussed

    Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats

    Get PDF
    Background: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. Methods: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. Results: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. Conclusions: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear

    MRI Visualization of Whole Brain Macro- and Microvascular Remodeling in a Rat Model of Ischemic Stroke: A Pilot Study

    Get PDF
    Using superparamagnetic iron oxide nanoparticles (SPION) as a single contrast agent, we investigated dual contrast cerebrovascular magnetic resonance imaging (MRI) for simultaneously monitoring macro- and microvasculature and their association with ischemic edema status (via apparent diffusion coefficient [ADC]) in transient middle cerebral artery occlusion (tMCAO) rat models. High-resolution T1-contrast based ultra-short echo time MR angiography (UTE-MRA) visualized size remodeling of pial arteries and veins whose mutual association with cortical ischemic edema status is rarely reported. ??R2?????R2*-MRI-derived vessel size index (VSI) and density indices (Q and MVD) mapped morphological changes of microvessels occurring in subcortical ischemic edema lesions. In cortical ischemic edema lesions, significantly dilated pial veins (p???=???0.0051) and thinned pial arteries (p???=???0.0096) of ipsilateral brains compared to those of contralateral brains were observed from UTE-MRAs. In subcortical regions, ischemic edema lesions had a significantly decreased Q and MVD values (p???<???0.001), as well as increased VSI values (p???<???0.001) than normal subcortical tissues in contralateral brains. This pilot study suggests that MR-based morphological vessel changes, including but not limited to venous blood vessels, are directly related to corresponding tissue edema status in ischemic stroke rat models

    Emerging insights into the genesis of cerebral ischaemia and stroke

    Get PDF
    Stroke is a global problem with increasing significance because of the ageing population. Except for age, hypertensionisbyfar themostimportantriskfactorfor stroke. Hypertensionpredisposes toanumberof intracerebral and extracerebral vascular lesions which may cause cerebrovascular events by different mechanisms. The high metabolic need and low energy reserve make the braiavery vulnerable to ischaemia. During the last decade a number of experimental studies - supported by PET studies in man - suggest the presence of a therapeutic window, i.e. the time during which the neurons can be saved. The penumbra is the zone surrounding the core of the infarct where the flow is decreased and the neurons are lethargic and may be electrically silent but still viable. The presumed role of calcium, excitatory amino acids, free radicals, platelet-activating factor, acidosis and brain temperature in the process of neuronal death is briefly reviewed.peer-reviewe

    Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) magnetic resonance metabolic imaging identifies the penumbra following acute ischemic stroke

    Get PDF
    The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options

    Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra

    Get PDF
    We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin:deoxyhemoglobin ratios and T2* signal change during ‘oxygen challenge’ (OC, 5 mins 100% O2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n=5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n=5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronal morphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. validation using [14C]2-deoxyglucose autoradiography

    Get PDF
    Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T2* MRI (T2* OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T2* signal change during OC. [14C]2-deoxyglucose (2-DG) autoradiography was combined with T2* OC to determine metabolic status of T2*-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147±32 minutes after stroke, T2* signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T2*-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T2* signal increase of 9.22%±3.9% (mean±s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T2* signal change was negligible in ischemic core, 3.2%±0.78% in contralateral regions, and 1.41%±0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue follow

    Translational perspectives on perfusion-diffusion mismatch in ischemic stroke

    Get PDF
    Magnetic resonance imaging has tremendous potential to illuminate ischemic stroke pathophysiology and guide rational treatment decisions. Clinical applications to date have been largely limited to trials. However, recent analyses of the major clinical studies have led to refinements in selection criteria and improved understanding of the potential implications for the risk vs. benefit of thrombolytic therapy. In parallel, preclinical studies have provided complementary information on the evolution of stroke that is difficult to obtain in humans due to the requirement for continuous or repeated imaging and pathological verification. We review the clinical and preclinical advances that have led to perfusion–diffusion mismatch being applied in phase 3 randomized trials and, potentially, future routine clinical practice

    Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model

    Get PDF
    Accurate imaging of the ischemic penumbra is a prerequisite for acute clinical stroke research. T2* magnetic resonance imaging (MRI) combined with an oxygen challenge (OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. However, inducing OC with 100% O2 induces sinus artefacts on human scans and influences cerebral blood flow (CBF), which can affect T2* signal. Therefore, we investigated replacing 100% O2 OC with 40% O2 OC (5 minutes 40% O2 versus 100% O2) and determined the effects on blood pressure (BP), CBF, tissue pO2, and T2* signal change in presumed penumbra in a rat stroke model. Probes implanted into penumbra and contralateral cortex simultaneously recorded pO2 and CBF during 40% O2 (n=6) or 100% O2 (n=8) OC. In a separate MRI study, T2* signal change to 40% O2 (n=6) and 100% O2 (n=5) OC was compared. Oxygen challenge (40% and 100% O2) increased BP by 8.2% and 18.1%, penumbra CBF by 5% and 15%, and penumbra pO2 levels by 80% and 144%, respectively. T2* signal significantly increased by 4.56%±1.61% and 8.65%±3.66% in penumbra compared with 2.98%±1.56% and 2.79%±0.66% in contralateral cortex and 1.09%±0.82% and −0.32%±0.67% in ischemic core, respectively. For diagnostic imaging, 40% O2 OC could provide sufficient T2* signal change to detect penumbra with limited influence in BP and CBF
    corecore