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Abstract 

Over the past forty years, animal models of focal cerebral ischaemia have allowed us to identify the 

critical cerebral blood flow thresholds responsible for irreversible cell death, electrical failure, 

inhibition of protein synthesis, energy depletion and thereby the lifespan of the potentially 

salvageable penumbra.  They have allowed us to understand the intricate biochemical and molecular 

mechanisms within the ‘ischaemic cascade’ that initiate cell death in the first minutes, hours and 

days following stroke.   Models of permanent, transient middle cerebral artery occlusion and 

embolic stroke have been developed each with advantages and limitations when trying to model the 

complex heterogeneous nature of stroke in humans.  Yet despite these advances in understanding 

the pathophysiological mechanisms of stroke-induced cell death with numerous targets identified 

and drugs tested, a lack of translation to the clinic has hampered pre-clinical stroke research.  With 

recent positive clinical trials of endovascular thrombectomy in acute ischaemic stroke the stroke 

community has been reinvigorated, opening up the potential for future translation of adjunctive 

treatments that can be given alongside thrombectomy/thrombolysis.  This review discusses the 

major animal models of focal cerebral ischaemia highlighting their advantages and limitations.  

Acute imaging is crucial in longitudinal pre-clinical stroke studies in order to identify the influence of 

acute therapies on tissue salvage over time.  Therefore, the methods of identifying potentially 

salvageable ischaemic penumbra are discussed. 
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Abbreviations:  CCA:  common carotid artery, ECA:  external carotid artery, ICA: Internal carotid 

artery, MCA:  middle cerebral artery, MCAO:  middle cerebral artery occlusion, CBF:  cerebral blood 

flow, MRI: magnetic resonance imaging, DWI:  diffusion weighted imaging, PI:  perfusion imaging, 

SHRSP:  spontaneously hypertensive stroke prone rat, LDF:  laser Doppler flowmetry, OEF:  oxygen 

extraction fraction, CMRO2:  cerebral metabolic rate O2, CMRglu:  cerebral metabolic rate of glucose 

consumption, ADC:  apparent diffusion coefficient, MRS:  magnetic resonance spectroscopy, ATP:  

Adeonosine triphosphate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

In the UK, stroke causes approximately 40,000 deaths per annum. It is the third leading cause of 

death and, importantly, the leading cause of long-term disability (Stroke Association: State of the 

Nation 2016).  Restoration of cerebral blood flow (CBF) is the only proven effective treatment for 

acute ischaemic stroke. Tissue plasminogen activator (rt-PA), a thrombolytic drug, increases arterial 

reperfusion rates, restores perfusion and improves functional outcomes (Roth 2011). Mechanical 

thrombectomy has been shown to improve outcomes in the most severe cases of ischaemic stroke 

with proximal large artery occlusion, in numerous recent randomised trials (Berkhemer et al. 

2015;Campbell et al. 2015;Goyal et al. 2015;Jovin et al. 2015;Saver et al. 2015). Despite these 

significant advances, there remains considerable need for alternative and adjunct treatments with 

less than 10% of acute ischaemic stroke patients receive intravenous thrombolysis and only a small 

proportion  are eligible for thrombectomy(Chia et al. 2016;Henninger and Fisher 2016). In addition, 

most patients still have ongoing symptoms or disability after treatment and reperfusion itself can 

cause neuronal injury either through no-reflow or direct reperfusion induced injury to the tissue 

through hyperperfusion and haemorrhagic transformation (Nour et al. 2013). Despite successful 

recanalization with either thrombolysis or thrombectomy, incomplete reperfusion may still occur 

within the microcirculation (i.e capillaries, arterioles), a concept known as the ‘no-reflow’ 

phenomenon(Dalkara and Arsava 2012;Hauck et al. 2004), an effect which may be related to 

pericyte constriction and death in rigor (Hall et al. 2014).  There is increasing evidence that this 

occurs in humans where restoration of tissue perfusion is a better predictor of outcome than 

recanalization alone(Soares et al. 2010).  Therefore, therapeutic options that target the 

microcirculation following recanalization may act to improve outcome microvascular perfusion to 

the ischaemic territory and improve outcome.  Therefore, animal models are still vital in  

understanding  the pathophysiological mechanisms of ischaemic damage (e.g. collateral flow 

dynamics, microcirculation) and in developing and testing  new treatments that could be given 

either as a stand alone treatment or in combination with thrombolysis/thrombectomy.  



Animal models of focal cerebral ischaemia 

There are a number of different models of focal cerebral ischaemia each with strengths and 

limitations when modelling the heterogeneous nature of clinical stroke.  The majority of pre-clinical 

stroke studies are carried out in small animals with rodents (mice & rats) being the most common 

species used.  Ischaemic stroke in humans most commonly occurs through an occlusion of the 

middle cerebral artery (MCA) and therefore MCA occlusion is the model employed in pre-clinical 

stroke studies.  There has been a failure to translate neuroprotective strategies from the pre-clinical 

studies in animal models to the clinic which has questioned the validity of animal models of stroke.  

This translational roadblock has been the subject of many reviews and commentaries with both 

poorly designed pre-clinical studies and poor clinical trial design broadly to blame (Dirnagl and 

Macleod 2009;Howells et al. 2014).  In 1999, a collective group of clinical and pre-clinical stroke 

experts met to try to understand and address this failure to translate.  The Stroke Therapy and 

Academic Industry Roundtable (STAIR) group published their first set of guidelines for the 

improvement of pre-clinical studies in 1999 and have subsequently published further 

recommendations over the last 18 years (1999;Fisher et al. 2005;Fisher et al. 2009;Saver et al. 2009).  

Among the recommendations for pre-clinical stroke neuroprotection studies were the appropriate 

use of randomisation and blinding, use of co-morbid animal strains, using both male and female 

animals, investigation of appropriate dose response relationships and investigation in at least two 

independent laboratories.  In light of the STAIR recommendations a number of meta-analyses have 

investigated study quality in pre-clinical stroke experiments.  Many of these reviews and analyses 

have been quite damning for the pre-clinical stroke community demonstrating a lack of control of 

potential bias in stroke studies due to poor experimental design (i.e. lack of reporting of blinding, 

randomisation and insufficient power).  Interestingly, this effect is not just within pre-clinical stroke 

research but across the biomedical field in general(Macleod et al. 2015).  On a more positive note, 

the pre-clinical stroke community has also been at the forefront of improving quality of 

experimental studies.   A number of scientific journals now  require statements  on power 



calculations, randomisation & blinding in materials and methods and some editors are encouraging 

the submission of negative and neutral studies to address a recognised publication bias.   There is 

still much work to be done, however, within the pre-clinical stroke community there is a strong 

commitment to move in the right direction.  One example of this is the MULTIPART network which 

consists of pre-clinical and clinical stroke researchers as well as members involved in animal welfare 

and aims to provide a platform for international multi-centre preclinical trials in order to overcome 

the translational roadblock (http://www.dcn.ed.ac.uk/multipart/default.htm).   The National Centre 

for the Replacement, Refinement and Reduction of animals in Research (NC3Rs) set up a working 

group (which included MULTIPART members as members from academia, pharmaceutical industry 

and UK Home Office) in 2014 aimed at improving the welfare of animals in stroke research as well as 

increasing the quality and rigour of experimental stroke research.  They have recently published a 

set of guidelines aimed at improving in vivo stroke modelling and animal welfare(Percie du et al. 

2017).  A summary poster format of these guidelines are included as supplementary content to this 

review article.         

Intraluminal filament model of MCAO 

The intraluminal filament or suture model is by far the most commonly employed model of focal 

cerebral ischaemia.  In order to induce middle cerebral artery occlusion (MCAO) an intraluminal 

filament or suture (silicon coated or heat blunted) is introduced into the internal carotid artery (ICA) 

and advanced until it occludes the origin of the MCA (Longa et al. 1989).  This model therefore 

requires exposure of the carotid vessels on the neck and temporary occlusion of the common carotid 

artery (CCA) as well as the external carotid, occipital and pterygopalatine arteries in order to 

successfully advance the filament to occlude the origin of the MCA.  Following insertion of the 

filament, it can be left in place permanently or withdrawn after a defined period of time to induce 

reperfusion of the MCA.  One of the advantages of the filament model of MCAO is that it is less 

challenging technically than the diathermy models of MCAO learn the necessary surgical skills and 



can be applied to both rat and mouse models, allowing modelling of both permanent and transient 

MCAO.    There have been a number of refinements of the intraluminal filament model since its 

introduction,  to improve the recovery of animals(Trueman et al. 2011).  The choice of filament used 

to induce MCAO has been demonstrated to be important in reproducibility and mortality with more 

incomplete MCAOs and haemorrhage associated with heat blunted filaments when compared to 

silicon coated filaments(Tsuchiya et al. 2003).  A recent study investigated the influence of a newer 

design of filament (bowling pin shaped tip) and compared this with three different conventional 

types of filament for recovery following permanent MCAO.  The authors demonstrated that the 

bowling pin shaped filament reduced ischaemic damage (particularly in the hypothalamus & 

occipital region), reduced mortality and showed improved collateral filling from the posterior 

cerebral artery territory(Shanbhag et al. 2016).  It is important for individual laboratories to carry out 

pilot studies in order to ensure the optimal size and type of filament for the particular strain and 

weight range of rats/mice used.  This will ensure that successful occlusion is more likely thereby 

reducing variability and mortality from haemorrhage.    

A recent study investigating two different surgical approaches for insertion of the filament in mice 

(via the CCA) or external carotid artery (ECA)) demonstrated an improved recovery of perfusion and 

survival when the filament was inserted through the ECA (Smith et al. 2015).  However, the 

difference in mortality observed in this particular study may be related to patency of the CCA 

following reperfusion.  When the authors inserted the filament through the ECA the CCA was kept 

patent. However, this was not the case when inserting the filament through the CCA where it was 

permanently tied off.  Variations in the circle of Willis, particularly in mice, may result in variability in 

the extent of reperfusion following removal of the filament if the circle is incomplete and the 

ipsilateral CCA is permanently occluded. Other modifications in rats include maintaining patency of 

the external carotid vessels (ECA, occipital artery & pterygopalatine artery) in order to prevent 

damage to the facial muscles and palate therefore helping recovery of animals by minimising 

damage to the muscles of mastication and improving post-surgical weight loss and hydration.  



Another refinement, with closed skull models such as the intraluminal filament model, that has been 

introduced to reduce mortality in the spontaneously hypertensive stroke prone (SHRSP) rat is to 

prepare a cranial burr hole prior to transient MCAO(Ord et al. 2012).  We have more recently 

demonstrated that a cranial burr hole, made under the same anaesthetic used for inducing MCAO, is 

also associated with reduced mortality in the SHRSP (unpublished findings).  This refinement could 

also be applied alongside reduced duration of ischaemia, when using  co-morbid strains (i.e aged 

animals, obese, etc.) that may be associated with higher mortality following MCAO.   

The intraluminal filament model of MCAO is commonly used for assessment of functional outcome 

after stroke allowing the impact of therapeutic interventions (i.e pharmacological, cell based 

treatments) to be determined.  There are many different behavioural tests that are used with most 

of the commonly used tests assessing some level of sensorimotor function.  With the filament model 

of MCAO there is typically damage to the striatum and depending on the length of occlusion time 

cortical damage will also be present.  It is important that the behavioural test(s) chosen reflect the 

extent of damage in order to maximise sensitivity of detecting a change.  In addition, neurological 

scores (i.e Bederson scale, modified neurological severity score) are often used as a quick method 

for assessment of neurological deficits however often lack sensitivity due to their subjective nature 

and recovery of rodents long term(Bederson et al. 1986;Garcia et al. 1995).  There  are a number of 

very good and comprehensive review articles on functional outcome after stroke in rodents (Schaar 

et al. 2010).  One of the problems is a lack of consensus on the appropriate tests to be used with a 

large variation in behavioural tests being used across stroke models. 

One of the limitations with the filament model of MCAO is the risk of partial (incomplete) occlusions 

of the MCA either due to; a) the filament size not being optimal for the diameter of blood vessel at 

the point of occlusion (addressed by indirect matching of filament to a pre-defined weight range); b) 

the filament has not been advanced far enough or has become dislodged following insertion. Often 

groups will use laser Doppler flowmetry (LDF) prior to, during and immediately following MCAO in 



order to confirm a successful ischaemic insult and reperfusion.  This involves the placement of a 

laser Doppler probe onto a single point on the skull (skull thinning at the probe location is 

recommended for rats because of the thicker skull) over the MCA territory.  Successful occlusion of 

the MCA is determined by a reduction in CBF below a set threshold at a specified probe location. 

However, these thresholds can  vary considerably from lab to lab.  Positioning of the LDF probe is 

also crucial in order to ensure that it is placed over the ischaemic core territory.  Due to its 

placement on the skull surface this means the signal is from the dorsal cortex which is typically 

where the ischaemic penumbra will be located due to the presence of the collateral vessels 

originating from the anterior cerebral artery.  Therefore, depending on the strain and variability of 

lesion size, the percentage reduction of CBF may vary considerably due to the extent of 

collateralisation.   The predictive value of LDF for confirming MCAO and reperfusion is unclear and 

more data are required to determine whether a correlation exists between  extent of LDF reduction 

and infarct size.  Our own unpublished data demonstrate that LDF provides little if any predictive 

value for the size of the eventual infarct (see Figure 1).  

In terms of ischaemic penumbra, the intraluminal filament model has been demonstrated to 

produce a considerable volume of potentially salvageable penumbra with the presence of co-

morbidities such as hypertension resulting in significantly less penumbra (McCabe et al. 2009;Meng 

et al. 2004;Shen et al. 2003).  This makes it a useful model for studies investigating the impact of 

therapeutic approaches on either the volume or lifespan of the penumbra or tissue salvage following 

reperfusion(Henninger et al. 2007a;Henninger and Fisher 2007). 

In order to overcome the issues with incomplete MCAO with the filament model, acute MRI scanning 

can be carried out immediately following insertion of the filament.  Diffusion weighted imaging 

(DWI) will allow the extent and size of the early ischaemic damage to be visualised while MR 

angiography can confirm the absence of flow through the MCA and reestablishment following 

removal of filament.  The benefits of carrying out baseline imaging for lesion volume during MCAO 



means that one can use the same animal as its own control in order to assess the impact of 

reperfusion and/or treatment on this initial lesion, thereby eliminating some of  the issues with 

variability.  Our own laboratory has recently investigated the influence of early reperfusion in the 

SHRSP where we have observed that early reperfusion at 35 min can reduce baseline lesion volume 

thereby resulting in tissue salvage (see Figure 2).  However, this is not always possible in stroke 

laboratories due to availability and cost issues surrounding MRI scanning.   

One area of criticism levelled at the transient intraluminal filament MCAO model is that it does not 

represent the clinical stroke population where typically gradual recanalization of the occluded vessel 

will occur while in the animal model following filament removal there is prompt surge reperfusion 

(Hossmann 2012).  Thrombolysis with rt-PA results in a gradual breakdown of the clot which can take 

anywhere from 30 mins to up to several hours to fully lyse and therefore may induce a gradual 

reperfusion (Alexandrov et al. 2001).  In contrast with removal of the filament it will induce a surge 

of reperfusion which is unlikely to be observed with thrombolysis(Burrows et al. 2015).   However, 

with the recent advent of endovascular thrombectomy demonstrating significant clinical efficacy in 

patients with large proximal clots, this has given the filament model a new found clinical relevance. 

Surge reperfusion observed with removal of the filament will be similar to that observed with 

endovascular thrombectomy (Sutherland et al. 2016). 

Electrocoagulation model of MCAO 

The electrocoagulation or diathermy model of MCAO in rodents was originally developed by Tamura 

and colleagues(Tamura et al. 1981).  In this model a craniectomy is performed to expose the MCA on 

the brain surface.  Electrocoagulation forceps are used to coagulate a particular portion of the MCA 

in order to permanently occlude the vessel.  Following coagulation of the vessel some groups will 

then cut through the coagulated portion of the vessel to ensure complete occlusion.  One of the 

advantages of this model is that the section of the MCA that is occluded can be varied (i.e. a distal or 

proximal occlusion) in order to induce a stroke affecting cortical or both cortical and sub-cortical 



territory.  This model has good reproducibility and typically less variability in lesion size in 

comparison to the filament model of MCAO.  A distal occlusion of the MCA will induce a cortical 

lesion whereas a proximal occlusion (at the origin of the MCA), which includes the lenticulo-striate 

branches,  will induce a larger sub-cortical and cortical infarct.  Typically, mortality is low owing to 

the craniectomy required to visualise and  occlude the MCA which limits the effects of oedema.  One 

limitation with this particular model is that it induces  permanent MCAO and therefore reperfusion is 

not possible.  However, diathermy occlusion of the MCA can be replaced by use of a reversible 

ligature or clip but this also leads to greater variability in outcome (Buchan et al. 1992;Shigeno et al. 

1985).    The model is also more technically challenging in terms of surgical skills necessary to carry 

out the craniectomy and expose the MCA without causing significant bleeding or damage to the 

underlying cortex.  Due to the location of the craniectomy, damage to the temporalis muscle may 

occur particularly if a proximal occlusion is carried out and this can cause problems with recovery in 

terms of eating.    With this model we have demonstrated that there is a measureable region of 

penumbra using MRI PI/DWI mismatch, which gradually becomes incorporated into the infarct over 

the first 3-4 hours after MCAO (Tarr et al. 2013).   

Embolic models of MCAO 

In order to try to mimic the clinical situation, a number of models of thromboembolism have been 

developed for use in animal models.  These models allow for the study of thrombolytic agents and 

their ability to break down the clot, recanalise the vessel and importantly, allow the potential of 

novel neuroprotective agents to be tested alongside thrombolysis.  The most widely used 

thromboembolic model relies on the generation of an embolus for occlusion of the MCA.  Emboli are 

pre-formed outside the body using  autologous blood (Zhang et al. 2015). The clots, prepared in 

advance to a particular diameter and length, are loaded into a fine catheter which is introduced  into 

the ICA and advanced to occlude the origin of the MCA in a similar surgical approach to the 

intraluminal filament model.  However, the embolic model is associated with significantly higher 



mortality and variability in lesion size (Macrae 2011).  One issue is that the clot can break up and 

result in multifocal ischaemic lesions depending on where the fragments become lodged.  

Alternatively, the clot may travel further than intended and occlude a vessel other than the MCA 

such as the posterior cerebral artery.  Advantages are that this model can be used to assess the 

impact of treatments with thrombolysis (rt-PA) or test new thrombolytics since recanalization does 

occur. 

Photothrombosis models of MCAO 

The Rose Bengal model of photothrombotic stroke was introduced in 1985.  This model requires the 

intravenous injection of Rose Bengal (photosensitive dye) followed by the illumination of the skull by 

a laser in a specific cortical location.  Illumination results in activation of the dye producing highly 

reactive oxygen radicals that induce endothelial damage, platelet activation and aggregation and 

ultimately the formation of thrombi(Watson et al. 1985).  Advantages of this model are that it 

produces thrombi  similar to the thrombi  observed clinically, is relatively straightforward and quick 

to carry out the surgery necessary, and has lower variability since there is selective occlusion to the 

pial vessels around the illuminated zone.  A recent study used a slightly modified version where they 

induced a proximal occlusion of the MCA with rose Bengal in mice producing a cortical and sub-

cortical lesion.  Interestingly, the authors demonstrated a sizeable volume of penumbra when 

assessed acutely with MRI (Qian et al. 2016).  This opens up the possibility of assessing the impact of 

reperfusion with thrombolysis (i.e rt-PA) and/or neuroprotectants in a model, which displays a 

measureable penumbra.   

Thromboembolic models of MCAO 

In order to try to represent the clinical situation observed with rt-PA induced reperfusion, a mouse 

model of thromboembolic stroke was developed in 2007.  In this model, a small craniotomy is made 

to expose the distal branches of the MCA on the cortical surface and thrombin is injected into the 

lumen of the blood vessel  using a micropipette(Orset et al. 2007).  The thrombin injection results in 



the immediate formation of a fibrin clot at the site of injection thereby resulting in a rapid decrease 

in perfusion to the affected territory.  The strengths of this model are in reproducibility, low 

mortality and suitability  for testing thrombolytic drugs either alone or alongside adjunct 

therapies(Macrae 2011).  It has limited value for generating data on neurological/sensorimotor 

deficits because of the small size and location of the infarct.  Injection of rt-PA to induce 

thrombolysis results in the gradual breakdown of the clot taking around 30-50 minutes for the full 

restoration of perfusion (Orset et al. 2007). One other issue with this model is the development of 

spontaneous recanalization where Durand and colleagues demonstrated partial to complete 

reperfusion in 80% of animals at three hours after occlusion (Durand et al. 2012). 

This model has been used by a number of groups since its development and a recent retrospective 

pooled analysis of the effectiveness of rt-PA (alteplase) in this model was carried out.  The authors 

analysed data from 26 different studies from across 9 international centres and demonstrated that 

early administration of rt-PA (<3h) was associated with significant benefit.  However, late 

administration (≥ 3h) had no, or a deleterious effect (Orset et al. 2016). This provides strong 

validation of this model being clinically relevant and therefore useful for the investigation of future 

neuroprotectants with thrombolysis and hope for successful translation.  More extensive thrombotic  

MCAO is possible  by topical application of  ferric chloride (10-20%  solution saturated on strip of 

filter paper) to the dura mater overlying the main trunk of the MCA (Karatas et al. 2011)  or the 

common carotid artery followed by mechanically promoting embolization of FeCl3-triggered thrombi 

to the internal carotid artery (Martinez de et al. 2017).  This model is particularly suited to in vivo 

real time studies of the cortex  using laser speckle flowmetry or 2-photon microscopy. 

Endothelin-1 model of MCAO 

Endothelin-1 (ET-1) is a potent and long lasting vasoconstrictor peptide which makes it a valuable 

tool for inducing focal cerebral ischaemia.  Originally developed in the rat, topical administration of 

ET-1 to the abluminal surface of the exposed MCA results in a significant and long-lasting 



vasoconstriction with gradual reperfusion(Macrae et al. 1993).  The model was subsequently 

modified for  stereotaxic injection of ET-1 into tissue adjacent to the MCA(Sharkey and Butcher 

1995) and this is by far the most common ET-1 method used in recent years.    One advantage of this 

model over the abluminal administration is that the surgery is relatively quick and straightforward 

for targeting the MCA and avoids damage to the facial muscles.  Another advantage is that a guide 

cannula can be implanted into the site in advance allowing  ET-1 to be injected in conscious animals, 

thereby removing any confounds of anaesthesia(Moyanova et al. 1998).  Disadvantages are a high 

variability in lesion volume that can occur due to variability in the response of the blood  vessels to 

ET-1.  Ansari and colleagues have tried to overcome this with the use of laser Doppler flowmetry 

during administration of ET-1 (Ansari et al. 2013) .  It is unclear how much penumbral tissue this 

model produces.  However, there are a number of studies that have used the model and 

demonstrated reductions in infarct volume with therapeutic approaches suggesting the potential for 

tissue salvage (Callaway et al. 2004;McCarthy et al. 2009;Stoop et al. 2017).   

ET-1 can be stereotaxically injected into any region of brain  parenchyma to induce a localised focal 

ischaemic lesion.  By targeting specific neuroanatomical areas, such as white matter tracts, a discrete 

targeted anatomical lesion (e.g. internal capsule) can be induced to produce a specific  behavioural 

deficit(Lecrux et al. 2008).   

Ischaemic penumbra  

The definition of penumbra is the region of potentially salvageable brain tissue which is by virtue a 

region of reduced blood supply in which energy metabolism is preserved (Hossmann 1994).  The 

ischaemic penumbra was originally defined by Astrup and Symon in anaesthetised baboons based on 

CBF thresholds of viability (Astrup et al. 1977;Symon et al. 1977).  They defined an upper CBF 

threshold of ischaemia of 20ml/100g/min (compared to a baseline value of 50-55ml/100g/min) 

where cells exhibited electrical failure, had sustained energy metabolism, low extracellular 

potassium,  and a lower CBF threshold (CBF of 6ml/100g/min) where extracellular potassium was 



increased alongside electrical failure and energy failure (Astrup et al. 1981).  Tissue with CBF 

between these thresholds had the potential for recovery if perfusion was promptly restored. 

However, tissue with flow values below the lower threshold were destined for   irreversible cell 

death.  Our understanding of the penumbra has evolved over the subsequent years since these 

seminal experiments where we now understand considerably more about the possible lifespan of 

the penumbra following stroke. With the advent of acute imaging (PET & MRI) techniques, we can 

broadly summarise the ischaemic penumbra as the region of brain tissue that is hypoperfused, has 

maintained cerebral metabolic rate of oxygen consumption (CMRO2) and an increased oxygen 

extraction fraction (OEF) (Marchal et al. 1996).   

Ex-vivo autoradiographical techniques 

With this in mind, the penumbra can be identified based on properties of CBF, energy metabolism 

(ATP, glucose metabolism), protein synthesis and tissue pH.  These different components will cease 

to function at varying flow thresholds (see review by (Hossmann 1994).  Protein synthesis inhibition 

occurs early after the onset of ischaemia due to endoplasmic reticulum stress and does not 

immediately cause irreversible cell death.  The threshold for inhibition of protein synthesis occurs 

first (around 55ml/g/min or 50% reduction in rats) while energy metabolism is still ongoing at these 

flow values (Mies et al, 1991).    The inhibition of cerebral protein synthesis (CPS) acutely following 

permanent MCAO (within 1 hour) has been shown to predict the final infarct size (Hata et al. 2000).  

CPS inhibition may be partially reversible and is not due to energy failure since ATP depletion is 

observed with more severe reductions in CBF.  The mismatch between maintained ATP production 

and CPS inhibition has been used as a method for  identification of the penumbra where the area of 

reduced CPS but maintained energy metabolism represents  the penumbra (Hata et al. 1998;Hata et 

al. 2000).  Cerebral metabolic rate of glucose consumption (CMRglu) can be obtained with 
14

C-2-

deoxyglucose autoradiography following MCAO allowing identification of regions of severely 

reduced, increased and normal CMRglu.  We have previously used this technique to validate an MRI 



technique (oxygen challenge) for identification of tissue metabolism (Robertson et al. 2011a).  The 

metabolic penumbra has previously been identified as a region of increased CMRglu which shows 

moderate acidosis while the ischaemic core is the region of reduced CMRglu and severe 

acidosis(Peek et al. 1989).  Based on tissue pH, Back and colleagues identified the ischaemic 

penumbra as a region of hypoperfused tissue with a region of acidosis and an alkaline sub-area while 

the core was severely acidic (Back et al. 2000).   

These techniques have been crucial in developing our understanding of the different tissue 

compartments following stroke and identifying critical thresholds for energy metabolism, ion 

homeostasis and perfusion.  They are however, limited to the research setting and do not allow for 

longitudinal assessment over time in the same animal since autoradiography is a terminal 

procedure.  In order to longitudinally assess the evolution of ischaemic damage and lifespan of 

penumbra, the use of small animal MRI scanning has become invaluable.  The advantages of pre-

clinical MRI scanning is that these methods and protocols can be relatively easily translated to the 

clinical setting allowing development of new methods and assessment of the same outcomes to be 

compared. 

MRI Perfusion-Diffusion mismatch 

MRI Perfusion-Diffusion mismatch is currently used to provide an indirect assessment of the 

ischaemic penumbra in animal models and in acute stroke patients.  The diffusion-perfusion 

mismatch can be used for patient recruitment into clinical trials ensuring only patients with 

remaining   penumbral tissue are selected for the study of therapies and interventions designed to 

facilitate reperfusion.   Pre-clinical stroke research employing diffusion and perfusion weighted 

imaging has increased considerably over the last decade with increasing access to  small animal MRI 

scanners.  

DWI measures the diffusion of water molecules in biological tissues and following ischaemic stroke 

changes in diffusion occur within minutes (Hjort et al. 2005;Norris et al. 1998).  The apparent 



diffusion coefficient (ADC) generated from DWI allows the magnitude of diffusion to be quantified.  

These diffusion changes are thought to be because of the pathophysiological processes associated 

with the initiation of the ischaemic cascade (i.e. bioenergetic failure, and failure of ion pumps) which 

result in cytotoxic oedema (cell swelling)(Sevick et al. 1992).  The process of cell swelling results in a 

restricted diffusion of water molecules in the extracellular space and thereby a change in diffusion 

signal.  This reduction in ADC occurs over the acute phase following stroke (minutes to days) 

followed by a normalisation and then increase in diffusion in the later phases due to the 

development of vasogenic oedema and cavitation(Shen et al. 2011).  Therefore, early reductions in 

ADC reflect the development of ischaemic damage and have been shown to closely correlate with 

histopathological damage(Sevick et al. 1990).  It was originally thought that the acute ADC lesion 

represented irreversibly damaged tissue but there is increasing evidence that at least some of the 

acute diffusion lesion has the potential for recovery depending on how quickly reperfusion is 

induced.  Indeed, we have demonstrated this in the SHRSP rat (Figure 2) where early reperfusion can 

reverse some of the acute ADC lesion. Following permanent MCAO the DWI (or ADC) lesion will 

gradually evolve over the first few hours in animal models reflecting the incorporation of ischaemic 

penumbra into the ischaemic core.  In healthy normotensive rats this has been shown to occur over 

the first 3-4 hours with the damage matching the final infarct volume at 24 hours post MCAO 

(McCabe et al. 2009;Meng et al. 2004).  Longitudinal DWI imaging during the acute phase following 

MCAO can also be used as an indirect measure of penumbral volume by assessing the growth of the 

ADC lesion over time into the final infarct volume (Reid et al. 2012).  This allows for the assessment 

of therapeutics or impact of risk factors/co-morbidities etc to be evaluated on the evolution of 

ischaemic damage.  For instance, we have demonstrated the impact of hypertension, gender and 

acute post-stroke hyperglycaemia on the acute evolution of the ADC lesion and final infarct volume 

following permanent MCAO (Baskerville et al. 2016;Reid et al. 2012;Tarr et al. 2013).  By 

understanding the acute evolution of ischaemic damage against a background of co-morbidities/risk 

factors etc.  we can better understand the therapeutic time window with the potential of developing 



stratified treatments for specific patient sub-groups that can slow down the infarct growth and 

prolong the time window for recanalization.  

Perfusion imaging (PI) provides information about the perfusion status of the brain.  This can be 

carried out using contrast enhanced techniques or by using blood as an endogenous contrast agent 

with arterial spin labelling (ASL) methods.  Following MCAO, PI can be used to assess the spatial 

extent of CBF reduction using specific CBF thresholds.  These CBF thresholds may vary depending on 

the method used to carry out PI as well as species, strain and scanner (see review by (Campbell and 

Macrae 2015)).    Following permanent MCAO the perfusion deficit remains relatively constant 

during the first hours post- MCAO.  This region of haemodynamic compromise shown on PI is 

typically larger than the region of DWI or ADC abnormality, resulting in the so called ‘perfusion 

diffusion mismatch’.  This mismatch tissue comprises tissue that is hypoperfused (perfusion deficit) 

but does not show signs of cytotoxic oedema (DWI or ADC lesion) (Figure 3). Perfusion diffusion 

mismatch predicts the tissue that will further evolve into the diffusion abnormality and become 

irreversibly damaged if reperfusion or acute neuroprotection is not initiated(Warach 2003).  

Therefore, this approximates the potentially salvageable ischaemic penumbra.   

One of the advantages of this technique in animal models is that the acute evolution of ischaemic 

damage can be longitudinally assessed in the same animal.  A number of studies have investigated 

the evolution of the PI/DWI mismatch following permanent MCAO in rats and have demonstrated 

that the mismatch gradually disappears over the first 3-6 hours consistent with the loss of penumbra 

and enlargement of the ischaemic core (DWI lesion).  This allows for the dynamic nature of 

ischaemic damage, CBF and loss of penumbra to be assessed either with/without a therapeutic 

intervention(Henninger et al. 2007b) or for the impact of stroke co-morbidities on acute evolution to 

be determined (Reid et al. 2012;Tarr et al. 2013).  In addition, acute scanning can be carried out 

during MCAO (i.e. DWI and PI) with reperfusion then induced remotely within the scanner either by 

filament withdrawal or intravenous administration of rt-PA in embolic models.  Further, the impact 



of reperfusion on the acute evolution of lesion volume and extent of reperfusion can be assessed 

alongside investigation of the fate of penumbral tissue following reperfusion. 

Metabolic MRI techniques 

One of the limitations of the PI/DWI mismatch technique is that penumbra is not defined on  

metabolic status or OEF.  Since the technique is dependent on the setting of imprecise thresholds, a  

portion of the diffusion lesion may contain penumbral tissue while the perfusion lesion may contain 

benign oligaemic tissue which is not at risk of infarction.  Several studies including our own (Figure 2) 

have demonstrated that the early DWI abnormality is partially reversible upon reperfusion, 

demonstrating that this may indeed  include penumbra(Labeyrie et al. 2012;Li et al. 2000).   

Therefore, there has been considerable effort to develop more accurate MRI techniques that can 

differentiate tissue based on metabolism.  Using a T2* weighted MRI sequence, most commonly 

used in functional MRI studies, Santosh and colleagues(Santosh et al. 2008) used an ‘oxygen 

challenge’ to exploit the paramagnetic properties of deoxyhaemoglobin and the difference in 

deoxy/oxyhaemoglobin ratio in the penumbra compared to surrounding tissue.  This technique has 

been extensively validated with histology, glucose metabolism and reperfusion (Robertson et al. 

2011a;Robertson et al. 2011b;Robertson et al. 2015) and by other groups (Shen et al. 2015).  Further 

development has included the use of oxygen carriers (perflourocarbons) in order to amplify the 

signal change within the metabolically active penumbra (Deuchar et al. 2013).      

Following arterial occlusion, one of the immediate consequences is energy failure due to insufficient 

delivery of substrates for glucose metabolism.  This results in a switch from aerobic to anaerobic 

glycolysis thereby increasing lactate levels.  A number of magnetic resonance spectroscopy (MRS) 

studies have demonstrated changes in tissue lactate levels following experimental stroke.  A recent 

study carried out lactate MRI and lactate spectroscopy to characterise the ischaemic penumbra 

based on the change of lactate levels following a challenge with 100% O2 (Holmes et al. 2012a).  In 

this particular study, lactate levels were elevated within the ischaemic hemisphere acutely following 



permanent MCAO (within the first 3 hours) indicative of the presence of anaerobic glycolysis.  

Ventilation of rats 100% O2 in place of air during MRI scanning resulted in a decrease in lactate levels 

within the PWI/DWI mismatch region while no change in lactate was observed in the ischaemic core.  

This suggests that lactate imaging and spectroscopy alongside an O2 challenge has the ability to 

identify tissue capable of recovery based on the ability to  switch from anaerobic to aerobic 

glycolysis and vice versa(Holmes et al. 2012b).  The advantage of these more recent techniques is 

that they probe tissue integrity based on metabolic activity and therefore may be able to identify 

patients with potentially salvageable tissue outside the current therapeutic time window.    

Conclusions 

There are a number of different animal models of focal cerebral ischaemia each with strengths and 

limitations.  The choice of appropriate model depends on the research questions to be addressed 

with no models mimicking the heterogenous nature of stroke in humans completely.  For instance, 

intraluminal filament induced transient MCAO would be useful for investigating adjunctive 

treatments that could be given alongside endovascular thrombectomy while models of permanent 

MCAO could be used to evaluate neuroprotection therapies in the absence of reperfusion.   In order 

to determine the therapeutic efficacy of novel neuroprotectants (with and without reperfusion) the 

use of longitudinal imaging (prior to and post treatment) provides greater insight into the 

mechanisms (i.e. perfusion, penumbra), therapeutic time-window and statistical power by being 

able to use each animal as its own control.  The use of animal models that incorporate factors known 

to influence stroke outcome (i.e. hypertension, diabetes, ageing, gender) should also be used.  

However, an appreciation of the impact of risk factors on penumbra and outcome are essential in 

order to determine the optimal time window for administration of treatment and reperfusion.   

  



Figure legends 

Figure 1.  Lack of correlation between the % reduction in laser Doppler flow signal (LDF) following 

insertion of the filament and infarct volume. LDF was measured at baseline and throughout MCAO 

and reperfusion. Infarct volume was measured by T2 MRI at 72 hours following 90 min transient 

MCAO. Linear regression demonstrated no correlation between drop in LDF following MCAO and 

infarct volume  (Pearson correlation).    

Figure 2. A. Representative ADC maps of acute diffusion lesion at 30 min during a 35 min MCAO and 

T2-weighted final infarct volume at day 7 in the SHRSP.  B. Individual animal data  for acute lesion 

volume during MCAO and final infarct volume at day 7 following reperfusion.   

Figure 3.  PI/DWI imaging at 1 hour following permanent MCAO (intraluminal filament) in a male 

Sprague Dawley rat.  A.  CBF map showing the perfusion deficit; B.  ADC map showing the region of 

reduced diffusion (ischaemic damage); C. Thresholded perfusion and diffusion maps showing the 

mismatch (highlighted in green).  
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