1,163 research outputs found

    Convolutional Neural Networks and Feature Fusion for Flow Pattern Identification of the Subsea Jumper

    Get PDF
    The gas–liquid two-phase flow patterns of subsea jumpers are identified in this work using a multi-sensor information fusion technique, simultaneously collecting vibration signals and electrical capacitance tomography of stratified flow, slug flow, annular flow, and bubbly flow. The samples are then processed to obtain the data set. Additionally, the samples are trained and learned using the convolutional neural network (CNN) and feature fusion model, which are built based on experimental data. Finally, the four kinds of flow pattern samples are identified. The overall identification accuracy of the model is 95.3% for four patterns of gas–liquid two-phase flow in the jumper. Through the research of flow profile identification, the disadvantages of single sensor testing angle and incomplete information are dramatically improved, which has a great significance on the subsea jumper’s operation safety.publishedVersio

    Electrical impedance tomography: methods and applications

    Get PDF

    A Survey on Distributed Fibre Optic Sensor Data Modelling Techniques and Machine Learning Algorithms for Multiphase Fluid Flow Estimation

    Get PDF
    Real-time monitoring of multiphase fluid flows with distributed fibre optic sensing has the potential to play a major role in industrial flow measurement applications. One such application is the optimization of hydrocarbon production to maximize short-term income, and prolong the operational lifetime of production wells and the reservoir. While the measurement technology itself is well understood and developed, a key remaining challenge is the establishment of robust data analysis tools that are capable of providing real-time conversion of enormous data quantities into actionable process indicators. This paper provides a comprehensive technical review of the data analysis techniques for distributed fibre optic technologies, with a particular focus on characterizing fluid flow in pipes. The review encompasses classical methods, such as the speed of sound estimation and Joule-Thomson coefficient, as well as their data-driven machine learning counterparts, such as Convolutional Neural Network (CNN), Support Vector Machine (SVM), and Ensemble Kalman Filter (EnKF) algorithms. The study aims to help end-users establish reliable, robust, and accurate solutions that can be deployed in a timely and effective way, and pave the wave for future developments in the field.publishedVersio

    Multiphase flowrate measurement with multi-modal sensors and temporal convolutional network

    Get PDF

    Characterization of fast-growing foams in bottling processes by endoscopic imaging and convolutional neural networks

    Get PDF
    Regardless of whether the occurrence of foams in industrial processes is desirable or not, the knowledge about the characteristics of their formation and morphology is crucial. This study addresses the measuring of characteristics in foam and the trailing bubbly liquid that result from air bubble entrainment by a plunging jet in the environment of industry-like bottling process es of non-carbonated beverages. Typically encountered during the bottling of fruit juices, this process configuration is characterized by very fast filling speeds with high dynamic system parameter changes. Especially in multiphase systems with a sensitive disperse phase like gas bubbles, the task of its measurement turns out to be difficult. The aim of the study is to develop and employ an image processing capability in real geometries under realistic industrial conditions, e.g. as opposed to a narrow measurement chamber. Therefore, a typically sized test bottle was only slightly modified to adapt an endoscopic measurement technique and to acquire image data in a minimally invasive way. Two convolutional neural networks (CNNs) were employed to analyze irregular non-overlapping bubbles and circular overlapping bubbles. CNNs provide a robust object recognition for varying image qualities and therefore can cover a broad range of process conditions at the cost of a time-consuming training process. The obtained single bubble and population measurements allow approximation, correlation and interpretation of the bubble size and shape distributions within the foam and in the bubbly liquid. The classification of the measured foam morphologies and the influence of operating conditions are presented. The applicability to the described test case as an industrial multiphase process reveals high potential for a huge field of operations for particle size and shape measurement by the introduced method

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications
    • …
    corecore